SOME BOUNDS FOR RELATIVE ENTROPIC NORMALIZED P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES VIA OSTROWSKI'S INEQUALITY

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \geq 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and $\operatorname{tr}(P) = 1$. For positive invertible operators A, B we define the relative entropic normalized P-determinant by

$$D_P\left(A|B\right) = \exp\left\{\operatorname{tr}\left[PA^{\frac{1}{2}}\left(\ln\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\right)A^{\frac{1}{2}}\right]\right\}.$$

In this paper we show, among others, that, if A satisfies the condition $0 < mA \le B \le MA$, where m,M are positive numbers, then

$$\left(\frac{m}{M}\right)^{\operatorname{tr}(PA)} \leq \left(\frac{m}{M}\right)^{\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}\big|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_H\big|\right)}$$

$$\leq \frac{D_P\left(A|B\right)}{\left[I\left(m,M\right)\right]^{\operatorname{tr}(PA)}}$$

$$\leq \left(\frac{M}{m}\right)^{\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}\big|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_H\big|\right)}$$

$$\leq \left(\frac{M}{m}\right)^{\operatorname{tr}(PA)} .$$

1. Introduction

In 1952, in the paper [16], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M,τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda),$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (FK-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and 1_H stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \geq 0$) if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. In particular, A > 0 means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [23], [24], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp \langle \ln Ax, x \rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [26].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$(1.1) \sum_{i \in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ are orthonormal bases for H and $A\in\mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{i \in I} \|A^*f_i\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}\left(H\right)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}\left(H\right)$. For $A\in\mathcal{B}_{2}\left(H\right)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i\in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}\left(H\right)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_{2}(H), \|\cdot\|_{2})$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$; (ii) We have the inequalities

$$(1.5) ||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_2(H)$ and, if $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_2(H)$ with

$$(1.6) $||AT||_2, ||TA||_2 \le ||T|| \, ||A||_2$$$

(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_{2}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{2}(H)$$
.

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}\left(H\right)$ is trace class if

(1.7)
$$||A||_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$. The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

- (i) $A \in \mathcal{B}_1(H)$;
- (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

$$||A||_1 = ||A^*||_1 \quad and \quad ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_1(H)\mathcal{B}(H)\subseteq\mathcal{B}_1(H)$$
;

(iii) We have

$$\mathcal{B}_{2}\left(H\right)\mathcal{B}_{2}\left(H\right)=\mathcal{B}_{1}\left(H\right);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If $A \in \mathcal{B}_1(H)$ then $A^* \in \mathcal{B}_1(H)$ and

$$(1.10) \operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$$

(ii) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \ \ and \ |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

- (iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$;
- (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \geq 0$, then $P^{1/2}TP^{1/2} \geq 0$, which implies that $\operatorname{tr}(PT) \geq 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n \to \infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For recent results on trace inequalities see [4]-[11] and the references therein.

Now, for a given $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right).$$

Assume that $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties [12]:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_P(A)$ and $\Delta_P(t1_H) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \le B$ implies $\Delta_P(A) \le \Delta_P(B)$.

In [12], we presented some fundamental properties of this determinant. Among others we showed that

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}\left(PA^{-1}\right)\operatorname{tr}(PA) - 1\right],$$

for A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

For the entropy function $\eta(t) = -t \ln t$, t > 0, the operator entropy has the following expression:

$$\eta(A) = -A \ln A$$

for positive A.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *entropic* P-determinant of the positive invertible operator A by [13]

$$\eta_{P}\left(A\right):=\exp\left[-\operatorname{tr}\left(PA\ln A\right)\right]=\exp\left\{\operatorname{tr}\left[P\eta\left(A\right)\right]\right\}=\exp\left\{\operatorname{tr}\left[P^{1/2}\eta\left(A\right)P^{1/2}\right]\right\}.$$

Observe that the map $A \to \eta_P(A)$ is norm continuous and since

$$\exp\left(-\operatorname{tr}\left\{P\left[tA\ln\left(tA\right)\right]\right\}\right)$$

$$=\exp\left(-\operatorname{tr}\left\{P\left[tA\left(\ln t+\ln A\right)\right]\right\}\right)=\exp\left(-\operatorname{tr}\left\{P\left(tA\ln t+tA\ln A\right)\right\}\right)$$

$$=\exp\left(-t\ln t\operatorname{tr}\left(PA\right)\right)\exp\left(-t\operatorname{tr}\left(PA\ln A\right)\right)$$

$$=\exp\ln\left(t^{-\operatorname{tr}(PA)t}\right)\left[\exp\left(-\operatorname{tr}\left(PA\ln A\right)\right)\right]^{-t},$$

hence

(1.13)
$$\eta_P(tA) = t^{-t \operatorname{tr}(PA)} \left[\eta_P(A) \right]^{-t}$$

for t > 0 and A > 0.

Observe also that

(1.14)
$$\eta_P(1_H) = 1 \text{ and } \eta_P(t1_H) = t^{-t}$$

for t > 0.

Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If A, B > 0, then we have the Ky Fan type inequality [13]

(1.15)
$$\eta_P((1-t)A + tB) \ge [\eta_P(A)]^{1-t} [\eta_P(B)]^t$$

for all $t \in [0, 1]$.

Also we have the inequalities [13]:

$$\left[\frac{\operatorname{tr}(PA^{2})}{\operatorname{tr}^{2}(PA)}\right]^{-\operatorname{tr}(PA)} \leq \frac{\eta_{P}(A)}{\left[\operatorname{tr}(PA)\right]^{-\operatorname{tr}(PA)}} \leq 1$$

and if there exists the constants 0 < m < M such that $m1_H \le A \le M1_H$, then [13]

$$\left(\frac{m+M}{2\sqrt{mM}}\right)^{-2M} \le \left(\frac{m+M}{2\sqrt{mM}}\right)^{-2\operatorname{tr}(PA)} \le \left[\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}^{2}\left(PA\right)}\right]^{-\operatorname{tr}(PA)} \\
\le \frac{\eta_{P}(A)}{\left[\operatorname{tr}\left(PA\right)\right]^{-\operatorname{tr}(PA)}} \le 1.$$

Kamei and Fujii [21], [22] defined the relative operator entropy S(A|B), for positive invertible operators A and B, by

(1.16)
$$S(A|B) := A^{\frac{1}{2}} \left(\ln \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) \right) A^{\frac{1}{2}},$$

which is a relative version of the operator entropy considered by Nakamura-Umegaki [30]. For various results on relative operator entropy see [18]-[31] and the references therein.

Definition 1. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. For positive invertible operators A, B we define the relative entropic normalized P-determinant by

$$D_{P}(A|B) := \exp\{\operatorname{tr}[PS(A|B)]\}\$$

$$= \exp\left\{\operatorname{tr}\left[PA^{\frac{1}{2}}\left(\ln\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\right)A^{\frac{1}{2}}\right]\right\}.$$

We observe that for A > 0,

$$D_P(A|1_H) := \exp\{\operatorname{tr}[PS(A|1_H)]\} = \exp\{\operatorname{tr}(-PA\ln A)\} = \eta_P(A),$$

where $\eta_P(\cdot)$ is the *entropic P-determinant* and for B > 0,

$$D_P(1_H|B) := \exp \{ \operatorname{tr} [PS(1_H|B)] \} = \exp \{ \operatorname{tr} (P \ln B) \} = \Delta_P(B),$$

where $\Delta_P(\cdot)$ is the *P*-determinant.

Motivated by the above results, in this paper we show among others that, if A satisfies the condition $0 < mA \le B \le MA$, where m, M are positive numbers, then

$$\begin{split} \left(\frac{m}{M}\right)^{\operatorname{tr}(PA)} &\leq \left(\frac{m}{M}\right)^{\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}\big|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}\mathbf{1}_{H}\big|\right)} \\ &\leq \frac{D_{P}\left(A\big|B\right)}{\left[I\left(m,M\right)\right]^{\operatorname{tr}(PA)}} \\ &\leq \left(\frac{M}{m}\right)^{\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}\big|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}\mathbf{1}_{H}\big|\right)} \leq \left(\frac{M}{m}\right)^{\operatorname{tr}(PA)}. \end{split}$$

2. Main Results

Recall the identric mean

$$I\left(a,b\right) := \begin{cases} \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}} & \text{if} \quad b \neq a \\ a & \text{if} \quad b = a \end{cases}; \ a,b > 0.$$

It is easy to observe the connection between the integral mean of the logarithmic function and the logarithm of the identric mean,

$$\frac{1}{b-a} \int_{a}^{b} \ln t dt = \ln I(a,b)$$

for $a \neq b$ positive numbers.

Theorem 4. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that the operator A satisfies the condition $0 < mA \le B \le MA$, where m, M are positive numbers,

then

$$(2.1) \qquad \exp\left\{-\frac{1}{2}\left(\frac{M}{m}-1\right)\operatorname{tr}\left(PA\right)\right\} \\ \leq \exp\left\{-\left(\frac{M}{m}-1\right)\left[\frac{1}{4}\operatorname{tr}\left(PA\right)\right] \\ + \frac{1}{\left(M-m\right)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right]\right\} \\ \leq \frac{D_{P}\left(A|B\right)}{\left[I\left(m,M\right)\right]^{\operatorname{tr}\left(PA\right)}} \\ \leq \exp\left\{\left(\frac{M}{m}-1\right)\left[\frac{1}{4}\operatorname{tr}\left(PA\right)\right] \\ + \frac{1}{\left(M-m\right)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right]\right\} \\ \leq \exp\left\{\frac{1}{2}\left(\frac{M}{m}-1\right)\operatorname{tr}\left(PA\right)\right\}.$$

Proof. We use Ostrowski's inequality [32]:

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) such that $f':(a,b)\to\mathbb{R}$ is bounded on (a,b), i.e., $\|f'\|_{\infty}:=\sup_{s\in(a,b)}|f'(s)|<\infty$, then

$$(2.2) \left| f(t) - \frac{1}{b-a} \int_a^b f(s) \, ds \right| \le \left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a} \right)^2 \right] \|f'\|_{\infty} (b-a),$$

for all $t \in [a, b]$ and the constant $\frac{1}{4}$ is the best possible.

If we take $f(t) = \ln t$, $t \in [a, b] \subset (0, \infty)$ in (2.2) and observe that

$$||f'||_{\infty} = \sup_{t \in [a,b]} t^{-1} = \frac{1}{a},$$

then we get

$$\left|\ln t - \ln I\left(a, b\right)\right| \le \left[\frac{1}{4} + \left(\frac{t - \frac{a + b}{2}}{b - a}\right)^{2}\right] \left(\frac{b}{a} - 1\right),$$

for all $t \in [a, b]$.

This inequality is equivalent to

$$(2.3) -\left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a}\right)^2\right] \left(\frac{b}{a} - 1\right)$$

$$\leq \ln t - \ln I\left(a, b\right) \leq \left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a}\right)^2\right] \left(\frac{b}{a} - 1\right),$$

for all $t \in [a, b]$.

By utilizing the continuous functional calculus for selfadjoint operators, we get from (2.3) that

(2.4)
$$-\left(\frac{M}{m}-1\right)\left[\frac{1}{4}1_{H}+\frac{1}{\left(M-m\right)^{2}}\left(T-\frac{m+M}{2}1_{H}\right)^{2}\right]$$

$$\leq \ln T - \ln I\left(m,M\right)1_{H}$$

$$\leq \left(\frac{M}{m}-1\right)\left[\frac{1}{4}1_{H}+\frac{1}{\left(M-m\right)^{2}}\left(T-\frac{m+M}{2}1_{H}\right)^{2}\right].$$

Since $0 < mA \le B \le MA$, then by multiplying both sides by $A^{-1/2}$ we get $0 < m1_H \le A^{-1/2}BA^{-1/2} \le M1_H$ and by taking $T = A^{-1/2}BA^{-1/2}$ in (2.4), then we get

$$-\left(\frac{M}{m}-1\right)\left[\frac{1}{4}1_{H}+\frac{1}{\left(M-m\right)^{2}}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right]$$

$$\leq \ln\left(A^{-1/2}BA^{-1/2}\right)-\ln I\left(m,M\right)1_{H}$$

$$\leq \left(\frac{M}{m}-1\right)\left[\frac{1}{4}1_{H}+\frac{1}{\left(M-m\right)^{2}}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right].$$

If we multiply both sides by $A^{1/2}$ we derive

$$-\left(\frac{M}{m}-1\right) \times \left[\frac{1}{4}A + \frac{1}{\left(M-m\right)^{2}}A^{1/2}\left(A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}\right)^{2}A^{1/2}\right]$$

$$\leq \ln\left(A^{-1/2}BA^{-1/2}\right) - \ln I\left(m,M\right)A$$

$$\leq \left(\frac{M}{m}-1\right)$$

$$\times \left[\frac{1}{4}A + \frac{1}{\left(M-m\right)^{2}}A^{1/2}\left(A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}\right)^{2}A^{1/2}\right].$$

If we multiply both sides with $P^{1/2}$, then we get

$$\begin{split} &-\left(\frac{M}{m}-1\right)\left[\frac{1}{4}P^{1/2}AP^{1/2}\right.\\ &+\frac{1}{\left(M-m\right)^{2}}P^{1/2}A^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}\mathbf{1}_{H}\right)^{2}A^{1/2}P^{1/2}\right]\\ &\leq P^{1/2}A^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)A^{1/2}P^{1/2}-\ln I\left(m,M\right)P^{1/2}AP^{1/2}\\ &\leq \left(\frac{M}{m}-1\right)\left[\frac{1}{4}P^{1/2}AP^{1/2}\right.\\ &+\frac{1}{\left(M-m\right)^{2}}P^{1/2}A^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}\mathbf{1}_{H}\right)^{2}A^{1/2}P^{1/2}\right]. \end{split}$$

Now, if we take the trace and use its properties, then we obtain

$$(2.5) \qquad -\left(\frac{M}{m}-1\right)\left[\frac{1}{4}\operatorname{tr}\left(PA\right)\right] \\ + \frac{1}{\left(M-m\right)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right] \\ \leq \operatorname{tr}\left[A^{1/2}P^{1/2}A^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right] - \ln I\left(m,M\right)\operatorname{tr}\left(PA\right) \\ \leq \left(\frac{M}{m}-1\right)\left[\frac{1}{4}\operatorname{tr}\left(PA\right)\right] \\ + \frac{1}{\left(M-m\right)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right].$$

By taking the exponential in (2.5) we derive

$$\exp\left\{-\left(\frac{M}{m}-1\right)\left[\frac{1}{4}\operatorname{tr}(PA)\right] + \frac{1}{(M-m)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}\right)^{2}\right]\right\} \\
\leq \frac{\exp\operatorname{tr}\left[A^{1/2}P^{1/2}A^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right]}{\left[I\left(m,M\right)\right]^{\operatorname{tr}(PA)}} \\
\leq \exp\left\{\left(\frac{M}{m}-1\right)\left[\frac{1}{4}\operatorname{tr}(PA)\right] + \frac{1}{(M-m)^{2}}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}\right)^{2}\right]\right\}.$$

Since

$$\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2}-\frac{m+M}{2}1_{H}\right)^{2}\right] \leq \frac{1}{4}\left(M-m\right)^{2}\operatorname{tr}\left(PA\right),$$

hence

$$\frac{1}{4}\operatorname{tr}(PA) + \frac{1}{(M-m)^2}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_H\right)^2\right] \\
\leq \frac{1}{2}\operatorname{tr}(PA)$$

and

$$-\frac{1}{2}\operatorname{tr}(PA) \le -\frac{1}{4}\operatorname{tr}(PA)$$
$$-\frac{1}{(M-m)^2}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_H\right)^2\right].$$

These prove the desired result (2.1).

Corollary 1. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that the operator B satisfies the condition $0 < m1_H \le B \le M1_H$, where m, M are positive numbers,

10

then

$$(2.6) \quad \exp\left[-\frac{1}{2}\left(\frac{M}{m}-1\right)\right]$$

$$\leq \exp\left\{-\left(\frac{M}{m}-1\right)\left[\frac{1}{4}+\frac{1}{(M-m)^2}\operatorname{tr}\left[P\left(BA-\frac{m+M}{2}1_H\right)^2\right]\right]\right\}$$

$$\leq \frac{\Delta_P(B)}{\left[I\left(m,M\right)\right]^{\operatorname{tr}(PA)}}$$

$$\leq \exp\left\{\left(\frac{M}{m}-1\right)\left[\frac{1}{4}+\frac{1}{(M-m)^2}\operatorname{tr}\left[P\left(BA-\frac{m+M}{2}1_H\right)^2\right]\right]\right\}$$

$$\leq \exp\left[\frac{1}{2}\left(\frac{M}{m}-1\right)\right]$$

The proof follows by (2.1) for $A = 1_H$.

Corollary 2. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that the operator A satisfies the condition $0 < n1_H \le A \le N1_H$, where n, N are positive numbers, then

$$(2.7) \qquad \exp\left[-\frac{1}{2}\left(\frac{N}{n}-1\right)\operatorname{tr}\left(PA\right)\right] \\ \leq \exp\left\{-\left(\frac{N}{n}-1\right)\left[\frac{1}{4}\operatorname{tr}\left(PA\right)\right] \\ + \frac{1}{\left(n^{-1}-N^{-1}\right)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1}-\frac{n^{-1}+N^{-1}}{2}1_{H}\right)^{2}\right]\right\} \\ \leq \frac{\eta_{P}(A)}{\left[I\left(n^{-1},N^{-1}\right)\right]^{\operatorname{tr}\left(PA\right)}} \\ \leq \exp\left\{\left(\frac{N}{n}-1\right)\left[\frac{1}{4}\operatorname{tr}\left(PA\right)\right] \\ + \frac{1}{\left(n^{-1}-N^{-1}\right)^{2}}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1}-\frac{n^{-1}+N^{-1}}{2}1_{H}\right)^{2}\right]\right\} \\ \leq \exp\left[\frac{1}{2}\left(\frac{N}{n}-1\right)\operatorname{tr}\left(PA\right)\right].$$

Since $0 < n1_H \le A \le N1_H$, hence $\frac{1}{N}A \le 1_H \le \frac{1}{n}A$ and by taking $B = 1_H$ in (2.1) we derive (2.7).

Theorem 5. With the assumptions of Theorem 4, we have the inequalities

$$(2.8) \qquad \left(\frac{m}{M}\right)^{\operatorname{tr}(PA)} \leq \left(\frac{m}{M}\right)^{\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}|\right)} \\ \leq \frac{D_{P}\left(A|B\right)}{\left[I\left(m,M\right)\right]^{\operatorname{tr}(PA)}} \\ \leq \left(\frac{M}{m}\right)^{\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}|\right)} \\ \leq \left(\frac{M}{m}\right)^{\operatorname{tr}(PA)} \\ \leq \left(\frac{M}{m}\right)^{\operatorname{tr}(PA)}.$$

Proof. In 1997, Dragomir and Wang proved the following Ostrowski type inequality [14]:

Let $f:[a,b]\to\mathbb{R}$ be an absolutely continuous function on [a,b], then

(2.9)
$$\left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right| \leq \left[\frac{1}{2} + \frac{\left| t - \frac{a+b}{2} \right|}{b-a} \right] \|f'\|_{[a,b],1},$$

for all $t \in [a, b]$, where $\|\cdot\|_1$ is the Lebesgue norm on $L_1[a, b]$, i.e., we recall it

$$||g||_{[a,b],1} := \int_{a}^{b} |g(t)| dt.$$

The constant $\frac{1}{2}$ is best possible.

If we take $\tilde{f}(t) = \ln t$, $t \in [a, b] \subset (0, \infty)$ in (2.9) and observe that

$$||f'||_{[a,b],1} = \ln b - \ln a,$$

then by (2.9) we get

$$\left|\ln t - \ln I\left(a,b\right)\right| \leq \left\lceil \frac{1}{2} + \frac{1}{b-a} \left| t - \frac{a+b}{2} \right| \right\rceil \left(\ln b - \ln a\right),\,$$

for all $t \in [a, b]$.

This inequality is equivalent to

$$(2.10) \qquad -\left[\frac{1}{2} + \frac{1}{b-a} \left| t - \frac{a+b}{2} \right| \right] (\ln b - \ln a)$$

$$\leq \ln t - \ln I(a,b)$$

$$\leq \left[\frac{1}{2} + \frac{1}{b-a} \left| t - \frac{a+b}{2} \right| \right] (\ln b - \ln a),$$

for all $t \in [a, b]$.

By utilizing the continuous functional calculus for selfadjoint operators, we get from (2.3) that

(2.11)
$$- (\ln M - \ln m) \left[\frac{1}{2} 1_H + \frac{1}{M - m} \left| T - \frac{m + M}{2} 1_H \right| \right]$$

$$\leq \ln T - \ln I (m, M) 1_H$$

$$\leq (\ln M - \ln m) \left[\frac{1}{2} 1_H + \frac{1}{M - m} \left| T - \frac{m + M}{2} 1_H \right| \right] ,$$

By taking $T = A^{-1/2}BA^{-1/2}$ in (2.11) we get

$$-\left(\ln M - \ln m\right) \left[\frac{1}{2}1_H + \frac{1}{M-m} \left| A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_H \right| \right]$$

$$\leq \ln \left(A^{-1/2}BA^{-1/2} \right) - \ln I\left(m,M\right)1_H$$

$$\leq \left(\ln M - \ln m\right) \left[\frac{1}{2}1_H + \frac{1}{M-m} \left| A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_H \right| \right].$$

Now, if we multiply both sides by $A^{1/2}$ and then by $P^{1/2}$ we get

$$\begin{split} &-\left(\ln M - \ln m\right) \\ &\times \left[\frac{1}{2}P^{1/2}AP^{1/2} + \frac{1}{M-m}P^{1/2}A^{1/2}\left|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}\mathbf{1}_{H}\right|A^{1/2}P^{1/2}\right] \\ &\leq P^{1/2}A^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)A^{1/2}P^{1/2} - \ln I\left(m,M\right)P^{1/2}AP^{1/2} \\ &\leq \left(\ln M - \ln m\right) \\ &\times \left[\frac{1}{2}AP^{1/2}AP^{1/2} + \frac{1}{M-m}P^{1/2}A^{1/2}\left|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}\mathbf{1}_{H}\right|A^{1/2}P^{1/2}\right]. \end{split}$$

This implies the trace inequalities

$$- (\ln M - \ln m)$$

$$\times \left[\frac{1}{2} \operatorname{tr} (PA) + \frac{1}{M - m} \operatorname{tr} \left(A^{1/2} P A^{1/2} \left| A^{-1/2} B A^{-1/2} - \frac{m + M}{2} 1_H \right| \right) \right]$$

$$\leq \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \ln I (m, M) \operatorname{tr} (PA)$$

$$\leq (\ln M - \ln m)$$

$$\times \left[\frac{1}{2} \operatorname{tr} (PA) + \frac{1}{M - m} \operatorname{tr} \left(A^{1/2} P A^{1/2} \left| A^{-1/2} B A^{-1/2} - \frac{m + M}{2} 1_H \right| \right) \right] .$$

By taking the exponential, we derive

$$\begin{split} & \left(\frac{m}{M}\right)^{\left[\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}\big|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}\mathbf{1}_{H}\big|\right)\right]} \\ & \leq \frac{\exp\operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right]}{\left[I\left(m,M\right)\right]^{\operatorname{tr}(PA)}} \\ & \leq \left(\frac{M}{m}\right)^{\left[\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{M-m}\operatorname{tr}\left(A^{1/2}PA^{1/2}\big|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}\mathbf{1}_{H}\big|\right)\right]}. \end{split}$$

Also, we notice that

$$\operatorname{tr}\left(A^{1/2}PA^{1/2}\left|A^{-1/2}BA^{-1/2} - \frac{m+M}{2}1_{H}\right|\right) \leq \frac{1}{2}\left(M-m\right)\operatorname{tr}\left(PA\right)$$

for $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. These prove the desired result (2.8). \square

Corollary 3. With the assumptions of Corollary 1, we have

$$(2.12) \frac{m}{M} \leq \left(\frac{m}{M}\right)^{\frac{1}{2} + \frac{1}{M-m} \operatorname{tr}\left(P\left|B - \frac{m+M}{2} 1_H\right|\right)}$$

$$\leq \frac{\Delta_P(B)}{I(m, M)} \leq \left(\frac{M}{m}\right)^{\frac{1}{2} + \frac{1}{M-m} \operatorname{tr}\left(P\left|B - \frac{m+M}{2} 1_H\right|\right)} \leq \frac{M}{m}.$$

Also we have:

Corollary 4. With the assumptions of Corollary 2, we have

$$(2.13) \qquad \left(\frac{n}{N}\right)^{\operatorname{tr}(PA)} \\ \leq \left(\frac{n}{N}\right)^{\left[\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{(n^{-1}-N^{-1})^{2}}\operatorname{tr}\left(A^{1/2}PA^{1/2} \middle| A^{-1} - \frac{n^{-1}+N^{-1}}{2}1_{H}\middle|\right)\right]} \\ \leq \frac{\eta_{P}(A)}{\left[I\left(n^{-1}, N^{-1}\right)\right]^{\operatorname{tr}(PA)}} \\ \leq \left(\frac{N}{n}\right)^{\left[\frac{1}{2}\operatorname{tr}(PA) + \frac{1}{(n^{-1}-N^{-1})^{2}}\operatorname{tr}\left(A^{1/2}PA^{1/2}\middle| A^{-1} - \frac{n^{-1}+N^{-1}}{2}1_{H}\middle|\right)\right]} \\ \leq \left(\frac{N}{n}\right)^{\operatorname{tr}(PA)}.$$

3. Related Results

The following results of Ostrowski type holds, see [1]:

Lemma 1. Let $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ be a convex function on [a,b]. Then for any $t \in [a,b]$ one has the inequality

(3.1)
$$\frac{1}{2} \left[(b-t)^2 f'_+(t) - (t-a)^2 f'_-(t) \right]$$

$$\leq \int_a^b f(s) \, ds - (b-a) f(t)$$

$$\leq \frac{1}{2} \left[(b-t)^2 f'_-(b) - (t-a)^2 f'_+(a) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for t = a or t = b.

If the function is differentiable in $t \in (a, b)$ then the first inequality in (3.1) becomes

(3.2)
$$\left(\frac{a+b}{2}-t\right)f'(t) \leq \frac{1}{b-a} \int_a^b f(s) \, ds - f(t) \, .$$

We also have:

Theorem 6. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that the operator A satisfies the condition $0 < mA \le B \le MA$, where m, M are positive numbers,

then

(3.3)
$$\exp\left[\operatorname{tr}(PA) - \frac{m+M}{2}\operatorname{tr}\left(APAB^{-1}\right)\right]$$

$$\leq \frac{D_P(A|B)}{\left[I(m,M)\right]^{\operatorname{tr}(PA)}}$$

$$\leq \exp\left\{\frac{1}{m}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2} - m1_H\right)^2\right]$$

$$-\frac{1}{M}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(M1_H - A^{-1/2}BA^{-1/2}\right)^2\right]\right\}.$$

Proof. Writing (3.1) and (3.2) for the convex function $f(t) = -\ln t$, then we get

$$1 - \frac{a+b}{2}t^{-1} \le \ln t - \ln I(a,b) \le \frac{(t-a)^2}{a} - \frac{(b-t)^2}{b},$$

for all $t \in [a, b] \subset (0, \infty)$.

If we use the functional calculus, we derive the operator inequality

$$1 - \frac{m+M}{2}T^{-1} \le \ln T - \ln I(m,M) \le \frac{(T-m1_H)^2}{m} - \frac{(M1_H - T)^2}{M},$$

provided that $0 < m1_H \le T \le M1_H$. This gives for $T = A^{-1/2}BA^{-1/2}$ that

$$1 - \frac{m+M}{2} A^{1/2} B^{-1} A^{1/2}$$

$$\leq \ln \left(A^{-1/2} B A^{-1/2} \right) - \ln I \left(m, M \right)$$

$$\leq \frac{\left(A^{-1/2} B A^{-1/2} - m \mathbf{1}_H \right)^2}{m} - \frac{\left(M \mathbf{1}_H - A^{-1/2} B A^{-1/2} \right)^2}{M}.$$

If we multiply both sides by $A^{1/2}$ and then by $P^{1/2}$ then we get

$$\begin{split} &P^{1/2}AP^{1/2} - \frac{m+M}{2}P^{1/2}AB^{-1}AP^{1/2} \\ &\leq P^{1/2}A^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)A^{1/2}P^{1/2} - \ln I\left(m,M\right)P^{1/2}AP^{1/2} \\ &\leq \frac{1}{m}P^{1/2}A^{1/2}\left(A^{-1/2}BA^{-1/2} - m1_H\right)^2A^{1/2}P^{1/2} \\ &- \frac{1}{M}P^{1/2}A^{1/2}\left(M1_H - A^{-1/2}BA^{-1/2}\right)^2A^{1/2}P^{1/2}. \end{split}$$

If we take the trace, then we get

$$\begin{split} &\operatorname{tr}\left(PA\right) - \frac{m+M}{2}\operatorname{tr}\left(APAB^{-1}\right) \\ &\leq \operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right] - \ln I\left(m,M\right)\operatorname{tr}\left(PA\right) \\ &\leq \frac{1}{m}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1/2}BA^{-1/2} - m1_H\right)^2\right] \\ &- \frac{1}{M}\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(M1_H - A^{-1/2}BA^{-1/2}\right)^2\right]. \end{split}$$

If we take the exponential, we then get the desired result (3.3).

Corollary 5. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that the operator B satisfies the condition $0 < m1_H \le B \le M1_H$, where m, M are positive numbers, then

(3.4)
$$\exp\left[1 - \frac{m+M}{2}\operatorname{tr}\left(PB^{-1}\right)\right] \\ \leq \frac{\Delta_P(B)}{I(m,M)} \\ \leq \exp\left\{\frac{1}{m}\operatorname{tr}\left[P(B-m1_H)^2\right] - \frac{1}{M}\operatorname{tr}\left[P(M1_H-B)^2\right]\right\}.$$

Finally, we can also state

Corollary 6. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that the operator A satisfies the condition $0 < n1_H \le A \le N1_H$, where n, N are positive numbers, then

$$(3.5) \qquad \exp\left[\operatorname{tr}\left(PA\right) - \frac{n^{-1} + N^{-1}}{2}\operatorname{tr}\left(PA^{2}\right)\right] \\ \leq \frac{\eta_{P}(A)}{\left[I\left(n^{-1}, N^{-1}\right)\right]^{\operatorname{tr}(PA)}} \leq \frac{\exp\left(N\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(A^{-1} - N^{-1}1_{H}\right)^{2}\right]\right)}{\exp\left(n\operatorname{tr}\left[A^{1/2}PA^{1/2}\left(n^{-1}1_{H} - A^{-1}\right)^{2}\right]\right)}.$$

References

- [1] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp. [Online http://www.emis.de/journals/JIPAM/article183.html?sid=183].
- [2] S. S. Dragomir, Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74 (2006), no. 3, 471–478.
- [3] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. *Bull. Aust. Math. Soc.* **78** (2008), no. 2, 225–248.
- [4] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Applied Mathematics and Computation, 218 (2011), Issue 3, pp. 766-772.
- [5] S. S. Dragomir, Some inequalities for relative operator entropy, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [http://rgmia.org/papers/v18/v18a145.pdf].
- [6] S. S. Dragomir, Some Grüss type inequalities for trace of operators in Hilbert spaces, Oper. Matrices, 10 (2016), no. 4, 923-943. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 114. [https://rgmia.org/papers/v17/v17a114.pdf].
- [7] S. S. Dragomir, Some trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, Korean J. Math., 24 (2016), no. 2, 273-296. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 115. [https://rgmia.org/papers/v17/v17a115.pdf]
- [8] S. S. Dragomir, Jensen's type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, Facta Univ. Ser. Math. Inform., 31 (2016), no. 5, 981-998. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 116. [https://rgmia.org/papers/v17/v17a116.pdf].
- [9] S. S. Dragomir, Some Slater's type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, *Toyama Math. J.*, 38 (2016), 75-99. Preprint *RGMIA Res. Rep. Coll.*, 17 (2014), Art. 117. [https://rgmia.org/papers/v17/v17a117.pdf].
- [10] S. S. Dragomir, Trace inequalities of Cassels and Grüss type for operators in Hilbert spaces, Acta Univ. Sapientiae Math., 9 (2017), no. 1, 74-93. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 121. [https://rgmia.org/papers/v17/v17a121.pdf].
- [11] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].

- [12] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 15, 14 pp. [Online https://rgmia.org/papers/v25/v25a16.pdf].
- [13] S. S. Dragomir, Some properties of trace class entropic P-determinant of positive operators in Hilbert Spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 49, 14 pp. [Online https://rgmia.org/papers/v25/v25a49.pdf].
- [14] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_1 norm and applications to some special means and to some numerical quadrature rules, $Tamkang\ J.\ of\ Math.$, 28 (1997), 239-244.
- [15] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_p norm and applications to some special means and to some numerical quadrature rules, $Indian\ J.\ of\ Math.$, 40 (1998), No. 3, 299-304.
- [16] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530.
- [17] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [18] S. Furuichi, K. Yanagi, K. Kuriyama, Fundamental properties for Tsallis relative entropy, J. Math. Phys. 45 (2004) 4868–4877.
- [19] S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Ineq. Appl. 18 (2015), 869–877.
- [20] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595–600.
- [21] J. I. Fujii and E. Kamei, Uhlmann's interpolational method for operator means. Math. Japon. 34 (1989), no. 4, 541–547.
- [22] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory. Math. Japon. 34 (1989), no. 3, 341–348.
- [23] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.
- [24] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [25] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. Monographs in Inequalities, 1. Element, Zagreb, 2005. xiv+262 pp.+loose errata. ISBN: 953-197-572-8.
- [26] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645.
- [27] I. H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53(2012), 122204
- [28] P. Kluza and M. Niezgoda, Inequalities for relative operator entropies, Elec. J. Lin. Alg. 27 (2014), Art. 1066.
- [29] M. S. Moslehian, F. Mirzapour, and A. Morassaei, Operator entropy inequalities. Collog. Math., 130 (2013), 159–168.
- [30] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras. Proc. Japan Acad. 37 (1961) 149–154.
- [31] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376-383.
- [32] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
- [33] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [34] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. Phys. Volume 54, Number 1 (1977), 21-32.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA