SOME INEQUALITIES FOR RELATIVE ENTROPIC
NORMALIZED P-DETERMINANT OF POSITIVE OPERATORS
IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by

Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .

Assume that 0 < mA < B < M A for some constants M, m and P > 0 with
P € B1 (H) and tr (P) = 1. In this paper we show among others that,

1
2M?2
1< | exp

(tr(PB) )tf(PA)
1

tr(PA)
) 2m?2

tr (PAB~'A) tr (PA) — tr (PB)?
tr (PA)

=" Dp (A1B)

IN

tr (PAB~1A) tr (PA) — tr (PB)?
tr (PA)

1. INTRODUCTION

In 1952, in the paper [10], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 1’ as an integral

- / ME (),
Sp(T)

where F ()) is a projection valued measure and Sp (T') is the spectrum of T. The
measure jp := 7 o EF becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T') .

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

Apg (T) := exp (/ lntd,uT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1g stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [16], [17], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [19].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) 1Al < [1A]];

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Aec By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [l = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(1.11) b1 (AT) = tr (TA) and |ox (AT)| < | A], I1T] ;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T' € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € B, (H),
hence PY/?TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For recent results on trace inequalities see [1]-[7] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties [§]:

(i) continuity: the map A — Ap(A) is norm continuous;

(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tly) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [8], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr (PA) <exp [tr (PA) tr (PA™") —1]

~ Ap(4)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [9]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since
exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp(—tlnttr (PA))exp(—ttr (PAln A))

=expln (t_ "(PA)t) [exp (—tr (PAIn A))] ",

hence
(1.13) np(tA) =t~ A [p(A)]
for £ >0 and A > 0.

Observe also that
(1.14) np(lg) =1and np(tly) =t"
for ¢t > 0.

Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [9]
(1.15) np((L—1) A+tB) = [np (A)' " Inp (B)]'
for all t € [0,1].

Also we have the inequalities [9]:
—tr(PA)

tr (PA?) np(A)
tr? (PA) = e (pA) A T
and if there exists the constants 0 < m < M such that mly < A < M1y, then [9]
—tr(PA
(m+M>2M § <m+M>2tr(PA) ) tr (PAQ) tr(PA)
2vVmM —\2vmM ~ | tr? (PA)

77P<A)
= [tr (PA)]” TP~

Kamei and Fujii [14], [15] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

(1.16) S(A|B) := A? (1n (A—%BA—%)) A%

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[23]. For various results on relative operator entropy see [11]-[24] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (AlB) := exp{tr [PS (A|B)]}
— e {ir[PA} (1n (4~ pa1)) ad] ).
We observe that for A > 0,
Dp (AlL) = exp{tr [PS (AlLi)]} = exp {tr (~PAIn A)} = np(A),
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where 1p(-) is the entropic P-determinant and for B > 0,
Dp (1g|B) :=exp{tr[PS (1g|B)]} =exp {tr (PInB)} = Ap(B),

where Ap(-) is the P-determinant.
Assume that 0 < mA < B < M A for some constants M, m and P > 0 with
P € By (H) and tr (P) = 1. In this paper we show among others that,

_1_
> M2

1

) 2m?2

tr (PAB™'A) tr (PA) — tr (PB)?
tr (PA)

tr (PAB~'A) tr (PA) — tr (PB)?
tr (PA)

IN
/N
@

M

o

2. MAIN RESULTS
We start to the following logarithmic inequalities:

Lemma 1. For any a, b > 0 we have

(2.1) 1(1111111{‘%’)})2_; (b—a)*
b

2 max {a, b} max? {a, b}
< 7a—1nb+lna
a
-1 (b—a)’ _1<max{a,b}_1>2
~ 2min®{a,b} 2 \ min{a,b} '
Proof. Tt is easy to see that
b
b—t b—a
(2.2) /{; e dt = " —Inb+1Ina
for any a, b > 0.
If b > a, then
1(b—a)’ bh—t 1(b—a)’
2. - > > — .
(23) 27 a2 —/a LA
If a > b then
b a a
b—t b—t t—>b
A A R
and
» 1o=a, [ty 10-0
' 2 ), e T2 a2

Therefore, by (2.3) and (2.4) we have for any a, b > 0 that
b . 2 . 2
/ b tdt > % (b—a)” 1 (mm{a,b} 1)

t2 max? {a,b} 2 \max{a,b}
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and
/bbtdt§ 1 (.1)2—51)2 _1 mz'lx{a,b} 1 2.
o 12 2min® {a,b} 2 \ min{a,b}
By the representation (2.2) we then get the desired result (2.1). O

When some bounds for a, b are provided, then we have:

Corollary 1. Assume that a, b € [m, M] C (0, 00), then we have the local bounds

1(b—a)’® b-a 1(b—a)’
(2.5) CNVE < . —lnb—&—lnag5 —
and, by swapping a with b,

1(b—a)’ b—a _1(b—a)’
(2.6) CRYE <Ilnb—Ina— 2 §§ o

Theorem 4. Assume that 0 < mA < B < MA for some constants M and m.
Then for all a € [m, M) and P > 0 with P € By (H) and tr (P) =1,

(2.7) 1< (exp [tr (PBA_IB) —2atr (PB) + a® tr (PA)Dﬁ
(&)™ fexp (tr (PB)))®
- Dp (A|B)
< (exp [tr (PBAilB) —2atr (PB) + a?tr (PA)])#
and
(2.8) 1< (exp [tr (PBA_IB) —2atr (PB) + a® tr (PA)Dﬁ

< Dp (A|B)
= (ae)™ Y [exp (— tr (PAB~1A))]"
< (exp [tr (PBA_lB) —2atr (PB) + a®tr (PA)])ﬁ .

Proof. If we use the continuous functional calculus for selfadjoint operator T with
spectrum Sp T in [m, M| and the inequality (2.5) we have

(T —aly)®  T—aly 1(T —aly)?
CREYE < " —lnT—i—(lna)ngiim2
for all a € [m, M].
Since 0 < mA < B < MA, hence by multiplying both sides by A=/2 > 0 we
get 0 < m < A"Y/2BA~1/2 < A. By writing (2.9) for T = A~/?BA~1/? we get

(2.9)

1 (A"Y2BA"Y2 —aly)’
2 M2
A—1/2BA—1/2 —al
< aH In (A_l/QBA_l/Q) + (Ina) 1y
a

1 (A"12BA=Y2 — aly)®
2 m2

IN
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and by multiplying both sides by A'/2 > 0, we derive
1
(2.10) —— A2

2 (A—l/zBA—l/z _ alH)2 A1/2

< %B _ A2 {m (A—l/QBA—W)} AY2 4 (Ina)A— A

1 2
< 2m2A1/2 (A—1/2BA—1/2 _ alH) AL/2
for all a € [m, M].

Observe that

A1/2 (A—l/zBA—l/z _ a1H>2 A1/2

=BA'B-2B+d*A
and by (2.10) we get

22\142 (BA™'B—2B +a*A)

— Al/2 (A—1/2BA—1/2A—1/2BA—1/2 _9aA"Y2B A2 4 a21H) AL/2

1
<

1
<-p- A [m (A‘l/QBA‘Wﬂ AY2 4 (lna)A— A
<5 (BA™'B - 2B +d’A) .

Now, if we multiply both sides by P'/2 > 0, take the trace and use its properties,
then we get

1 _
(211)  amtr [P(BA™'B —2aB +a*A)]

< o tr (PB) — tr (PAI/2 [ln (Ail/zBAfl/z)} A1/2) +1In (
< 5 tr[P(BAT'B ~ 2B + aA)]

a ) tr(PA)

for all a € [m, M] and P > 0 with P € B; (H) and tr (P) =1

If we take the exponential in (2.11), then we get
(2.12)

1
1 <exp [ZMQ

(tr (PBA_lB) —2atr (PB) + a®tr (PA))}
< exp [i tr (PB) — tr (pA1/2 [ln (A‘I/QBA”/?” A1/2) I (Z)tr(PfU}
< exp [mQ (tr (PBAle) —2atr (PB) +dtr (PA))} 7

for all @ € [m, M] and P > 0 with P € By (H) and tr (P) =1
This is equivalent to (2.7).

From (2.6) we get

1(T —aly)®

o, 1(T—a)
1

5 5 <InT —1In(ae)ly +aT §§ —
for selfadjoint operator T with spectrum in [m, M| and for

all a € [m, M].
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If we take T'= A~Y/2BA~1/2 then we get
1
2M?2

2
(A_l/QBA_l/2 — alH) <IlnAY2BA"Y2 _1n (ae) 1y + aAY2B=1 A2
2
« * (a-12pa-1/2 _
— 2m? (A BA a)
and by multiplying both sides by A'/2 > 0, we derive
L2 4=1/2p4-1/2 Z )2
A2 (A72BA alu) A
< A2 (1n A—1/2BA-1/2) AY2 _In(ae) A +aAB~'A
1 2
< 12 (A=1/2p 4-1/2 1/2
< 55 AY? (A72BA a) A
for all a € [m, M].

If we multiply both sides by P/2 > 0, take the trace and use its properties, then
we get

1
IV
< tr (PA1/2 (mA*l/?BA*l/?) A1/2) —In(ae) tr (PA) + atr (PAB™'A)

2
tr {PA”Q (A*l/?BA*l/2 _ alH) Al/Q]

< 1 w|pa (a7/2pa=r2 - 0L1H)2 AL
~ 2m? ’
which produces the inequality (2.8). d

Corollary 2. With the assumptions of Theorem 4, we have

tr (PAB™'A) tr (PA) — tr (PB)* ]\ 27
2.1 1<
(2.13) = (eXp tr (PA)
(tr(PB))tr(PA)
tr(PA)
~  Dp(A|B)

1

) 2m?2

1

) 2M2

tr (PAB~'A) tr (PA) — tr (PB)?
tr (PA)

VAN
N
¢]

M

o

and

tr (PAB~'A) tr (PA) — tr (PB)?

(2.14) 1< (exp

tr (PA)
g Dp (A[B)
— tr(PA) tr(PB)
tr(PB) tr(PA)2—tr(PB) tr(PAB-1A) \ ] &(PA)
tr(PA) €Xp tr(PB)

tr (PAB™'A) tr (PA) — tr (PB)?
tr (PA)

1
2m?2
< (exp >

for all P >0 with P € By (H) and tr (P) = 1.
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The proof follows by Theorem 4 for a = %, which, due to the condition
mA < B < MA, belongs to the interval [m, M] for all P > 0 with P € By (H) and

tr (P) = 1.

Remark 1. Assume that 0 < mlyg < B < M1y for some constants M and m.
Then by Corollary 2 for A =1y we have

1

(2.15) 1< (exp {tr (PB?) —tr (PB)QDm
ot (PB)
~ np(B) 1

< (exp [tr (PB?) —tr (PB)2D o

2

and

(2.16) 1< (exp [tr (PB?) —tr (PB)Q] ) i
< np(B)
- tr (PB) [exp (tr (PB)™' —tr (PB‘U)]MPB)
< T

(exp {tr (PB?) —tr (PB)QD o
for all P > 0 with P € By (H) and tr (P) = 1.

Assume that 0 < mA <1< MA for some constants M and m. Then by Corol-
lary 2 for B =1y we have
) Pl

1

> 2m?2

tr (PA_l) tr (PA) —1
tr (PA)

(2.17) 1< (exp

tr (PA)_ tr(PA)
- Ap(4)

< <exp

tr (PA™Y) tr (PA) — 1

tr (PA) )
Ap(A)

tr (PA)~ A [exp [— (tr (PA2) — tr (PA)2>H

1
2m?2

for all P >0 with P € By (H) and tr (P) = 1.

tr (PA™!) tr (PA) -1
tr (PA)

A

and

(2.18) 1< (exp

<

1
tr(PA)

tr (PA_l) tr (PA) —1
tr (PA)
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If0 <nly < A< Nlg, then 0 < %A <1y < %A and by taking m = % and
M =L in (2.17) and (2.18), then we get

N2
> 2

tr (PA™Y) tr (PA) — 1 ¥
tr (PA)

(2.19) 1< <exp

_ tr (PA)ftI‘(PA)
- AP(A)

(exp

tr (PA™!) tr (PA) — 1 &
tr (PA)
Ap(4)

tr (PA)” A {exp [f (tr (PA2) — tr (PA)2>H
)

for all P > 0 with P € By (H) and tr (P) = 1.
We have the following reverses of Schwarz’s inequality, see for instance [7]

tr (PA™Y) tr (PA) — 1
tr (PA)

IN

and

(2.20) 1< (exp

<

1
Tw(PA)

tr (PA™!) tr (PA) — 1
tr (PA)

IN

0 < tr (PB?) —tr (PB)’ < % (M —m)?,

and

for all P > 0 with P € By (H) and tr (P) = 1, where 0 < mly < B < M1y for
some constants M and m.
By (2.15) we get

(2.21) t;}(jBB)) < (eXp tr (PB2) — tr (PB)QDQJ‘Z
exp [§ (3 —1)°]
- exp [STJM (M - 1)2tr (PB)2]
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while by (2.16) we derive

np(B)
tr (PB) [exp (tr (PB)"! —tr (PB—l))} e

1

(oo () - ey
exp [4 (2 —1)’]

exp [&nﬁ (% - 1)2 tr (PB)Q]

(2.22)

IN

for all P > 0 with P € By (H) and tr(P) = 1, where 0 < mly < B < M1y for
some constants M and m.
We know the following reverse inequalities hold as well, see for instance [7]

tr (PA™") tr (PA) < (]2:;)2’
and
-1 -1 (\/N_ \/ﬁ)z
tI‘(PA )7tr(PA) ST,

for all P > 0 with P € By (H) and tr (P) = 1, where 0 < nlyg < A < Nlg for
some constants N and n.
From (2.19) we then get

N2
tr (PA)~ P tr (PA~) tr (PA) — 1] °
2.2 2 <
(223) Ap(4) S\ tr (PA)
N (N — n)2 -1
< PA
< exp [ o, A,
while from (2.20) we obtain
Ap(A4)

1
tr(PA)

tr (PA)_tr(PA) [exp [— (tr (PA2) —tr (PA)2>H

< (eXp

< exp

tr (PA™Y) tr (PA) — 1 ¥
tr (PA)

N (VN - \/5)2
2n

for all P > 0 with P € By (H) and tr (P) = 1, where 0 < nlyg < A < Nlg for
some constants N and n.
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3. SOME RELATED RESULTS

If we take in (2.1) a =1 and b =u € (0,00), then we get

1 min {L,u}\> 1 (u—1)>
(1= S
2 max {1,u} 2 max? {1,u}
<u—1—-—Inu
2 2
<1 (u—1) ;(max{l,u}_l)

= 2 min? {1,u} - min {1,u}

(3.1)

and if we take a = u and b = 1, then we also get

1(1 min{l,u})QZ; (u—1)>

(32) 2\ max{l,u} max2 {1,u}

<

(ufitf 1 (max{l,u} 1>2_

1
2min® {1,u} 2 \ min {1, u}

If uw € [k, K] C (0,00), then by analyzing all possible locations of the interval
[k, K] and 1 we have

min {1,k} < min{1,u} < min {1, K'}

and

max {1,k} <max{1l,u} < max{l,K}.

By (3.1) and (3.2) we get the local bounds

1 (u—1)> 1 (u—1)7°
3.3 ———————<u—-1l-hu< -—5—"—
(33) 2 max? {1, K} =4 n= 2 min? {1, k}
and

1 (u—1)> u—1 _1 (u—1)>
3.4 ————"—— <Ilnu-— <=
(34) 2max? {1, K} — e v~ 2min®{1,k}

for any u € [k, K] C (0,00).

Theorem 5. Assume that 0 < mA < B < MA for some constants M and m.
Then

(3.5) 1 <exp {Zmax;{l]\f} (tr (PBA™'B) — 2tr (PB) +tr(PA))}
exp (tr (PB) — tr (PA))
- Dp (A|B)
<exp {Qmmi{lm} (tr (PBA™'B) — 2tr (PB) + tr (PA))} ,
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and

1
2max? {1, M}
Dp (A|B)
~ exp (tr (PA) —tr (PAB~1A))

(36)  1<exp [ (tr (PBA-'B) — 2tx (PB) +tr(PA))}

<exp { (tr (PBA™'B) —2tr (PB) + tr (PA))}

2min? {1,m}
for all P > 0 with P € By (H) and tr (P) = 1.

Proof. From (3.3) we have for the selfadjoint operator T’ with0 < mly <T < M1y
that

1 1
(T —1)° <T -1y —InT < (T —15)°.

2max? {1, M} ~ 2min® {1,m}

If we write this inequality for T'= A~'/2BA~1/2 then we get

1 2
- A—l/QBA—l/Q_l
2max? {1, M} ( H)
< ATV2BATVZ 1, n (A—l/QBA—W)
1

< - (A—l/?BA—U2 — 1H)2.
~ 2min? {1,m}

If we multiply this inequality both sides by A'/2 > 0, then we get

1
2max? {1, M}

<B-A— A2 (ln (A’I/QBA’1/2)>A1/2

1 2
< ————AVP(ATVPBAT? — 1) A2
~ 2min’ {1,m} ( H)

2
(3.7) AL/ (A‘WBA‘W - 1H) A2

Observe that
AL/2 (A’I/QBA’”Q _ lH)2A1/2
— A1/2 (A_l/QBA_lBA_l/Q _9A-Y2B A2 4 1H> AL/2
=BA'B-2B+A

and by (3.7) we get
1
0<——(BA'B-2B+ A
_Qmaxz{l,M}( +4)
<B_-A—AY? (ln (A‘l/QBA‘l/Q)) AL/
1

<———— (BAT'B-2B+ A
—2min2{1,m}( +4),
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which gives, by multiplying both sides by P'/? and taking the trace that

1

~ 2max? {1, M}

< tr (PB) — tr (PA) — tr [PAI/2 (ln (A*l/QBA*/?)) AW}
1

< -

~ 2min” {1,m}

(3.8) 0 (tr (PBA™'B) — 2tr (PB) + tr (PA))

(tr (PBA™'B) — 2tr (PB) + tr (PA))

for all P > 0 with P € By (H) and tr (P) = 1.

If we take the exponential in (3.8), then we get the desired result (3.5).

By (3.4) we obtain

1 ) .
— (T -1 <InT-1 T
2max2{1,M}( n) s nt

1 2
< (T-1y),
= 2min? {1,m} (T = 1)
which implies that
1 2
_r (a2a? g )
2max2 {1, M} ( a

<In (A—I/QBA—1/2) 1y + AV2BTIAL?
1

<o (a72Ba - 1H)2.
~ 2min® {1,m}

If we multiply this inequality both sides by A'/2 > 0, then we get
-

2max? {1, M}

<AV (n(A712BATY2)) A2 - A4 AB A

1

S oI
2min” {1, m}

AL/2 (A71/23A71/2 _ 1H)2 AL/2

AL/2 (Afl/ZBAfl/Q _ 1H)2 AL/2

By multiplying both sides by P'/? and taking the trace, we deduce (3.6).

15

O

Remark 2. Assume that 0 < mly < B < M1y for some constants M and m.

Then by Theorem 5 we get

(3.9) 1 <exp [2ma><21{1M} (tr (PB?) —2tr (PB) + 1)}
exp (tr (PB) — 1)
np(B)
< exp {211111121{1,771} (tr (PB?) —2tr (PB) + 1)]
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and

(3.10) 1 <exp [ (tr (PB?) —2tr (PB) + 1)}

2max? {1, M}

np(B)
~ exp(l—tr(PB1))

1
< — 5 (tr (PB?) — 2tr (PB) + 1
=P {2min2 {1,m} (tr ( ) t(PB) )]

for all P> 0 with P € By (H) and tr (P) = 1.
If 0 < nlyg < A < Nlg for some constants N and n, then by Theorem 5 we
also obtain

(3.11) 1 <exp [; min {1,n*} (tr (PA™") + tr (PA) — 2)

exp (1 — tr (PA))
Ap(A)

< exp [; Inax{l,NQ} (tr (PAil) +tr (PA) — 2)

and

(3.12) 1 <exp B min {1,n°} (tr (PA™") + tr (PA) — 2)

Ap(A)
~ exp (tr (PA) —tr (PA2?))

< exp [; max {1, N?} (tr (PA™") + tr (PA) — 2)

for all P > 0 with P € By (H) and tr (P) = 1.
Observe also that for u € [k, K] C (0,00) we have

min {1, u} 1 min {1, K'}

1-— >0
max {1,u} ~ max {1,k} —
and
max {1, u} max {1, K'} 1
~ min {1, u} ~ min{l,k} '
Now, by (3.1) and (3.2) we get the global bounds
1 min {1, K}\? 1 (max {1, K} 2
3.13 —1l—-———) <u—-1-lnu<- -1
(3:13) 2( max{l,k}) =4 nu_Q(mln{Lk}
and
1 min {1, K} 2 u—1 1 (max{l,K} 2
3.14 -1l <lhht———< - | ———— -1
(3:14) 2 ( max{l,k}) = u 2 ( min {1, k}

for all u € [k, K] C (0,00).
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Theorem 6. Assume that 0 < mA < B < MA for some constants M and m.
Then

1<1_min{1,M}

. < —
(3.15) 1 <exp lz max {1}

< P (tr (PB) — tr (PA))
- Dp (A|B)

1 max {1, M} B 2 .
< exp l2 (min{l,m} 1) tr(P4)

) g (PA)

and

310 e [} (1- 20 e

Dp (A|B)
~ exp (tr (PA) —tr (PAB—1A))
< exp [1 (max{l,]%} - 1)2 tr (PA)

2 \ min{1,m}

for all P > 0 with P € By (H) and tr (P) = 1.

Proof. From (3.13) we have for the selfadjoint operator T with 0 < mly < T <
MlH that

. 2 2
1 1_mln{l,]W} ST—lH—lnTgl ma.x{l,M}_l .
2 max {1, m} 2 \ min {1, m}

If we write this inequality for T = A~'/2BA~1/2 then we get
. 2
1 1_ min {1, M} < ATV2BAV2 1y (A’l/zBA’1/2>
2 max {1, m}
2
< 1 (max {1, M} 1)
~ 2 \ min{1,m}
If we multiply this inequality both sides by A'/2 > 0, then we get

. 2

1 1 min {1, M} A

2 max {1, m}

<B- A=AV (n(A72BAT12)) 412
2

< 1 (max{l,M} B 1) N

~ 2 \ min{1l,m}

By employing now a similar argument to the one in the proof of Theorem 5 we
derive (3.15).
The inequality (3.16) follows in a similar way from (3.14). O
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Remark 3. Assume that 0 < mly < B < M1y for some constants M and m.
Then by Theorem 6 we get

617 1<exp [1 @Mﬂ

2 max {1, m}
exp (tr (PB) — 1) 1 (max{l,M} \*
T owm l2 (et ) ] |
and
1 min {1, M} >
(3.18) 1 <exp [2 (1 - max{l,m}) 1

np(B) 1 (max {1, M} 2
~ exp(l—tr(PB71)) < oxp lQ (min{l,m} B 1) ]

for all P > 0 with P € By (H) and tr (P) = 1.
If0 < nly < A < Nlg for some constants N and n, then by Theorem 5 we
also obtain

1 in {1, N
(3.19) L<ewp |5 (1 _ min{l, N}

max {1,n}

)2 tr (PA)

< OXP (1—-1tr(PA))
- Ap(A)

1 (max{l,N} 2 .
< exp [2 <min{1,n} 1) tr(P4)

and

(3.20) 1 <exp |; (1 - M) tr (PA)

Ap(4)
~ exp (tr (PA) — tr (PA2?))

< exp ll <maX{1N} - 1)2 tr (PA)

min {1,n}

for all P > 0 with P € By (H) and tr (P) = 1.
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