BASIC PROPERTIES OF RELATIVE ENTROPIC NORMALIZED
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by
Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .

Assume that A, B > 0 and P > 0 with P € By (H) and tr (P) = 1. In this
paper we show among others that,

s (PA) exp (tr (PA) — str (PAB™1A))

< Dp (A|B)

< (P gy (M)

s

for any s > 0.
The best lower bound in the first inequality is

tr (PA) tr(PA)
_— < Dp (A|B),
(tr(PAB—lA)) < Dp (41B)
while the best upper bound in the second inequality is
tr (PB) tr(PA)
tr (PA)

Dp (AlB) < (

1. INTRODUCTION

In 1952, in the paper [10], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)'/? its modulus. By the spectral theorem
one can represent 1’ as an integral

T = / AE (X)),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).
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For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntd,uT) .
0

If T is invertible, then
Ark (T) :=exp (7 (In(|T1))),

where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [16], [17], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [19].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B(H) then

(1.2) Do lAell* =Y 1A =141

i€l jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) Al = (erm)
iel
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5 . From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4°]l,-

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:
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Theorem 1. We have:
(i) (B2 (H), ||-ll5) s a Hilbert space with inner product

(14) <A, B>2 = Z<A6i,B€Z‘> = Z<B*A€Z‘,€i>
iel icl

and the definition does not depend on the choice of the orthonormal basis {e;},c;;

(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) IAT |y, I TAll, <IN Al

(iii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C B2 (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1A = (Al esse) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

e;;..7. We denote by by the set of trace class operators in .
ier - Wed by By (H) th f 1 in B(H
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = [[A"][, and [[All, < [ All,
forany A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C By (H);
(iti) We have
By (H) By (H) = By (H);
(iv) We have
[Ally = sup{{A,B), | BBz (H), |Bll, <1};
(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) =Y (Aej,e;),
icl
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(1.11) b1 (AT) = tr (TA) and |ox (AT)| < | A], I1T] ;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T' € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € B, (H),
hence PY/?TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For recent results on trace inequalities see [1]-[7] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties [§]:

(i) continuity: the map A — Ap(A) is norm continuous;

(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [8], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr (PA) <exp [tr (PA) tr (PA™") —1]

~ Ap(4)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [9]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .



BASIC PROPERTIES OF RELATIVE ENTROPIC NORMALIZED P-DETERMINANT 5

Observe that the map A — np(A) is norm continuous and since
exp (—tr{P[tAln (tA)]})
=exp(—tr{P[tA(lnt+InA)]}) =exp(—tr{P (tAlnt+tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))
=expln (t* “(PA)t) [exp (—tr (PAIn A))] ",
hence
(1.13) np(tA) = £ [ (4)]

for ¢t >0 and A > 0.
Observe also that

(1.14) np(I)=1and np(tl) =t""

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky

Fan type inequality [9]
(1.15) np((1—1t) A+tB) > [np (A~ [np (B)]'

for all t € [0,1].
Also we have the inequalities [9]:

—tr(PA
tr (PA?) o np(A)
tr? (PA) T Jtr (PA) T EEA T
and if there exists the constants 0 < m < M such that m < A < M, then [9]
—tr(PA
(m+M>—2M § <m+M>—2tr(PA) § tr (PAQ) tr(PA)
2vVmM —\2vmM ~ | tr? (PA)

UP(A)
[tr (PA)] FD =1

A

2. RELATIVE ENTROPIC NORMALIZED P-DETERMINANT

Kamei and Fujii [14], [15] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

(2.1) S(A|B) := A% (m (A*%BA*%)) A%
which is a relative version of the operator entropy considered by Nakamura-Umegaki

[23].
In general, we can define for positive operators A, B

S(A|B) := s- 11151+S(A +ely|B)

if it exists, here 1y is the identity operator.
For the entropy function 7 (t) = —tInt, the operator entropy has the following
expression:
n(A)=—-AlnA=S(A|lg) >0
for positive contraction A. This shows that the relative operator entropy (2.1) is a
relative version of the operator entropy.



6 S.S. DRAGOMIR

For A =1p in (2.1) we have
S(lyg|B)=InB
for positive contraction B.
Following [18, p. 149-p. 155], we recall some important properties of relative

operator entropy for A and B positive invertible operators:
i) We have the equalities

2.9) S(A|B) = —A/? (1n A1/2B*1A1/2) AV? = Bl (B*1/2AB*1/2) BY2,

(

(

(ii) We have the inequalities

(2.3) S(A|B) < A(In||B]| —InA) and S (A|B) < B — A4;
(i

iii) For any C, D positive invertible operators we have that
S(A+ B|C+ D) > S (A|C)+ S(B|D);
(iv) If B < C then
S (A|B) < 5(A[C);
(v) If B,, | B then
S(A|By) | S(A[B);
(vi) For o > 0 we have
S (aAlaB) = aS (A|B);
(vii) For every operator T' we have
T*S(A|B)T < S(T*AT|T*BT).
(viii) The relative operator entropy is jointly concave, namely, for any positive
invertible operators A, B, C, D we have
SEA+(1—-t)B|ItC+(1—t)D) >tS(A|C)+ (1 —t)S(B|D)

for any t € [0,1].

For other results on the relative operator entropy see [11]-[24] and the references
therein.

Observe that, if we replace in (2.2) B with A, then we get

S (B|A) = A2y (A—l/QBA—l/Q) AL/2
— A1/2 (_A—1/2BA—1/2 In (A—1/2BA—1/2)) A2,
therefore we have
(2.4) AL/ (,4—1/23,4—1/2 In (A‘”QBA‘W)) AY2 = —5(B|A)
for positive invertible operators A and B.
It is well know that, in general S (A|B) is not equal to S (B|A).

In [26], A. Uhlmann has shown that the relative operator entropy S (A|B) can
be represented as the strong limit

(2.5) S (A]B) = s-lim w

7

where ,
Aty B = A2 (A‘l/zBA‘1/2) A2y e0,1]
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is the weighted geometric mean of positive invertible operators A and B. For v = %
we denote AfB.

This definition of the weighted geometric mean can be extended for any real
number v.

For B = 1y we have

A, 1y = AV
while for A = 15 we get
1yt B =B"

for any real number v.

For t > 0 and the positive invertible operators A, B we define the Tsallis relative
operator entropy (see also [11]) by

AfyB— A

‘We then have
B Afyly — A B A=t — A

T (Allyg) == t>0
t(‘H) ¢ ¢ ) >

and

Bt —1
T, (14|B) = fH t>0

for A, B > 0.

The following result providing upper and lower bounds for relative operator
entropy in terms of T} (-|-) has been obtained in [14] for 0 < ¢ < 1. However, it hods
for any ¢ > 0.

Theorem 4. Let A, B be two positive invertible operators, then for any t > 0 we

have
(2.6) T, (A|B) (A, B)" A< S(A|B) < Ty (A[B).
In particular, we have for t = 1 that
(2.7) (g —AB ') A< S(A|B) < B— A, [14]
and for ¢t = 2 that
(2.8) % (11— (AB)*) A< S(4B) < % (BA™'B - 4A).

The case t = % is of interest as well. Since in this case we have
Ty)2 (A|B) = 2 (AfB — A)

and
Tio (AIB) (At sB) ' A=2 (14— A(A1B) ") 4,

hence by (2.6) we get
(2.9) 2 (1H —A (AﬁB)*l) A< S(AIB) <2(AtB—A) < B — A

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (A|B) = exp{tr [PS (A|B)]}
= exp {tr [PA% (ln (A*%BA*%)) A%] } .
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We observe that for A > 0,
Dp (AlLy) = exp{tr [PS (A1)} = exp {tr (—PAIn A)} = 1(A),
where 1p(+) is the entropic P-determinant and for B > 0,
Dp (1a|B) := exp {tr [PS (1x|B)]} = exp {tr (PIn B)} = Ap(B),

where Ap(-) is the P-determinant.
We have the following fundamental properties for the relative entropic normalized
determinant:

Proposition 2. Let P > 0 with P € By (H) and tr (P) = 1. Assume that A, B > 0,
then:

(1) We have the upper bound

exp [tr (PB)]

Dp (AlB) < —————=;

r(4lB) < exp [tr (PA)]’
(2) For any C, D positive invertible operators we have that
(2.10) Dp(A+ B|C+ D) > Dp(A|C)Dp (B|D);

(3) If B< C then
Dp (A|B) < Dp (A|C);
(4) If B,, | B then
Dp (A|By) | Dp (A|B);
(5) For aw > 0 we have
Dp (aA|aB) = [Dp (A|B)]”.
The proof follows by the properties "(ii)-(iii)" above.
Corollary 1. Let P > 0 with P € By (H) and tr (P) = 1. For A, B> 0, a, 8 > 0,
we have
nP(A 4 B) atr(PA)ﬁtr(PB)
1p(A1p(B) = (o )T PATEL
In particular, for a = 3 =1, we get
np(A+ B) 1
np(A)np(B) — 2wPATBI

(2.11)

(2.12)

Proof. Observe that
Dp (Alaly) = exp {tr {PA% (ln (A_%alHA—%)) A%”

= exp {tr [PA% (Inaly —In A) A%} }

= exp(tr (PA)Ina —tr (PAIn A)) = o, (A).
Then by (2.10) for C = aly and D = Sl we have
Dp (A+ Bl (a+B)1n) > Dp (Alaly) Dp (B|Bla),
namely
(a+ /) A (A4 B) = Py ()57 (B)
and the inequality (2.11) is obtained. O

Also, we have:
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Corollary 2. For C, D > 0,7, >0 and P > 0 with P € By (H) and tr (P) =1,
we have

(2.13) [Ap(C+ D) > 0F 5):%.
[Ap(O)]" [AR(D)] T
In particular, for v =6 = 1, we get
[Ap(C + D))
(2.14) Br(C+ DI,

Proof. Observe that
Dp (v1u|C)
=exp {tr [P(1m)? (i (1) 72 C(1m) %)) (41)? ] }
=exp{tr[P(InC —In~v)]} =exp (ytr (PInC) —In (v7))

_exp(ytr(PInC)) (AF”Y(C)Y.

expln (77)
By (2.10) we have
Dp((y+6)1u|C+ D) > Dp (v1u|C)Dp (61u|D),

namely
(AP(C + D))”” - (AP(C)>” <AP(D)>6
Y+0 - Y ) '
t
We have:
Proposition 3. Assume that A, B > 0 and and P > 0 with P € By (H) and
tr (P) = 1.
(a) We have
(2.15) Dp (A|B) < 1B 1(4)
(aa) For every operator T with TP # 0, we have
tr(P|T)?)
(2.16) {D TR (A|B)] < Dp (T*AT|T*BT).
tr(P|T|

(aaa) For every C, D >0
(2.17) Dp (tA+ (1 —t) BItC + (1 —t) D) > [Dp (A|C)]" [Dp (B|D)]' "
for allt € [0,1].
Proof. a. By multiplying both sides by P!/2 > 0 and taking the trace in (ii) we get
Dp (A|B) = exp {tr [PS (A|B)]} = exp {tr [Plﬂs (A|B) P1/2] }

<exp{tr[P(ln||B||A— Aln A)]}
=exp (In||B| tr (AP) — tr (PAln A))
= exp (ln ||B||tr(AP)) exp (—tr (PAln A))
= 1B np(A)
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and the statement is proved.
aa. By multiplying both sides by P'/? > 0 and taking the trace in (vii) then we
get

exp {tr [PT"S (A|B) T} < exp {tr [PS (T"AT|T"BT)]}
— Dp (T* AT|T*BT).
Also, if TP # 0,
exp {tr [PT*S (A|B) T|}

exp {tr [TPT*S (A|B)|}
exp {tr [TPT*S (A|B)]}

exp {tr (P |T|2) tr tﬁ%s (A|B)] }

tr(P|T[?)
= (exp {tr })
which proves the statement.

= {D rer+_ (A|B)
tr(P|T[2)

aaa. By multiplying both sides by P'/2 > 0 and taking the trace in (viii), then

we get for all ¢ € [0, 1] that

Dp (tA+ (1—1t)BltC+ (1—1t)D)
=exp{tr[PS(tA+ (1 —¢t)B|tC+ (1 —1t)D)]}

> exp {tr[tP (S (A[C) + (1 — 1) S (B|D))]}
=exp [ttr (PS (A|C)) + (1 —t)tr (PS (B|D))]

= (exp {tr [PS (A|C)]})' (exp {tr [PS (B|D)]})"
= [Dp (AC)]' [Dp (BID)]""

and the statement is proved. ([l

TPT*
tr (P |T|2)
:|tr(P|T|2)

S (AlB)

b

We define the logarithmic mean of two positive numbers a, b by

In ll::ilna if b 7& a,
L(a,b) :=

a if b = a.
The following Hermite-Hadamard type integral inequalities hold:
Corollary 3. With the assumptions of Proposition 3,
1
(2.18) / Dp(tA+ (1= 1) BItC + (1 —t) D)dt > L(Dp (A|B), Dp (C|D)).
0

and

(2.19)  Dp <

1 z/1[Dp«l—t>A+tB|<1—t>c+tD>W2

x [Dp (tA+ (1 —t) B|tC + (1 — t) D)]*/? dt.

A+ B C+D)
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Proof. If we take the integral over ¢ € [0, 1] in (2.17), then we get

/1 Dp(tA+ (1 —1t)B|tC + (1 —t) D)dt > /1 [Dp (AIC)]) [Dp (B|D)]" " dt
0 0
= L(Dp(A|C),Dp (B|D))

for all A, B, C, D > 0, which proves (2.18).
We get from (2.17) for t = 1/2 that

A+B C+D

DP( > 13

If we replace A by (1-t)A+tB, BbytA+(1—-t)B,Cby (1—-t)C+tD and D
by tC' + (1 — t) D we obtain

A+B C+D
o (577

> [Dp ((1—t) A+tB|(1—1t)C +tD)]"/?
x [Dp (tA+ (1 —t) BItC + (1 —t) D).
By taking the integral, we derive the desired result (2.19). O

) > [Dp (AIC)]/2 [Dp (BID)].

By the use of Theorem 1 we can also state:

Proposition 4. Assume that A, B > 0 and P > 0 with P € By (H) and tr (P) = 1.
Then for any t > 0 we have

(2.20)  exp {tr [PTt (A|B) (A#,B) ™" A] } < Dp (A|B) < exp {tr [PT} (A|B)]}.
In particular, we have for t =1 that

exp [tr (PA)] < Dp(A|B) < exp (PB)

(221) exp [tr (PAB~1A)] ~ exp (PA)

and for t = 2 that

exp [tr (PA)] : exp [tr (PBA™!B)] :
(2.22) (tr {P (AB-1)? A]) < Dp(4[B) < ( exp [tr (PA)] ) .

We have the following bounds for the normalized entropic determinant.

Corollary 4. Assume that A > 0 and P > 0 with P € By (H) and tr (P) = 1. If
a, t >0, then

oyt AL
(2.23) o~ P exp [tr <PAatA>}
<np(A)
t ALt
< o (PA) exp |:tr (PaAt_A>:| .

In particular, for « = 1, we get

(2.24) exp {tr (PA_tAtHﬂ <np(A) <exp [tr (PAHt_Aﬂ

for allt > 0.
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Fort =1, we get
(2.25) o "D exp {tr[P(A—a 'A%)]} < np(A)
< o TP exp {tr [P (aly — A)]},

for all a > 0.
Also, for a =t =1, we obtain
(2.26) exp {tr [P (A—A4)]} <np(A) <exp{tr[P(1y — A)]}.

Proof. If we take B = aly in (2.20), we get
(2.27)  exp {u« [PTt (Alaly) (A (alg)) ™" A” < Dp (Alaly)

< exp{tr [PT} (Alaly)]}.
Observe that

t
Aﬁt (Ole) _ A1/2 (A71/2 (alH) A71/2) A1/2 _ atAlft

and ) ., e
Oél — a —t __
Also
_ tAl—t _A B
T; (Alady) (At (alg)) H A = af (at A1) ' 4

A AatA) A
B t

A—a At
—

Then by (2.27) we get
A _ ftAt+1 tAlft _ A
exp [(tr (Pi))} < a" Py, (4) < exp {tr <Pat)]
and the inequality (2.23) is obtained. O

We also have the following bounds for the normalized determinant.

Corollary 5. Assume that B > 0 and P > 0 with P € By (H) and tr (P) = 1. If
B, t >0, then

t—t —t ot

(2.28) Pexp {tr <P1H_fB>} < Ap(B) < Bexp [tr <PﬂBt_1H)] .
In particular, for 8 =1, we get
(2.29) exp {tr (PlHtBt)} < Ap(B) <exp {tr (PBttlH)} ,
for allt > 0.

Fort =1, we get
(2.30) Pexp [tr (P (1H — BBil))] < Ap(B) < fexp [tr (P (B_lB - 1H))] ,
for all B> 0.

Also, for B =1t =1, we obtain
(2.31) exp [tr (P (1g — B™"))] < Ap(B) <expltr (P (B —1x))].



BASIC PROPERTIES OF RELATIVE ENTROPIC NORMALIZED P-DETERMINANT 13

Proof. We have from (2.20) for A = 51y that

(2.32) exp {tr [PT, (81u[B) (81m)8.B) ™" (B1u)] }
< Dp (B1u|B)
< exp{tr [PT; (B1u|B)]}.

Observe that

(81) 8B = (BL)"* ((81)7* B (81) %) (810)"/* = 81 B,

and
T, (BLy)|B) = PL) B = Bly _ pT'B' — flu
: ; ; .
Also,
1-tpt B
T, (3141B) (1) 2B) ™ (314 = ©— L 0M (i)~
_B-B8(8'BY) '8
t
p-pB
=
Then by (2.32) we get
- B
exp [tr (pﬁlH_Bt—HBt>} < (AP(B)>
¢ B
< exp {tr (pﬁl_tBt_'BlH>}
< ; .
By taking the power 1/5 we get
t+1 p—
exp [tr (PW)} < Apﬁ(B)
1—t
o)
which is equivalent to (2.28). O

3. SEVERAL BOUNDS
We have the following bounds for the relative entropic normalized determinant:

Theorem 5. Assume that A, B > 0 and P > 0 with P € By (H) and tr (P) = 1.
Then for any s > 0 we have

(3.1) 5P A) exp (tr (PA) — str (PAB™'A))
< Dp (A|B)

< (P4 gy (tr (PB) —str (PA)> .
S

The best lower bound in the first inequality is

. tr(PA)
(3:2) (i) <peam).
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while the best upper bound in the second inequality is

. tr(PA)
(3.3) Dp (AB) < (i Ef,ﬁ;) .

Proof. We use the gradient inequality for differentiable convex functions f on the
open interval

frs)t=s) = f(t)—fs) = f () (t—>s)
for all ¢, s € I.
If we write this inequality for the function In on (0, 00), then we get

t
fflzlntflnszlff
S t

for all t, s € (0,00) .
Using the functional calculus for positive operator T > 0, we get
1
~T—1p>WnT —Insly > 1y —sT .
S
for all s € (0,00).
If we take T = A"2BA~2 > 0, then we get
1
SATBATE 1y = (A BAT) — sty > 1y - sAbplal
S
for all s € (0,00).
If we multiply both sides by Az > 0, then we get
1
B A> A3 (1n (A—%BA—%)) A3 —(Ins)A>A— sAB~A
s
for all s € (0,00).
Now, by multiplying both sides by P'/2 > 0 and taking the trace, then we get
1
Ztr (PB) — tr (PA) > tr (PA% (m (A*%BA*%» A%) — (Ins) tr (PA)
S
> tr(PA) —str (PABilA)

for all s € (0,00).
By taking the exponential, we derive

. _ str(PA exptr (PAz (In (A" 2BA~2)) A2
P <t — s - )> 2 ( exp[((lng) tr (PA)] )) )
> exp (tr (PA) — str (PAB™'A))

for all s € (0,00), which is equivalent to (3.1).
Now, consider the function

f(s) =" exp (tr (PA) — str (PAB™"A)), s € (0,00).
We have
f(s) = tr (PA) s" PN~ exp (tr (PA) — str (PAB™'A))
— (AB™' Az, z) sTPA) exp (tr (PA) — str (PAB™'A))
= s (P~ oxp (tr (PA) — str (PAB™"A))
x (tr(PA) —tr (PAB™'A) s).
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We observe that the function f is increasing on (0 _PA) ) and decreasing on
> tr(PAB~1A)

(%, ) . Therefore

wp f(s)=f (1 (PA) \ [ tr(pa "V
el T\ (PaB ) ) T\ (PABTA) ’
which gives the best lower bound in (3.1).
Now, consider the function

g (s) := s exp <tr(fB) —tr (PA)) , s €(0,00).
We have
§ (5) = tr (PA) ™ PO exp (”PB) <PA>)

(S8 we) 252
() - 42)
)

= s P2 exp (tr (PB) _ (tr (PA)s —tr (PB)).
s

We observe that the function ¢ is decreasing on (0 (P )) and increasing on

’ tr(PA)
(M, oo) . Therefore

tr(PA)
it g(s) tr (PB) tr (PB) P4
1mn S) = =
se(0,00) 7 I\ tr (PA) tr (PA) ’

which gives the best upper bound in (3.1). O

Corollary 6. Assume that A > 0 and P > 0 with P € By (H) and tr (P) = 1.
Then for any s > 0 we have

(3.4) sTPA) exp (tr (PA) — str (PA?))

<np(A) < s exp <1 —tr (PA)) .
s

The best lower bound for np(A) is obtained for s = jj((lfjg), namely

r tr(PA)
(coay)  <weta
)

The best upper bound for np(A) is obtained for s = tr (PA) , namely
np(A) < tr(PA)”~ "I
Proof. If we take B = 1 in (3.1), then we get
s P4 exp (tr (PA) — str (PA?)) < np(A)

< 1 (PA) gy (1 —str (PA)> ’
S

which is equivalent to (3.4). O
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Corollary 7. Assume that B > 0 and P > 0 with P € By (H) and tr (P) = 1.
Then for any s > 0 we have

(3.5) sexp (1—str (PB™')) < Ap(B) < sexp <tr(PB)—s) .

S

The best lower bound for Ap(B) is obtained for s = tr (PB’I)f1 , namely

)
tr (PB™) ™" < Ap(B).
)

The best upper bound for Ap(B) is obtained for s = tr (PB), namely

(1]

Ap(A) < tr (PB).
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