UPPER AND LOWER BOUNDS FOR RELATIVE ENTROPIC
NORMALIZED P-DETERMINANT OF POSITIVE OPERATORS
IN HILBERT SPACES IN TERMS OF KANTOROVICH
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ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For

positive invertible op
P-determinant by

erators A, B we define the relative entropic normalized

Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .
Assume that A, B > 0 and P > 0 with P € By (H) and tr (P) = 1. In
this paper we show among others that, If A, B are operators satisfying the

condition 0 < mA <

1 <ex
= p_2

<

B < MA, then
1 _
oz [P(MA-B)A™! (B—mA)]}

Dp (A|B)

M

m

< exp

< exp

< exp

tr(PA)—tr(PB)  tr(PB)—mtr(PA)
M—m M M

—m

tr[P(MA—-B)A™' (B - mA)]}

[ 2m?
S (- e (e )]

In 1952, in the paper [1

; (% - 1)2 r (PA)] .

1. INTRODUCTION

2], B. Fuglede and R. V. Kadison introduced the deter-

minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem

one can represent 1" as an

integral

T = / AE (X)),
Sp(T)

where F ()) is a projection valued measure and Sp (T') is the spectrum of T. The
measure pp := 7o /. becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).
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For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntd,uT) .
0

If T is invertible, then
Ark (T) :=exp (7 (In(|T1))),

where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1y stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [18], [19], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [21].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B(H) then

(1.2) Do lAell* =Y 1A =141

i€l jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) Al = (erm)
iel
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5 . From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4°]l,-

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:
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Theorem 1. We have:
(i) (B2 (H), ||-ll5) s a Hilbert space with inner product

(14) <A, B>2 = Z<A6i,B€Z‘> = Z<B*A€Z‘,€i>
iel icl

and the definition does not depend on the choice of the orthonormal basis {e;},c;;

(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) IAT |y, I TAll, <IN Al

(iii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C B2 (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1A = (Al esse) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

e;;..7. We denote by by the set of trace class operators in .
ier - Wed by By (H) th f 1 in B(H
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = [[A"][, and [[All, < [ All,
forany A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C By (H);
(iti) We have
By (H) By (H) = By (H);
(iv) We have
[Ally = sup{{A,B), | BBz (H), |Bll, <1};
(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) =Y (Aej,e;),
icl
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(1.11) b1 (AT) = tr (TA) and |ox (AT)| < | A], I1T] ;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T' € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € B, (H),
hence PY/?TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For recent results on trace inequalities see [1]-[9] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [10]:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tly) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [10], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr (PA) <exp [tr (PA) tr (PA™") —1]

~ Ap(4)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [11]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

= exp In (t_ tr(PA)t) [exp (— tr (PA In A))]_t 5
hence
(1.13) np(tA) =t D [y (A)]

fort >0 and A > 0.
Observe also that

(1.14) np(lg) =1 and np(tly) =t~

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [11]

(1.15) np((L =) A+1tB) > [np (A)]' " [np (B))'

for all t € [0,1].
Also we have the inequalities [11]:

—tr(PA
tr (PA?) o)
tr? (PA) = Jtr (PA)]T P T
and if there exists the constants 0 < m < M such that mly < A < M1y, then
[11]
—tr(PA
(m+M>—2M § <m+M>—2tr(PA) ) tr (PAQ) tr(PA)
2vmM —\2vmM ~ | tr? (PA)

UP(A)
[tr (PA)]” TP~

Kamei and Fujii [16], [17] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

N

(1.16) S(AB) = A% (n (4" BA™E)) A2,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[25]. For various results on relative operator entropy see [13]-[26] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (A|B) = exp{tr [PS (A|B)]}
= exp {tr [PA% (ln (A*%BA*%)) A%] } .
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We observe that for A > 0,
Dp (AlLg) := exp{tr [PS (A]11)]} = exp {tr (~PAIn A)} = 5,(A),
where 7p(+) is the entropic P-determinant and for B > 0,
Dp (1y|B) :=exp {tr[PS (1g|B)]} = exp {tr (Pln B)} = Ap(B),

where Ap(+) is the P-determinant.
In this paper we show among others that, if A, B are operators satisfying the
condition 0 < mA < B < MA, then

1< exp | oo tr [P(MA-B)A™" (B - mA)]]
< Dp (A|B)
— mM tr(P]?l—rytr(PB) Mtr(PBg\;:rin:r(PA)
(1
< exp 503 tr [P(MA—-B)A™" (B— mA)]}
[tr (PA) tr(PB)\ [ tr(PB)
< M— -
=P Tom2 ( tr (PA) ) \tr (PA) "
B 2
< exp é <M - 1) tr (PA)| .
m

2. MAIN RESULTS

We consider the Kantorovich’s constant defined by

(h+1)?

h > 0.
4h,>0

(2.1) K (h) =

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(22)  (a“UB <) KT (%) A" < (1-v)a+uvb< KR (%) al=p”

where a, b >0, v € [0,1], r =min {1 — v,v} and R = max{l —v,v}.

The first inequality in (2.2) was obtained by Zou et al. in [30] while the second
by Liao et al. [29].

We start with the following main result:
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Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1. If A, B are operators
satisfying the condition 0 < mA < B < M A, then

1

M 3 PA) = gt e (PAYE[ATYEBATYE —f (m M) 1 [A12)
(2.3) 1<K|—
m
Dp (A|B)
— M PA)—tr(PB PB)— PA
m el M)—n:r( )M“< iwi"nir( .
M 2 EPA+ tr(PAY?|ATY2BATY 2 L (m+ M)1y|AY/?)
<K|[(—
m

tr(PA)
<K (M) .
m

Proof. Assume that ¢ € [m, M] and consider v = =2 < [0,1]. Then

—m

in {1 ) 1 1 1 t—m 1
mn{l—volt==_—|ly-Z|=2 | ——" _ =
’ 2 2 2 M-m 2
1 1 1
=_- t—=(m+M
3 M- ‘ g (m+ )"
1 1 1 t—m 1
1- = — == _
max{ 1/,1/} 2+1/ 2' 5 ‘M—m 2’
1 1
=z t—=(m+M
2+M—m‘ (m + )"
—t t—
(1-v)ym+vM = m + mM:t
—m —-m

and

t—m

1 Mt
m VMY =mM—m M M—m

By using (2.2) we get

1 1
M-t t—m M 27 M-m M-t t—m
(2.4) mM-m M-m < | K [ — mM=m ) M=—m
m

M %+ﬁ ti%(m+M)‘ M-t t—m
m

for t € [m, M].



8 S.S. DRAGOMIR

By taking the log in (2.4) we get

M —t —
(2.5) Inm + ™M
1 1 M
< |Z _ _ = i
<[s -ty (3
—|—M_mlnm—|—M lnM
1 M
<Ilnt< |= - = M) | InK | —
_nt_[2—|-M mt m+ )Hn <m>
M —t t—m
+M7mlnm+M7 In M
M M —t —m
<InK|— 1 In M
= (m>+M—mnm+M—mn
for t € [m, M].

If 0 <mly <T < M1y, then by using the continuous functional calculus for
selfadjoint operators we get from (2.5) that

Mlg—T T —mlyg
M—-—m M M—-—m

1 1 1 M
< |=1lg — - = M)1 InK | —
< [3to s g s (55)
M].H*T TfmlH
M—-m Jrln]MM—m

1 1 1 M

< < |= S -

<InT < [21H+ 7 ‘T 2(771-1—]\/[)1HH an( )
MlH—T T—mlH

nm——— +InM———
+an—m+n M—m

M Mly —-T T —ml
§an<> lg+Inm H Lomin
m

(2.6) Inm

+Inm

M +InM U

Since 0 < mA < B < M A, hence by multiplying both sides by A='/2 > 0, we get
0 <mly < A Y2BA-Y2 < M1y. Now, if we take T = A='/?BA~"/? in (2.6),
then we get

Mly — A~1/2BA-1/2 | MA*1/2BA*1/2 —mly

1
nm M—-—m i M—m
1 1 . M
< |t /25 4-1/2 _ M
_|:21H M—m‘A BA~ 2(m+M)1HH1HK<m)
_A-1/2 —1/2 —1/2 —-1/2 _
+1an1H A BA +111]\4A BA mlH

M—-—m M—-—m
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<In (A‘l/QBA‘l/Q)

1 1 1 M
<=1 A"Y2BA-1/2 2 M)1y||InK [ =
_[2H+M—m‘ 2(m—|— )H n m

M1y — A~1/2BA-1/2 A-YV2BA-1Y2 iy
1 In M
+nm M—m +n M—-—m
M
m
Mly — A~1/2BA-1/2 A"12BA-Y2 —m1
+Inm H +InM m H.
M—m M—-—m

If we multiply both sides by A2 > 0, then we get

MA—-B B—-mA
R M T
1 1 1 M
< |ZA_- - 1/2 —-1/2 -1/2 _ -~ 1/2 o
[QA AV AT 2 BA 2(m+M)1H‘A ]an(m>
MA—-B B—-mA
e MR T

< AV2] (A—l/ZBA—1/2) AL/2

1 1
<A+ — A2
_[2 +M—m

MA—-B B—-mA
R 7 S

<lnK (M) A
m

MA—-B B—mA
+1an7_’rn+thM7

AY2BATY2 % (m + M) 1H‘ AW] In K <M>
m

_m.

Let P >0 with P € By (H) and tr (P) = 1. If we multiply both sides by P'/2 >0,
take the trace and uses its properties, then we get

Mtr (PA) —tr (PB) tr (PB) — mtr (PA)

Inm W —m +1In M WV —m
1 1 1
< |=tr (PA) — PAV?|A12BAY2 2 M) 1| AY/?
= [2“( ) M—mtr< 5 (m+ M) 1y
K M +lantr(PA)—tr(PB) +lthr(PB)—mtr(PA)
m M—-—m M—m
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< tr (PAV2In (47242 007)

1 1
< |=tr (PA) 4+ ——— A1/?
< [ tr (PA) + i

5 — A*l/QBAfl/Z—%(mjLM) 1H‘Al/2]

K M r (PA) +lantr (PA) —tr (PB) +1thr (PB) —mtr (PA)
m M—-m M—-m
<InK (M) tr (PA)
m
n lantr (PA) —tr (PB) lthr (PB) —mtr (PA),

M tr(PA)—tr(PB) Mn»(PB;\;T":r(PA) )

(2.7) In (m M=

[ tr(PA)— 371 tr(PAY? A2 BATY 2~ L(m+ M) 1y |AY?)]
<InhK|—
m
M tr(PA)—tr(PB) tr(PB)—mtr(PA)
M )

+ In (m M—m T—m
<t (PAV2 I (A72BATI2) 412)

) [ tr(PA)+ 371 AY2|ATY2BATY 2 L(m+ M) 1 | A2

<InK (
m

M tr(PA)—tr(PB) tr(PB)—m tr(PA)
M )

+ ln (m M—m M—m

tr(PA)
<lnK <M>
m

M tr(PA)—tr(PB tr(PB)—m tr(PA
r(M) x( )Mr( )om r( ))

i (255 =

By taking the exponential in (2.7), we derive

M tr(PA)—tr(PB) tr(PB)—m tr(PA)
m M—m M M—m

M 3 (PA) = gt e (PAYZ[ATH2BAT 2= 3 (mt M) 1 [AY/2)]
< ()

m
M tr(PA)—tx(PB) _  tx(PB)—mtr(PA)
X m M—m M M—m

< exp [tr (PAl/z In (A71/2BA71/2> A1/2>]

M 3P+ 5t e (PAYE[ATHEBAT 2 - S (mt M) 1 [ AT/2)]
(1)

m
M tr(PA)—tr(PB) tr(PB)—m tr(PA)
x (m M )

M—m M—m

tr(PA)

ZM M tr(PA)—tr(PB) tr(PB)—mtr(PA)

< K| — (m M—m M M—m ) ,
m

which is equivalent to (2.3).
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Corollary 1. Let P > 0 with P € By (H) and tr (P) = 1. If B is an operator
satisfying the condition 0 < mly < B < M1y then

M>;—Maﬂtr<P|B—;<m+MnH|>

(2.8) 1§K<m

Ap(B)
= M—tx(PB) _ tx(PB)-m
m~ M-m N M-m

Lt ot tr(P|B— 3 (m+M)1g))
m m

The proof follows by (2.3) for A =1g.

Corollary 2. Let P > 0 with P € By (H) and tr (P) = 1. If A is an operator
satisfying the condition 0 < nly < A < Nlg, then

) Lor(PA) - — 2 tr(PAY?|AT =L (n T 4N T )14 |AV?)

(2.9) 1§K(

n
< UP(A)
= “N[tr(PA)—n] —n[N—tr(PA)]
N—n n N—n
N T u(PA+—2= tr(PAY2 AT =L (n N )1 |AY?)
(Y
n

IN

N tr(PA)
k(%)
n

Proof. Since 0 < nlyg < A < Nlg, hence %A <l1lyg < %A and by taking B = 1y,
m = % and M = 1 in (2.3), we get (2.9). O
We also have:

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1. If A, B are operators
satisfying the condition 0 < mA < B < M A, then

(2'10) 1< Z\ltr(PA)—tf()PIDB)(A|€()PB)—7n tr(PA)
m M—m M M—m
tr [P(MA— B) A~ (B —mA)]
< exp
Mm
[tr (PA) tr (PB)\ (tr(PB)
< _ _
=P T (M tr (PA) ) \tr(PA)y "
o ,
< (M- .
< exp Tmdi (M —m) tr(PA)}

Proof. In [6] we obtained the following reverses of Young’s inequality:
(1-v)a+vwvd a
R ]
where a, b > 0, v € [0, 1].
This is equivalent, by taking the logarithm, with
(b—a)*
ba

0<In((l-v)a+vb)—(1—-v)lna—vinb<v(l-v)
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where a, b > 0, v € [0, 1].
If we take a =m, b= M, t € [m, M] and v = t;”:n € [0,1], then we get

M—
M—t t—m (M —t) (t —m) (M —m)*
<Int— Inm — InM <
0<Int Mimnm Mfmn < (M—m)2 U
(M —t) (t —m) 1 )
= < —_—
Mm < Tt M —m)

Using the continuous functional calculus for selfadjoint operators, we have

MlH—T T—mlH (MlH—T)(T—mlH)
2.11 <1 L —— | - InM<
( ) 0<InT W —m nm T —m nM < T
1 2
< - _
< T M —m) L

provided that 0 < mly <T < M1y.
Now, if we take T = A~'/2BA~'/2 in (2.11), then we get

0<In (A—l/Z‘BA—l/?)

g Mg = ATEBATYE L ATVZBATYE -y
M—-m M—-—m

_ (M1 - ATY2BATY2) (ATV2BAY2 —mly)

- Mm

and if we multiply both sides by A'/2 > 0, then

MA-B B—mA
1/2 ~1/2p 4-1/2 12 B
0< A (m(A BA ))A T lm - —— I M
AV2 (Mg — A-V2BA-IZ) (A-V2BA-I2 _ ) AL?
<

- Mm

Now, if we multiply both sides by P'/2 > 0 and take the trace, then we get

0 <t (PAY2 (1n(471/2BA12)) 4112)
_ Mt (PA) —tx(PB)  tr(PB) - mtr(PA)

U —m Inm U —m In M
_ t[PAY2 M1y — AVPBAT?) (AT2BAT —mly) A7)
- Mm
tr [A/2PAY2 (M1y — A7V2BAY2) (A"Y2BA~Y2 — mly)]
Mm '

The function ¢ (¢) = (M —t) (t — m) is concave on [m, M] and by Jensen’s in-
equality for trace

tr(Qg (C)) < g (tr (QC)),
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where @ > 0 with trQ) =1 and 0 < mly < C < M1y, we conclude that

tr [AV2PAY? (M1y — A-V2BA-Y2) (A" BA-Y2 — m1y)]

r (AI2PA2)
tr (A2 PAY2A12BA1?)
< | M-
= it (A2 PAL2)
tr (A2 PAY2A-1/2B A1)
X —m
tr (AI2PA1/?) ’

namely

tr [AY2PAY2 (M1y — A"Y2BA™Y2) (A71/2BAY2 —mly)]
tr (PA)

(- ) () <

Therefore we have the chain of inequalities

0<tr (PAl/2 (m (A*1/2BA*1/2)> A1/2>

M tr(PA)—tr(PB) tr(PB)—mtr(PA)
1 M )

—m M—m

—In (m
_tr[PAYV (M1, — ATV2BATVR) (A12BAT2 — mly) A1V
- Mm
tr (PA) M tr (PB) tr(PB) "
Mm tr (PA) tr (PA)
1

< M- m)” tr (PA)

for P> 0 with P € By (H) and tr (P) = 1.
By taking the exponential, we derive the desired result (2.10). (]

Corollary 3. Let P > 0 with P € By (H) and tr (P) = 1. If B is an operator
satisfying the condition 0 < mly < B < M1y then

Ap(B
(212) 1< M—tr(PBl?( t)r(PB)—m
m M—m M M—m

< exp tr[P(MlH—B)(B—mlH)]}
L Mm
[ 1

< _— — _

< exp 3m (M —tr (PB)) (tr (PB) m)}
. ,

< — (M - .

<exp _4mM(M m)]

It follows by (2.10) on taking A = 1.
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Corollary 4. Let P > 0 with P € By (H) and tr (P) = 1. If A is an operator
satisfying the condition 0 < nly < A < N1y, then

np(A)
(2~13) 1< 7N[tr(PA)7F:L] “n[N_tr(PA)]
N—n n N—n
[tr [PAY2 (n 11y — AV (A7) — N—'1y) A7)
< exp M-1p-1
[tr (PA) /4 -1 -1 -1
< _ — _
< e | S (n [tr (PA)] ) ([tr (PA) ' =N )
1 2
< e — .
< exp N (N —n) tr(PA)}

It follows by (2.10) on taking B = 1.

3. MORE RESULTS
In [7] we obtained the following refinement and reverse of Young’s inequality:
1 min {a, b} 2
3.1 —v(l— l—-——
(3:1) P lQU( ) ( max {a, b}) ]
< (I-v)a+vwvb
- al-vpv
1 max {a,b} 2
< Sp(1l—yp) (BEDIT
= &P [21/( V)<min{a,b} > ]’
for any a, b> 0 and v € [0,1].

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1. If A, B are operators
satisfying the condition 0 < mA < B < M A, then

. )
(3.2) 1 <exp b tr[P(MA—B)A 1(BmA)]]
3 Dy (A]B)
= mnftr(PA?l—Tir(PB) Mtr(PB}\;:n”tr(PA)
< exp 5 tr [P (MA—-B)A ' (B - mA)]}
[tr (PA) tr (PB)\ [tr(PB)
< _ _
=P Tom2 (M tr (PA) ) \tr (P4)
N2/
< - — -1 PA)|.
< exp 5 (m ) tr (PA)

Proof. From (3.1) we have
1 m\ 2
exp |:2V (1-v) (1 - M) }
(1-v)ym+vM 1 M 2
< ml-v MV < exp 51/ (1 - V) E -1 )

for v € [0,1].
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By taking the logarithm, we obtain

(3.3) %V(l—y) (1— %)2

<In(l-v)ym+vM)—(1—-v)lnm—vinM
1 Mo\
< Zu(l-— -
72u(1 V)(m 1) ,
for v € [0,1].

If we take a =m, b= M, t € [m, M] and v = {72 € [0,1], then we get

(M —t)(t—m) M-t t—m
< (M —1t)(t—m)
- 2m?

for t € [m, M].

If we use the continuous functional calculus for the operator 0 < mly < T <
M1y, then we get

1
(3.4) 517z (M1 = T) (T = min)
Mlg —-T T —ml
R T Ll v
1

Now, if we take T = A~'/2BA~1/2 in (3.4), then we get

sz (M1 — A7V2BAT) (4728477 )

< (A‘1/2BA‘1/2)

M1y — A~1/2BA-1/2 | MA*I/QBA*V? —mly

1 _
nm M—m " M—m
1
< _ —1/2 —1/2 —1/2 —1/2 _ .
<3 (MlH A-12BA ) (A BA m1H)

If we multiply both sides by A'/? > 0, then we get

21\142 AV (M1 = ATVRBATZ) (AT BATY iy ) AV

< A2 (hl (A’1/2BA*1/2)> A1/2

MA—-B B—-mA
B T Sr-ai el vy

< LA (vt APVEBAV) (4B AT ) A
2m?
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Now, if we multiply both sides by P'/2 > 0 and take the trace, then we get
1/2 —1/2p 4—1/2 —1/2p g-1/2 1/2
S b [PAY? (ML — A7V2BATY) (A72BATY2 — 1y ) AV

<t (PAY2 (n (A7Y/2pA7Y2) ) 4102)

_ Mtr(PA) —tr (PB) lm — tr (PB) — mtr (PA)
M—m nm M—-—m

tr [PAl/Q (M1H _ A—1/2BA—1/2) (A‘l/QBA‘l/Q _ m1H) Alﬂ} .

In M

<

m2
Then rest follows from the proof of Theorem 5 and the details are omitted. (]

Corollary 5. Let P > 0 with P € By (H) and tr (P) = 1. If B is an operator
satisfying the condition 0 < mly < B < M1y then

(3.5) 1 <exp BE tr [P (M1y — B) (B—mlH)]}
Ap(B)
S M—tr(PB) tr(PB)—m
m = M-m M—m
1
< exp _Tm?tr [P(M1ly —B)(B - mlH)}]
[ 1
< - _ _
< exp S (M —tr (PB)) (tr (PB) m)]
Heol
<exp|=|— -1 .
8\ m

It follows by (3.2) on taking A = 1y.

Corollary 6. Let P > 0 with P € By (H) and tr (P) = 1. If A is an operator
satisfying the condition 0 < nly < A < Nlg, then

(3.6) 1 < exp {“(5‘4%2 (nfl — [tr (PA)]_l) <[tr (PA)] ™ - Nl)}
< —N[cﬁpfﬁif:)—nw&tigmn

< exp | LN [P (n71A - 1) A7 (1 - N—lA)]}

<exp :tr(;DA)NQ (nil - [tr(PA)]fl) ([tr (PA)] ! — Nlﬂ
<exp —; (JZ — 1>2tr (PA)| .

1t follows by (3.2) on taking B = 1g.
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