SOME BOUNDS FOR RELATIVE ENTROPIC NORMALIZED
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES VIA OSTROWSKI'S INEQUALITY

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by

Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .

In this paper we show, among others, that, if A satisfies the condition 0 <
mA < B< MA, where m, M are positive numbers, then

(E)tr(PA) < (E)%tr(PAH S — tr(A1/2PA1/2‘A*I/QBA*1/2,#1HD
M M
Dp (A|B)
[T (m, M) P
(M)%tr(PA)Jr 1 tr(Al/zPAl/z A=1/2pa=1/2_miM 1H|)

<

M—m

IN

m

A Br(PA)
<)
m

1. INTRODUCTION

In 1952, in the paper [16], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T— / ME (),
Sp(T)

where E (\) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) = exp </ lntduT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1g stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [23], [24], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [26].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) 1Al < 1Al

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(iii) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Ac By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) By (H) = By (H);
(iv) We have
[Ally = sup {{(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:



4 S.S. DRAGOMIR

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(1.11) b1 (AT) = tr (TA) and |ox (AT)| < | A], I1T] ;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T' € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € B, (H),
hence PY/?TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For recent results on trace inequalities see [4]-[11] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [12]:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tly) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [12], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr (PA) <exp [tr (PA) tr (PA™") —1]

~ Ap(4)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [13]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp(—tlnttr (PA))exp (—ttr (PAln A))

= exp In (t_ tr(PA)t) [exp (— tr (PA In A))]_t 5
hence
(1.13) np(tA) =t D [y (A)]

for t >0 and A > 0.
Observe also that

(1.14) np(lg) =1 and np(tly) =t~

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [13]

(1.15) np((L =) A+tB) > [np (A)]' " [np (B))'

for all t € [0,1].
Also we have the inequalities [13]:

—tr(PA
tr (PA?) o)
tr? (PA) = Jtr (PA)]T P T
and if there exists the constants 0 < m < M such that mly < A < M1y, then
[13]
—tr(PA
(m+M>—2M § <m+M>—2tr(PA) ) tr (PAQ) tr(PA)
2vmM —\2vmM ~ | tr? (PA)

UP(A)
[tr (PA)]” TP~

Kamei and Fujii [21], [22] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

N

(1.16) S(AB) = A% (n (4" BA™E)) A2,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[30]. For various results on relative operator entropy see [18]-[31] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (A|B) = exp{tr [PS (A|B)]}
= exp {tr [PA% (ln (A*%BA*%)) A%] } .
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We observe that for A > 0,
Dp (Ally) = exp{tr [PS (Al )]} = exp {tr (—PAIn A)} = 0, (A),
where 1p(+) is the entropic P-determinant and for B > 0,
Dp (1g|B) :=exp{tr[PS (1g|B)]} =exp {tr (PInB)} = Ap(B),

where Ap(-) is the P-determinant.
Motivated by the above results, in this paper we show among others that, if A
satisfies the condition 0 < mA < B < M A, where m, M are positive numbers, then

( m )tr(PA) - ( m ) L tr(PA)+ gk tr(AY2PAY2| A2 A2 mEM

M
Dp (A|B)

" (m Y
(M) 1 tr(PA) o tr(A1/2PA1/2 A*l/QBAfl/Z_w:[HD . <M>tr(PA)

M

<

m m

2. MAIN RESULTS

Recall the identric mean

It is easy to observe the connection between the integral mean of the logarithmic
function and the logarithm of the identric mean,

b
m ; lntdt = lnI (a/7 b)
for a # b positive numbers.

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator
A satisfies the condition 0 < mA < B < M A, where m, M are positive numbers,
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then

ot oo 2 (M) wirn)
conl (M) [Luira
1

2
+—— tr [AY2PA? <A1/2BA1/2 —~ m’;M1H> H

(M —m)
Dp (A|B)
= I (m, M)A

M 1
< — —1) |=tr(PA
<er{(G 1) [iwes
2
+% tr | AY/2pAL/2 (A—1/2BA—1/2 _ m+M1H)
(M —m) 2
1 /M
< exp {2 (m - 1) tr (PA)} .
Proof. We use Ostrowski’s inequality [32]:
Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) such that

[’ :(a,b) — R is bounded on (a,b), i.e., || f'|l = sup [f'(s)| < oo, then
s€(a,b)

2
1 (t— ot
< 4+<b_2> 1/ o (b—a),

for all ¢ € [a,b] and the constant 1 is the best possible.
If we take f (t) =1Int, t € [a,b] C (0,00) in (2.2) and observe that

b
(22) ‘f(t) 5 [ s

_ 1
[l = sup t71=—,
t€la,b] a

then we get

Int —InT (a,b)| <

for all ¢ € [a,b].
This inequality is equivalent to

e () |y

1 t— ot 1 /o
<lnt-lnl(a,b)< |~ L
smi-mr@y < |1+ (52 ) | (2-1).

for all ¢ € [a,b].
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By utilizing the continuous functional calculus for selfadjoint operators, we get

from (2.3) that
(2.4) —(%—1) i1H+(M_1m)2 (T_m;MlH)T

<InT—Inl(m,M)lyg

M 1 1 M \?
<<—1) g+ (T—m+ 1H>].
m

- 4 (M —m)? 2

Since 0 < mA < B < MA, then by multiplying both sides by A~'/2 we get
0<mly <A Y2BA-Y2 < M1y and by taking T = A~'/2BA~1/2 in (2.4), then
we get

M 1 1 M\
) [ (s

<In (A_1/2BA_1/2) —Inl(m,M)1ly
M 1 1 m+M_ \?
<(=-1)|>1g+——(AaV2BA"V2 "7 )
_<m ) 4H+(M—m)2( 2 H
If we multiply both sides by A/2? we derive
M
i
m

1
—-A
4+

X

2
o 1 )2 AL/2 (A—1/2BA—1/2 _ m‘ngH> AL/2
-m

<In (A*1/2BA*1/2> —Inl(m, M)A

()

2
M —m? : )2A1/2 <A1/23A1/2 A J; M1H> A2
—m

1
-A
><4+

If we multiply both sides with P'/2, then we get

— (M — 1) [1P1/2AP1/2
4

m

2
_|_(M 1 )2P1/2A1/2 (A—1/2BA—1/2 _ m_;MlH> AL/2 pl/2
-m

< Y2421y (A‘l/QBA‘l/Q) AY2PY2 _1n [ (m, M) P2 AP/

< <M - 1) {1131/214131/2
= 4

m

2
oA (A A ) v
—m
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Now, if we take the trace and use its properties, then we obtain

M 1
2. (= -1) |>tr(Pa
(25) (3 -1) [foea
2
+¥tr Al/2pAl/2 A’1/2BA’1/2—M1H
(M —m)* 2

<tr [A1/2P1/2A1/2 In (Ail/zBAfl/z)} —1InI (m,M)tr(PA)
ET

m
2
+% tr | AY2PAY? (A‘1/2BA‘1/2 — m+2M1H> H .

(M —m)

By taking the exponential in (2.5) we derive

M 1
2
_~_¥ tr |AY2PpAY2 [ A-/2BAY/2 MIH
(M —m)* 2

_ exptr [AVZPY2 41/ 10 (A-1/2BA )]
- [I (m7 M)}tr(PA)

o {(2 1) [Lecr

Since
tr |AY/2pAL/2 <A—1/213A—1/2 - mJ;MlH)T < i(M —m)” tr (PA),
hence

1 1
—tr(PA)+ ——— tr

2
AV2p AL (A—l/?BA—l/2 -2 ; M1H> 1

(M —m)

2
AL/2p AL/ (A—l/zBA—1/2 -~ m+2MlH> ] )

These prove the desired result (2.1). O

Corollary 1. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator
B satisfies the condition 0 < mly < B < M1y, where m, M are positive numbers,
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then

it <M_1m>2 i (BA_ m;MlH)ZH}
Ap(B)
(I (m, M)
(8 g2

1 /M
2\m
The proof follows by (2.1) for A = 1p.

Corollary 2. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator

A satisfies the condition 0 < nlyg < A < Nlg, where n, N are positive numbers,
then

o e[ 3(Y1)uira)

I (n717N71)]tr(PA)

< exp { (jz - 1) [i tr (PA)
A/2pAL/? <A1 - ”1J;N11H>2H } .
<ot (¥ 1) ea).

Since 0 < nly < A < Nlg, hence %A <1y < %A and by taking B = 1y in
(2.1) we derive (2.7).

1
t——tr
— N*l)
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Theorem 5. With the assumptions of Theorem 4, we have the inequalities

m\ tr(PA) m 5 tr(PA)+ 51 tr(AY2PAY? AT /2 BAT /2o My )
1) =)
Dp (A|B)
- [I (m7M)]tr(PA)
(M> Ltr(PA)+ 47 tr(AYPPAY?| AT /P BAT Y2 My )

(2.8)

<

m

M tr(PA)
(W)
m

Proof. In 1997, Dragomir and Wang proved the following Ostrowski type inequality
[14]:
Let f : [a,b] — R be an absolutely continuous function on [a, b], then

b
bia/ f(s)ds

for all ¢ € [a,b], where ||-||; is the Lebesgue norm on Ly [a,b], i.e., we recall it

b
ol i= [ lo®ldr

The constant % is best possible.
If we take f (¢t) =1Int, t € [a,b] C (0,00) in (2.9) and observe that

1 |t— ekt
5 + ’b—z‘| ||f,||[a,b],1 I

(2.9) [ -

<

15 3,1 = Inb — Ina,

then by (2.9) we get

1 1 b
lnt —In (a,b)| < {2+b—a Lot H (Inb— Ina),
for all ¢ € [a,b].
This inequality is equivalent to
1 1 a+b
(2.10) — {24- b a t— 5 H (Inb —Ina)
<Int—1InI(a,b)
1 1 a+b
< |Z _ _
[2+b—at 5 H(lnb Ina),

for all t € [a,b].
By utilizing the continuous functional calculus for selfadjoint operators, we get
from (2.3) that

1 1 m+ M
2.11 —(InM —1 -1 — 1
(2.11) (In nm)[Q H+Mm’T 2 HH
<InT—-InI(m,M)lyg
1 m—+ M
<(InM -1 -1 — 1
< (In nm)[2 H+Mm‘T 5 HH;
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By taking T = A~'/2BA~1/2 in (2.11) we get

1 1 “1j2p 12 MM
- - - |
(InM —Inm) {21H+M—m‘A BA 5 H
<In (A‘1/2BA‘1/2) “Inl(m,M)1ly
1 1 M
< (InM — Inm) [ L + 57 ‘A‘l/QBA‘l/z - ”“;1HH :

Now, if we multiply both sides by A*/2? and then by P/? we get
—(InM —Inm)

1 1
2 pl/2 4 p1/2 pl/2.41/2
. [2 Y

—m

A-V2g -l m ‘5 MlH’ A1/2P1/2}

< PY2AY2) (A*UQBA*/?) AY2PY2 10T (m, M) PY/2APY/?
<(InM —1Inm)

1 1
LApi/2ppl/2 pL/2.71/2
x {QA M —m

This implies the trace inequalities

(In M — Inm)

{ LR <A1/2PA1/2 A1/23A1/2_M1H‘>:|
M—m 2

< tr |:A1/2PA1/2 In (A—l/QBA_1/2)i| — ]n[(m,M) tr (PA)

< (InM —1Inm)

{2 tr (PA) + fr <Al/2PAl/2 ATVEBATY? - mZM“’M '

By taking the exponential, we derive

( m ) [ tr(PA)+ 31 tr(AY/2PAY? AT 2 A~ /2 )

M
exptr [AY2PAY?1n (A~Y/2BA~Y/?)]

[T (m, M)]"EY
(M ) [3 tr(PA)+ gk (A2 PAYZ| A 1/2 B A2 mpdy )]

m

Also, we notice that

tr <A1/2PA1/2

ATY2BATY? m+2M1HD < % (M —m) tr (PA)

for P > 0 with P € By (H) and tr (P) = 1. These prove the desired result (2.8).

A-12ga-1/2 M MlH‘ A1/2P1/2} '
2

O
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Corollary 3. With the assumptions of Corollary 1, we have

(2.12) m (ﬂ)%wimtr(PlB—’"tMlﬂ)
' - \M
_ApB) _ (M 3+t (PB4 1a)) M
~I(m,M) = \m ~m’
Also we have:
Corollary 4. With the assumptions of Corollary 2, we have
n \ tr(PA)
2.1 (7)
(2.13) N
_(n [%tr(PA)er tr(A1/2PA1/2 Aﬂ*%h{m
< (%)
< np(A)

T (n717N71)]tr(PA)

(N> [% tr(PA)er tr(A1/2PA1/2 A—l,izl\f*HHD]

N tr(PA)
g () .
n

3. RELATED RESULTS

The following results of Ostrowski type holds, see [1]:

Lemma 1. Let f : [a,b] C R — R be a convex function on [a,b]. Then for any
t € [a,b] one has the inequality

1

(3.1) s[e-07 -t -a s )]

b
s/ f(s)ds — (b—a) £ (t)

(6027 )~ - (@)

< Z
-2

The constant % is sharp in both inequalities. The second inequality also holds for
t=aort="no.

If the function is differentiable in ¢ € (a,b) then the first inequality in (3.1)
becomes

a b
(3.2) (St -o) rws i [ roa-ia.
We also have:

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator
A satisfies the condition 0 < mA < B < M A, where m, M are positive numbers,
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m+ M

(3.3) exp [tr (PA) — tr (APAB_l)]
Dp (A|B)
I (m, p) P

2
< exp {1 tr {AUQPAI/2 (1471/2BA*1/2 — m1H> ]
2
L (- 4]}

Proof. Writing (3.1) and (3.2) for the convex function f (¢) = —Int, then we get

2 2
L <Int—InT(a,b) < (t=a) (-1) :

1_
a b

a+b
t
2

for all ¢ € [a,b] C (0,00).
If we use the functional calculus, we derive the operator inequality

m+ M (T —mly)®  (Mlg-T)*
2

1— T '<InT —1InI(m, M) <
<In nl(m,M) < - i ;

provided that 0 <mly <T < Mly.
This gives for T'= A='/2BA~1/2 that
1- erMAl/zB 141/2
2
<In (A*WBA*W) ~1In1 (m, M)

_(AT2BATZ i) (Ml — ATV2BATV2)

- m M
If we multiply both sides by A'/2 and then by P/2? then we get
m + M

P1/2AP1/2 P1/2AB IAP1/2
< PY241/21y (A‘l/QBA‘l/Q) AY2PY2 10 [ (m, M) PY/2APY/?
< lP1/2A1/2 (A—l/zBA—1/2 _ m1H>2 AL/2pl/2
-m
_ iP1/2A1/2 (Ml _ A—1/2BA—1/2)2 Al/2pl/2
M " '
If we take the trace, then we get

tr (pA) — M

tr (APAB™")
< tr [A1/2PA1/2 In (A‘WBA‘WH “1In1 (m, M)tr (PA)
2
<Ly [A1/2PA1/2 (,4—1/23,4—1/2 — m1H) }
m
_i 1/2p A1/2 _ A-1/2p 4-1/2 2
Mtr[A PA (MlH A-12BA ) .

If we take the exponential, we then get the desired result (3.3).
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Corollary 5. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator
B satisfies the condition 0 < mly < B < M1y, where m, M are positive numbers,
then

(3.4) exp {1 - w

Ap(B)

~— I(m,M)

< exp{nlltr [P(B—mlH)z] - %tr [P(MlH —B)Q}}.

tr (PB‘l)}

Finally, we can also state

Corollary 6. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator
A satisfies the condition 0 < nlyg < A < Nlg, where n, N are positive numbers,
then

2
iy o (Vv et o))

(3.5)  exp [tr (PA) — tr (PAZ)}

< <
[I (n—l’ N—1)}tr(PA) exp (ntr [A1/2PA1/2 (n_llH _ A_1)2})
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