
QUASI MONOTONICITY FOR THE RELATIVE ENTROPIC
NORMALIZED DETERMINANT OF POSITIVE OPERATORS IN

HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A, B in the Hilbert space H and
x 2 H with kxk = 1 we de�ne the relative entropic normalized determinant
Dx (AjB) by

Dx (AjB) := exp
D
A

1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2 x; x

E
:

In this paper we show among others that, if 0 < m1H � A � M1H ; 0 <

1H � C � �1H and 0 < k1H � B � C � K1H ; then
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for all x 2 H with kxk = 1:

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1H stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [9], [10], introduced the normalized determinant �x(A)

for positive invertible operators A on a Hilbert space H and a �xed unit vector
x 2 H; namely kxk = 1; de�ned by �x(A) := exp hlnAx; xi and discussed it as a
continuous geometric mean and observed some inequalities around the determinant
from this point of view.
Some of the fundamental properties of normalized determinant are as follows,

[9].
For each unit vector x 2 H; see also [13], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
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(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.
We de�ne the logarithmic mean of two positive numbers a; b by

(1.1) L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [9] the authors obtained the following additive reverse inequality for the oper-
ator A which satisfy the condition 0 < m1H � A �M1H ; where m;M are positive
numbers,

(1.2) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [19]

(1.3) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [10], the authors obtained the following multiplicative reverse inequality as

well

(1.4) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < m1H � A �M1H and x 2 H; kxk = 1:
For the entropy function � (t) = �t ln t; t > 0; the operator entropy has the

following expression:
� (A) = �A lnA

for positive A:
For x 2 H; kxk = 1; we de�ne the normalized entropic determinant �x(A) by

(1.5) �x(A) := exp (�hA lnAx; xi) = exp h� (A)x; xi :
Let x 2 H; kxk = 1: Observe that the map A ! �x(A) is norm continuous and
since

exp (�htA ln (tA)x; xi)
= exp (�htA (ln t+ lnA)x; xi) = exp (�h(tA ln t+ tA lnA)x; xi)
= exp (�hAx; xi t ln t) exp (�t hA lnAx; xi)

= exp ln
�
t�hAx;xit

�
[exp (�hA lnAx; xi)]�t ;

hence

(1.6) �x(tA) = t
�thAx;xi [�x(A)]

�t
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for t > 0 and A > 0:
Observe also that

(1.7) �x(1H) = 1 and �x(t1H) = t
�t

for t > 0:
In the recent paper [3] we showed among others that, if A; B > 0; then for all

x 2 H; kxk = 1 and t 2 [0; 1] ;

�x((1� t)A+ tB) � (�x (A))
1�t

(�x (B))
t
:

Also we have the bounds

(1.8)

 

A2x; x

�
hAx; xi

!�hAx;xi
� �x(A) � hAx; xi

�hAx;xi
;

where A > 0 and x 2 H; kxk = 1.

De�nition 1. For positive invertible operators A, B and x 2 H with kxk = 1 we
de�ne the relative entropic normalized determinant Dx (AjB) by

Dx (AjB) := exp hS (AjB)x; xi = exp
D
A
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E
;

where the relative operator entropy S (AjB) ; is de�ned by

(1.9) S (AjB) := A 1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2 :

We observe that for A > 0;

Dx (Aj1H) = exp hS (Aj1H)x; xi = exp (�hA lnAx; xi) = �x(A);

where �x(�) is the normalized entropic determinant and for B > 0;

Dx (1H jB) := exp hS (1H jB)x; xi = exp hlnBx; xi = �x(B);

where �x(�) is the normalized determinant.
Motivated by the above results, in this paper we show among others that, if

0 < m1H � A �M1H ; 0 < 1H � C � �1H and 0 < k1H � B � C � K1H ; then
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for all x 2 H with kxk = 1:

2. Main Results

In order to simplify the notation, we write k instead of k1H : We can state the
following representation result that is of interest in itself:
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Lemma 1. For all U; V > 0 we have

lnV � lnU(2.1)

=

Z 1

0

h
(�+ U)

�1 � (�+ V )�1
i
d�

=

Z 1

0

�Z 1

0

(�+ (1� t)U + tV )�1 (V � U) (�+ (1� t)U + tV )�1 dt
�
d�:

Proof. Observe that for t > 0; t 6= 1; we haveZ u

0

d�

(�+ t) (�+ 1)
=

ln t

t� 1 +
1

1� t ln
�
u+ t

u+ 1

�
for all u > 0:
By taking the limit over u!1 in this equality, we derive

ln t

t� 1 =
Z 1

0

d�

(�+ t) (�+ 1)
;

which gives the representation for the logarithm

(2.2) ln t = (t� 1)
Z 1

0

d�

(�+ 1) (�+ t)

for all t > 0:
If we use the continuous functional calculus for selfadjoint operators, we have

(2.3) lnT =

Z 1

0

1

�+ 1
(T � 1) (�+ T )�1 d�

for all operators T > 0:
We have from (2.3) for U; V > 0 that

(2.4) lnV � lnU =
Z 1

0

1

�+ 1

h
(V � 1) (�+ V )�1 � (U � 1) (�+ U)�1

i
d�:

Since

(V � 1) (�+ V )�1 � (U � 1) (�+ U)�1

= V (�+ V )
�1 � U (�+ U)�1 �

�
(�+ V )

�1 � (�+ U)�1
�

and

V (�+ V )
�1 � U (�+ U)�1

= (V + �� �) (�+ V )�1 � (U + �� �) (�+ U)�1

= 1� � (�+ V )�1 � 1 + � (�+ U)�1 = � (�+ U)�1 � � (�+ V )�1 ;
hence

(V � 1) (�+ V )�1 � (U � 1) (�+ U)�1

= � (�+ U)
�1 � � (�+ V )�1 �

�
(�+ V )

�1 � (�+ U)�1
�

= (�+ 1)
h
(�+ U)

�1 � (�+ V )�1
i

and by (2.4) we get

(2.5) lnV � lnU =
Z 1

0

h
(�+ U)

�1 � (�+ V )�1
i
d�;



QUASI MONOTONICITY FOR THE RELATIVE ENTROPIC NORMALIZED DETERMINANT 5

we proves the �rst equality in (2.1).
Consider the continuous function g de�ned on an interval I for which the cor-

responding operator function is Gâteaux di¤erentiable on the segment [C;D] :
f(1� t)C + tD; t 2 [0; 1]g for C; D selfadjoint operators with spectra in I: We
consider the auxiliary function de�ned on [0; 1] by

fC;D (t) := f ((1� t)C + tD) ; t 2 [0; 1] :

Then we have, by the properties of the integral, that

f (D)� f (C) =
Z 1

0

d

dt
(fC;D (t)) dt =

Z 1

0

rf(1�t)C+tD (D � C) dt:

If we write this equality for the function f (t) = �t�1 and C; D > 0; then we get
the representation

(2.6) C�1 �D�1 =

Z 1

0

((1� t)C + tD)�1 (D � C) ((1� t)C + tD)�1 dt:

Now, if we take in (2.6) C = �+ U; D = �+ V; then

(�+ U)
�1 � (�+ V )�1(2.7)

=

Z 1

0

((1� t) (�+ U) + t (�+ V ))�1 (V � U)

� ((1� t) (�+ U) + t (�+ V ))�1 dt

=

Z 1

0

(�+ (1� t)U + tV )�1 (V � U) (�+ (1� t)U + tV )�1 dt:

By employing (2.7) and (2.5) we derive the desired result (2.1). �

Lemma 2. For all A; B; C > 0 we have

S (AjB)� S (AjC) =
Z 1

0

�Z 1

0

A (�A+ (1� t)C + tB)�1 (B � C)(2.8)

� (�A+ (1� t)C + tB)�1Adt
�
d�:
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Proof. If we take in (2.1) V = A�
1
2BA�

1
2 and U = A�

1
2CA�

1
2 ; then we get

ln
�
A�

1
2BA�

1
2

�
� ln

�
A�

1
2CA�

1
2

�
=

Z 1

0

�Z 1

0

�
�A�

1
2AA�

1
2 + (1� t)A� 1

2CA�
1
2 + tA�

1
2BA�

1
2

��1
�
�
A�

1
2BA�

1
2 �A� 1

2CA�
1
2

�
�
�
�A�

1
2AA�

1
2 + (1� t)A� 1

2CA�
1
2 + tA�

1
2BA�

1
2

��1
dt

�
d�

=

Z 1

0

�Z 1

0

A
1
2 (�A+ (1� t)C + tB)�1A 1

2A�
1
2 (B � C)A� 1

2

�A 1
2 (�A+ (1� t)C + tB)�1A 1

2 dt
�
d�

=

Z 1

0

�Z 1

0

A
1
2 (�A+ (1� t)C + tB)�1 (B � C)

� (�A+ (1� t)C + tB)�1A 1
2 dt
�
d�:

Now, if we multiply both sides by A
1
2 > 0; then we get the desired result (2.8). �

We have the following representation result

Theorem 1. For all A; B; C > 0 and x 2 H with kxk = 1; we have

Dx (AjB)
Dx (AjC)

= exp

�Z 1

0

�Z 1

0

D
A (�A+ (1� t)C + tB)�1 (B � C)(2.9)

� (�A+ (1� t)C + tB)�1Ax; x
E
dt
�
d�
o
:

Proof. We take the inner product over x 2 H with kxk = 1 in (2.8) to get

hS (AjB)x; xi � hS (AjC)x; xi(2.10)

=

Z 1

0

�Z 1

0

D
A (�A+ (1� t)C + tB)�1 (B � C)

� (�A+ (1� t)C + tB)�1Ax; x
E
dtd�

and by taking the exponential, we derive the desired result (2.9). �

Corollary 1. For all B; C > 0 and x 2 H with kxk = 1; we have

�x(B)

�x(C)
= exp

�Z 1

0

�Z 1

0

D
(�+ (1� t)C + tB)�1 (B � C)(2.11)

� (�+ (1� t)C + tB)�1 x; x
E
dt
�
d�
o
:

Follows by (2.9) for A = 1:
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Theorem 2. Assume that 0 < m � A � M , B � m2 > 0 and C � m1 > 0; then
for x 2 H with kxk = 1;

exp
�
�M2 kB � Ck� (m1;m2)

�
(2.12)

� Dx (AjB)
Dx (AjC)

� exp
�
M2 kB � Ck� (m1;m2)

�
;

where

� (m1;m2) :=

8<:
lnm2�lnm1

m2�m1
if m2 6= m1;

1
m1

if m2 = m1:

Proof. If we take the modulus in (2.10) then we get for x 2 H with kxk = 1 that

jhS (AjB)x; xi � hS (AjC)x; xij

�
Z 1

0

�Z 1

0

���DA (�A+ (1� t)C + tB)�1 (B � C)
� (�A+ (1� t)C + tB)�1Ax; x

E��� dtd�
�
Z 1

0

Z 1

0

A (�A+ (1� t)C + tB)�1 (B � C)
� (�A+ (1� t)C + tB)�1A

 dtd�:
Observe thatA (�A+ (1� t)C + tB)�1 (B � C) (�A+ (1� t)C + tB)�1A

� kAk2
(�A+ (1� t)C + tB)�12 kB � Ck :

Assume that m2 > m1: Then

(1� t)C + tB + �A � (1� t)m1 + tm2 +m�;

which implies that

((1� t)C + tB + �A)�1 � ((1� t)m1 + tm2 +m�)
�1

and ((1� t)C + tB + �A)�12 � ((1� t)m1 + tm2 +m�)
�2

for all t 2 [0; 1] and � � 0:
Therefore

jhS (AjB)x; xi � hS (AjC)x; xij

�M2 kB � Ck
Z 1

0

Z 1

0

(�A+ (1� t)C + tB)�12 dtd�
�M2 kB � Ck

Z 1

0

Z 1

0

((1� t)m1 + tm2 +m�)
�2
dtd�
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If we use the identity (2.8) for A = m; B = m2 and C = m1 we get the scalar
identity Z 1

0

�Z 1

0

m (�m+ (1� t)m1 + tm2)
�1
(m2 �m1)

� (�m+ (1� t)m1 + tm2)
�1
mdt

�
d�

= S (mjm2)� S (mjm1)

= m2 ln
�
m�1m2

�
�m2 ln

�
m�1m1

�
= m2 ln

�
m2

m1

�
;

which gives thatZ 1

0

Z 1

0

(�m+ (1� t)m1 + tm2)
�2
dtd� =

1

m2 �m1
ln

�
m2

m1

�
:

Therefore

�M2 kB � Ck 1

m2 �m1
ln

�
m2

m1

�
� hS (AjB)x; xi � hS (AjC)x; xi

�M2 kB � Ck 1

m2 �m1
ln

�
m2

m1

�
and by taking the exponential, we derive (2.12).
The case m2 < m1 goes in a similar way.
Now, assume that B; C � m1 > 0: Let � > 0; then B + � � m1 + �: Put

m2 = m1 + � > m1: If we write the inequality (2.12) for B + � and C; we get

�M2 kB + �� Ck 1

m1 + ��m1
ln

�
m1 + �

m1

�
(2.13)

� hS (AjB + �)x; xi � hS (AjC)x; xi

�M2 kB + �� Ck 1

m1 + ��m1
ln

�
m1 + �

m1

�
:

If we take the limit over �! 0+ in (2.13) and observe that

lim
�!0+

ln (m1 + �)� lnm1

�
=

1

m1
;

then we also get (2.12) for m2 = m1: �

Corollary 2. Assume that B � m2 > 0 and C � m1 > 0; then for x 2 H with
kxk = 1;

exp [�kB � Ck� (m1;m2)] �
�x(B)

�x(C)
(2.14)

� exp [kB � Ck� (m1;m2)] :

Further on, we also have
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Theorem 3. Assume that 0 < m � A �M; 0 <  � C � � and 0 < k � B�C �
K; then

1 �
�
1 +

K

�

�m2kM
K

(2.15)

�
�
1 +

K

�

� kM
K hA2x;xi

� Dx (AjB)
Dx (AjC)

�
�
1 +

k



�Km
k hA2x;xi

�
�
1 +

k



�M2Km
k

for x 2 H with kxk = 1:

Proof. Since 0 < k � B�C � K then by multiplying both sides by (�A+ (1� t)C + tB)�1 >
0 and then by A > 0; we get

kA (�A+ (1� t)C + tB)�2A
� A (�A+ (1� t)C + tB)�1 (B � C) (�A+ (1� t)C + tB)�1A
� KA (�A+ (1� t)C + tB)�2A

for all t 2 [0; 1] and � > 0:
If we take the integrals over t and � and use the identity (2.8), then we derive

k

Z 1

0

Z 1

0

A (�A+ (1� t)C + tB)�2Adtd�(2.16)

� S (AjB)� S (AjC)

� K
Z 1

0

Z 1

0

A (�A+ (1� t)C + tB)�2Adtd�:

Observe that

�A+ (1� t)C + tB = �A+ C + t (B � C) :

Then

�m+  + tk � �A+ (1� t)C + tB � �M + � + tK

for all t 2 [0; 1] and � > 0; which implies that

(�M + � + tK)
�1 � (�A+ (1� t)C + tB)�1 � (�m+  + tk)�1 ;

which gives that

(�M + � + tK)
�2 � (�A+ (1� t)C + tB)�2 � (�m+  + tk)�2 ;

for all t 2 [0; 1] and � > 0:
If we multiply both sides by A > 0 we get

A (�M + � + tK)
�2
A � A (�A+ (1� t)C + tB)�2A � A (�m+  + tk)�2A;

for all t 2 [0; 1] and � > 0:
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If we take the double integral over t 2 [0; 1] and � > 0; then we get

A

�Z 1

0

Z 1

0

(�M + � + tK)
�2
dtd�

�
A(2.17)

�
Z 1

0

Z 1

0

A (�A+ (1� t)C + tB)�2Adtd�

� A
�Z 1

0

Z 1

0

(�m+  + tk)
�2
dtd�

�
A:

Observe thatZ 1

0

(�m+  + tk)
�2
dt = �1

k
(�m+  + k)

�1
+
1

k
(�m+ )

�1

=
1

k

�
(�m+ )

�1 � (�m+  + k)�1
�
;

which gives Z 1

0

�Z 1

0

(�m+  + tk)
�2
dt

�
d�

=
1

k

Z 1

0

�
(�m+ )

�1 � (�m+  + k)�1
�
d�

=
m

k

Z 1

0

 �
�+



m

��1
�
�
�+



m
+
k

m

��1!
d�:

By the �rst identity in (2.1) in the scalar case, we have

ln

�


m
+
k

m

�
� ln 

m
=

Z 1

0

"�
�+



m

��1
�
�
�+



m
+
k

m

��1#
d�;

namely Z 1

0

"�
�+



m

��1
�
�
�+



m
+
k

m

��1#
d� = ln ( + k)� ln 

which gives thatZ 1

0

�Z 1

0

(�m+  + tk)
�2
dt

�
d� =

m

k
[ln ( + k)� ln ]

= ln

�
1 +

k



�m
k

:

Similarly, Z 1

0

Z 1

0

(�M + � + tK)
�2
dtd� = ln

�
1 +

K

�

�M
K

:

By (2.16) and (2.17) we then obtain

0 � ln
�
1 +

K

�

� kM
K

A2 � k
Z 1

0

Z 1

0

A (�A+ (1� t)C + tB)�2Adtd�(2.18)

� S (AjB)� S (AjC)

� K
Z 1

0

Z 1

0

A (�A+ (1� t)C + tB)�2Adtd� � ln
�
1 +

k



�Km
k

A2;
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which is an operator inequality of interest in itself.
If we take the inner product over x 2 H; kxk = 1; then we get

0 � ln
�
1 +

K

�

� kM
K 


A2x; x
�

� k
Z 1

0

Z 1

0

D
A (�A+ (1� t)C + tB)�2Ax; x

E
dtd�

� hS (AjB)x; xi � hS (AjC)x; xi

� K
Z 1

0

Z 1

0

D
A (�A+ (1� t)C + tB)�2Ax; x

E
dtd�

� ln
�
1 +

k



�Km
k 


A2x; x
�
;

and by taking the exponential, we derive (2.15). �

Corollary 3. Assume that 0 <  � C � � and 0 < k � B � C � K; then

(2.19) 1 �
�
1 +

K

�

� k
K

� �x (B)

�x (C)
�
�
1 +

k



�K
k

for x 2 H with kxk = 1:

It follows by (2.15) for A = 1:

3. Related Results

Let U and V be strictly positive operators on a Hilbert space H such that
V � U � m > 0: In 2015, [11], T. Furuta obtained the following result for any
non-constant operator monotone function f on [0;1)

(3.1) f (V )� f (U) � f (kUk+m)� f (kUk) � f (kV k)� f (kV k �m) > 0:

If V > U > 0; then [11]

f (V )� f (U) � f

0@kUk+ 1(V � U)�1
1A� f (kUk)(3.2)

� f (kV k)� f

0@kV k � 1(V � U)�1
1A > 0:

The inequality between the �rst and third term in (3.2) was obtained earlier by
H. Zuo and G. Duan in [21].
If we write the inequality (3.1) for f (t) = ln t; then we get for V � U � m > 0

that

(3.3) lnV � lnU � ln
�
kUk+m
kUk

�
� ln

�
kV k

kV k �m

�
> 0:
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If V > U > 0; then by (3.2) written for for f (t) = ln t; we get that

lnV � lnU � ln

0@1 + 1

kUk
(V � U)�1

1A(3.4)

� ln

0@ kV k
(V � U)�1

kV k
(V � U)�1� 1

1A > 0:

Proposition 1. Assume that B � C � mA > 0 for the positive constant m; then

Dx (AjB)
Dx (AjC)

�

0@
A� 1

2CA�
1
2

+mA� 1
2CA�

1
2


1AhAx;xi

(3.5)

�

0@
A� 1

2BA�
1
2

A� 1
2BA�

1
2

�m
1AhAx;xi

> 1

for all x 2 H with kxk = 1:

Proof. Since B�C � mA > 0; then by multiplying both sides by A� 1
2 > 0; we get

A�
1
2BA�

1
2 �A� 1

2CA�
1
2 � m and by (3.3) for V = A�

1
2BA�

1
2 and U = A�

1
2CA�

1
2

we get

ln
�
A�

1
2BA�

1
2

�
� ln

�
A�

1
2CA�

1
2

�
� ln

0@
A� 1

2CA�
1
2

+mA� 1
2CA�

1
2


1A � ln

0@
A� 1

2BA�
1
2

A� 1
2BA�

1
2

�m
1A > 0:

If we multiply both sides by A
1
2 > 0; then we get the operator inequality of interest

S (AjB)� S (AjC)

� ln

0@
A� 1

2CA�
1
2

+mA� 1
2CA�

1
2


1AA � ln

0@
A� 1

2BA�
1
2

A� 1
2BA�

1
2

�m
1AA > 0:

If we take the inner product over x 2 H with kxk = 1; then we get

hS (AjB)x; xi � hS (AjC)x; xi

� ln

0@
A� 1

2CA�
1
2

+mA� 1
2CA�

1
2


1AhAx;xi

� ln

0@
A� 1

2BA�
1
2

A� 1
2BA�

1
2

�m
1AhAx;xi

> 0:

If we take the exponential, then we derive the desired result (3.5). �

Corollary 4. Assume that B � C � m > 0 for the positive constant m; then

(3.6)
�x (B)

�x (C)
� kCk+m

kCk � kBk
kBk �m > 1

for all x 2 H with kxk = 1:
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Proposition 2. Assume that B > C > 0; then for A > 0;

Dx (AjB)
Dx (AjC)

�

0@1 + 1A� 1
2CA�

1
2

A 1
2 (B � C)�1A 1

2


1AhAx;xi

(3.7)

�

0@
A� 1

2BA�
1
2

A 1
2 (B � C)�1A 1

2

A� 1
2BA�

1
2

A 1
2 (B � C)�1A 1

2

� 1
1AhAx;xi

> 1

for all x 2 H with kxk = 1:
In particular,

(3.8)
�x (B)

�x (C)
�
kCk

(B � C)�1+ 1
kCk

(B � C)�1 �
kBk

(B � C)�1
kBk

(B � C)�1� 1 > 1
for all x 2 H with kxk = 1:

Proof. If we take V = A�
1
2BA�

1
2 and U = A�

1
2CA�

1
2 in (3.4), then we get

ln
�
A�

1
2BA�

1
2

�
� ln

�
A�

1
2CA�

1
2

�
(3.9)

� ln

0@1 + 1A� 1
2CA�

1
2

A 1
2 (B � C)�1A 1

2


1A

� ln

0@
A� 1

2BA�
1
2

A 1
2 (B � C)�1A 1

2

A� 1
2BA�

1
2

A 1
2 (B � C)�1A 1

2

� 1
1A > 0:

If we multiply both sides by A
1
2 > 0; then we get the operator inequality

S (AjB)� S (AjC)(3.10)

� ln

0@1 + 1A� 1
2CA�

1
2

A 1
2 (B � C)�1A 1

2


1AA

� ln

0@
A� 1

2BA�
1
2

A 1
2 (B � C)�1A 1

2

A� 1
2BA�

1
2

A 1
2 (B � C)�1A 1

2

� 1
1AA > 0:

If we take the inner product over x 2 H with kxk = 1; then we get
hS (AjB)x; xi � hS (AjC)x; xi

� ln

0@1 + 1A� 1
2CA�

1
2

A 1
2 (B � C)�1A 1

2


1AhAx;xi

� ln

0@
A� 1

2BA�
1
2

A 1
2 (B � C)�1A 1

2

A� 1
2BA�

1
2

A 1
2 (B � C)�1A 1

2

� 1
1AhAx;xi

and by taking the exponential, we derive the desired result (3.7). �
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