SEVERAL PRODUCT INEQUALITIES FOR RELATIVE
ENTROPIC NORMALIZED P-DETERMINANT OF POSITIVE
OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by

Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .
In this paper we show among others that, if A;, B; > 0 and P; > 0 with
P, € By (H) and tr (P;) =1 for i € {1,...,n}, then

-1
n A n Y (P Ay) N
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iz rPA) 1 De (4AilB:) < Zim (BB
Z?:1 tr (PiAiB;lAi> i=1 Z’i:l tr (P;A;)

1. INTRODUCTION

In 1952, in the paper [11], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T'| := (T*T)"/? its modulus. By the spectral theorem
one can represent 1’ as an integral

T = / AE (),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp </ lntduT> .
0

If T is invertible, then
Apk (T) := exp (7 (In(|T7)))

where In (|7']) is defined by the use of functional calculus.
Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1y stands for the identity operator on H. An operator A in B(H) is said to
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be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [17], [18], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z] = 1, defined by

A, (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [20].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

(1.2) o lAeill* =Y NAL1 =141

iel jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) 14]l5 := <Z A6i|2>

icl
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in (% (I), one checks that By (H) is a vector space
and that ||-||, is a norm on Bs (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A|z|| = ||Az|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A||, = [||A]|l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[A]l, = | A",

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(1) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), =Y (Ae;,Be;) =Y _(B"Aeie;)
i€l il
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

(1.5) [A]l < [| Al

iel’
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for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, [T Ally < 1T 1Al

(#ii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1Al ==Y (|Al i, ei) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei},cr - We denote by By (H) the set of trace class operators in B (H).
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[A]l,
for any A€ By (H);

(i1) By (H) is an operator ideal in B (H), i.e.

B(H)Bi (H)B(H) < Bi(H);
(iti) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup {(A, B), | B € By (H), |Bl,<1};

(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) = (Aej,e;),

i€l

where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T >0, then PY/2TP'Y/? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 3 T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT'), namely
B(H) > T+ tr (PT) is also continuous in the norm topology.

For recent results on trace inequalities see [1]-[8] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [9]:

(i) continuity: the map A — Ap(A) is norm continuous;

(i) power equality: Ap(At) = Ap(A)* for all t > 0;

(iii) homogeneity: Ap(tA) =tAp(A) and Ap(tly) =t for all t > 0;

(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).

In [9], we presented some fundamental properties of this determinant. Among
others we showed that

tr (PA) 1
1< < exp [tr (PA) tr (PA -1
< Ap(a) <ol @Ay (PAT) —1]
and
Ap (A
< #)71 < exp [tr (PA_l) tr (PA) — 1] ,
[tr (PA~1)]
for A>0and P > 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tlnt¢, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [10]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/zn (A) Pl/z} } .
Observe that the map A — np(A) is norm continuous and since
exp (—tr{P[tAln (tA)]})

=exp(—tr{P[tA(lnt+InA)]}) =exp(—tr{P (tAlnt+tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

— expln (ftr(PA)t) [exp (— tr (PAIn A))] 7",
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hence
(1.13) np(tA) =t~ D [, (4) 7

fort >0 and A > 0.
Observe also that
(1.14) np(lg) =1and np(tly) =t"

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [10]

(1.15) np((1=t) A+tB) = [np (A" [np (B)'

for all t € [0,1].
Also we have the inequalities [10]:

—tr(PA)

tr (PA?) np(A)
tr? (PA) T Jtr (PA)T A T
and if there exists the constants 0 < m < M such that mly < A < M1y, then
[10]
—tr(PA
(m+M>—2M g <m+M>—2tr(PA) g tr (PAQ) tr(PA)
2vVmM “\2vVmM ~ | tr? (PA)

UP(A) 1
[tr (PA)]” TP —

Kamei and Fujii [15], [16] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

A

(1.16) S(41B) = A (m (a7BA™H)) Al

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[24]. For various results on relative operator entropy see [12]-[25] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

D (AIB) = exp{tx [PS (4| B)]}
= exp {tr [PA% (ln (A*%BA*%)> A%} } .
We observe that for A > 0,
Dp (AlLy) = exp{tr [PS (A1)} = exp {tr (—PAIn A)} = 1(4),
where 1p(+) is the entropic P-determinant and for B > 0,
Dp (1|B) i= exp {tx [PS (14]B)]} = exp {tx (PIn B)} = Ap(B),

where Ap(+) is the P-determinant.
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Motivated by the above results, in this paper we show among others that, if A;,
B; >0 and P, > 0 with P, € By (H) and tr (P;) =1 for i € {1,...,n}, then

1
TR (P A

ﬁDPi (Ai|Bi)> < M

i=1

E?:l tr (PLAL) <
S tr (PABA)

2. PRELIMINARY RESULTS

We start to the following double trace inequality that is of interest in itself as
well:

Lemma 1. Assume that f is diﬁerentiablg convez on the interior I of the interval
I and the derivative f' is continuous on I. Let Q;, C; > 0 with Q; € By (H) for
ie{l,..,n} and 31, tro(QiCi) > 0, then for all T; with the spectra Sp (T;) C I
forie{l,..,n} and a € I we have the double inequality
opy Tt (el myT) S w(aQiel?rm) i
. o —a n + f(a
>iz tr(QiCi) > iz tr(QiCi)
| S (G m)
- >y tr(QiCy)
s (C*Qic )
> iy tr(QiCy)
Proof. We use the gradient inequality
fr)t—a)+fla)=ft)=f(a)(t—a)+f(a)
that holds for all ¢, a € I.

Usinog the continuous functional calculus for the selfadjoint operators with spec-
tra in I, we get
fAT) (T —al) + f(a) I = f(T;) = f'(a) (T; — a) + £ (a)
for all i € {1,...,n}.
Now, if we multiply both sides by Cil/2 > 0, then we get
C2 T T,CM? — aClf (T1) O + £ (a) €
> G ¢

> f(a) (C*LC} = aCy) + £ (0) €

> f'(a)

—al|+ f(a).

If we multiply this inequality both sides with Q; / 2, then we get
(2.2) QIC!P (1) T,6PQ)7 — 0P Cl p(T) P
+ f(a) Q}CiQ}
> Q,*Ci? (1) 617 Q; "

> f'(a) Q17CH*Ti01Q) — af (a) Q1 CiQ)”
+f(a)Q2CiQ}?
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for all i € {1,...,n}.
If we take the trace in (2.2), then we get

tr (@202 (1) Tl PQ)) — atr (Q1CH (1) €1Q1?)
+ @)t (Q7CiQ)?)

> (QFl ) ¢l

> 1 (@)t (Q2CPTiC Q1) — af () (@12 CiQ)?)

+ f@e(Q%CQ7).

namely, by the properties of the trace

1/2

tr (QuC P (M) TC!?) = atr (QuCY2T (1) CF%) + £ (@) (QiC)
> tr (QiClPF () Cl?)
> /(@) tr (QiCIPTCH?) = af ()1 (QiCi) + (@) tr (QiC),
for alli e {1,...,n}.
If we sum over 4 from 1 to n, then we get
>t (@ ) TCH?) —a Y (@CHr 1) ¢
= o

+ f (a) Ztr (QiCs)
i=1
>3 (@it r(myc!?)
i=1
> @Y (@l 1l?) = af (@) > Qi)
i=1 1=1

+ f(a) Z tr (Q:C)

and by dividing with Y"1, tr (Q;C;) > 0, we get (2.1). O
Corollary 1. With the assumptions of Lemma 1 we have
S (€ Qe () T)
i1 tr(QiC)
S (00T St (0 )
- 2im tr(QiC) 21t (QiCy)
i (CPelPrmy) (o e (cec )
—f

(2.3)

> 0.

> i tr(QiCy) > i tr(QiCy)
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Proof. Since Sp (T;) C I for i € {1,...,n}, then there exists m < M such that
Sp (T;) C [m,M] C I for i € {1,...,n}. Therefore
mly <T;, < Mly, forie {1,..,n},
which implies that
mC; < CPT,CH? < MC;
If we multiply this inequality both sides with Qll / 2, then we get
mQl2C,Q* < QY PTiC QY < MQY*C,QY?, fori € {1,..,n}.

By taking the trace and summing, we get

St (€ )
m < < M.

SosLw@e) T

Then by taking
S (62! )
>im tr(QiC)
in (2.1) we get (2.3). O

a =

Remark 1. The case of one operator is as follows:

tr (CV2QC2f(T)T)  tr (CV2QCYT) tr (CY/2QCY2 ' (T))

(24) tr (QC) a tr (QC) tr (QC)
tr (C'2QC'2f(T)) [t (CV*QC/?T) -
tr (QC) tr (QC) -

where @, C > 0 with @ € By (H) and tr(QC) > 0 and T is selfadjoint with
Sp (T') C I. This result was obtained for C = 1y in a different way in [5].

Corollary 2. With the assumptions of Lemma 1 and if Y . tr (Q;f' (T;)) # 0
with

St (el m) 1)
St (02! (1)

el forie {1,..,n},

then
S (6
)y (01/2@01/2]‘/

,(Z?— ( 1/26,21 1/2f, )
<f
Z

ol 1t *”@ﬂ”%(ﬂ))
L tr(QiCy)

(25) 0<f (

S (60 Cmf’
St (G2 ) T) Lo (C12Qic) )
i (el Qicp (1) S 1 (QiC) ‘
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Proof. From (2.1) we derive for
St (€t (1) T)
S (GQue (1)

a =

that
(e (i@t )
St (CPQiet g )
| S (G m))
h Z? L tr (QiCy)
S (G () 1)
> f
St (G (1)
Yt (620 P) S w (G Qe P (@) )
" 2im tr (@) R Do tr (Cil/QQiCil/Qf/ (Ti))
St (CPQie! P p ) T)
+f 1/2 1/2 ’
Z;L:1 tr (Ci/ Qici/ I (Tz))
namely
E?:N (01/2621 1/2 Cl/zQ C,1/2f,( T)T, )
0= n -f 120 o1/2
S (QiC) (c1*icty (1)
it (C2Que 2 (T z)
= 20,012
S (GQe e )
St (CPQicP ) S e (i pm) )
X - -
S r(QiC) S (el ()
which is equivalent to (2.5). O
Remark 2. The case of one operator is as follows: if tr (Cl/Qch/zf' (T)) #0
) H(C/? 12 g7y .
with ttr((ccl/z%ccl/jf,g;) € 1, then
tr (C12QCY2f/(T)T)\  tr (CY2QCY2f(T))
(2.6) 0< f ( ) =00
7)

tr (Cl/chl/Qf/ ))
tr (Cl/Qch/Qf/ )
f tr (01/2Q01/201/2f/ (T )

Cl/Qch/QfI( ) ) tI‘(Cl/2Q01/2T)
or (CV2QCV2) (1) w@o) )




10 S.S. DRAGOMIR

which was obtained in a different way for C = 1y in [6].

3. MAIN RESULTS

We have the following upper and lower bounds concerning the relative entropic
normalized P-determinant.

Theorem 4. Let A;, B; > 0 and P; > 0 with P; € By (H) with tr (P;) = 1 for
i €{l,...,n}. Then for all a > 0, we have

Dy tr (PiAiBflAi)
EZL:l tr (PZAZ)

1
i (P Ay)

<<i1:[1Dpi(AZBZ)> < 5 p{az?_ltr(a&)]

Proof. If we take f (t) = —1Int¢, ¢t > 0 in (2.1), then we get
Do tr (Cz'l/ZQiCz‘l/2> Dt (C;/ZQZ'Cil/QTfl)

(3.1) ea exp [—a

CTyLw@o) T sLuw@e) M
St (62! P )
- D i t1(QiC5)
St (00 )
= Som@cy e
namely
Z?:l tr (Cj/QQiCil/z) Z?:l tr (01'1/2622‘01‘1/2171)
(3.2) a +Ina

S (@C) 21 tr(QiC)
S (i )
>iey tr(QiCy)

s (cl.ci )
> iy tr(QiCy)
for all T; > 0, Q;, C; > 0 with Q; € By (H) for i € {1,...,n} and a > 0.

Now, if we take in (3.2) T; = A; /?B;A7"? C; = A; and Q; = P, for i €
{1,...,n}, then we get

Syt (ARAR) S e (AP RAT A B Al
S u(PA) ¢ S tr(PA)
St (Ag/ 2p,AY? 1 (A;l/QBiA;l/Q))
- Yo tr(PA;)
o St (Ai/ZPiAﬁ/z’A;l/zBiA;l/?)

- Yo tr(PAy)

<a!

—a | +Ina,

+Ina

—a | +1na,
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namely
St (PABA)
. 1— i= i 1
(3.3) a ST o (A St
e (e (1477
- i tr(PAY)
_ " tr (PiB;)
= (21“> +lna,
>in tr(PiA)
for a > 0.

Now, if we take the exponential, then we get

Zﬁ;l tr (PZAZB,flAZ)
1— = 1
exp < a Ez;l o (PiAi) +Ina

Syt (A7 RA (472 BiAT))
doimy tr(Pidy)

_ ot (PBy)
< 1 szl vy 1
<eolo (S ) e

< exp

for a > 0.
Observe that

Zﬂ,1 tr (PzAlBilAz)
1—a=is i 1
exp ( a Z?:1 tr (PiAi) +1Ina
- Z?:l tr (PZAZBTIAZ)
= ea exp a Z?:l tr (PLAl)

)

)

a
= —exp
e

and

K2

Yo tr(PAy)

Syt (A2 PA (472 BAT )

exp

I B

= n 1/2 5 41/2 ~1/2 5 4-1/2 ST (P A;)
(0[S (a7 ma))

= (ﬁ exp [tr (Ai/ *PA? I (Ail/zBiAil/z))D ST (AL

i=1
n Zita ‘i(PiAi)
= (H Dp, (Az‘Bz')>
i=1
Now, by making use of (3.3), we deduce (3.1). O
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Remark 3. For a =1 we get the bounds
D tr (PAy)

1
2?:1 tr(PiAi)

Corollary 3. The best inequality in the left side of (3.1) is

1-—

(3.4) exp

1
Y w(PiAy)

D i tr (PiAs) n .
. S tr (PAB] A = <}:[1 Dp, (A1|Bz)>

Proof. We consider the function
S0t (PAB )
dicy tr (PiA;)

f(t) :=etexp [— t|, t>0.

If we take the derivative, then we get
Srtr (PABTA)
S tr(PA;)

S tr (PA; B A) St (PABT A
- iy tr(PA;) ¢ l_ Yo tr (BA)

1 tZ?:l tr (PZAZBTIAZ)
S tr(PiAy) .

f'(t) = eexp [—

Z?:l tr (PZAZBTIAZ)
S tr(PiAy)

= eexp [—

. .. . Z;L:l tr(P; A) _
We observe that the function f is increasing on (O, ?ltr(PL'AiBi_lAi)> and de

creasing on T tr(PiAg)
g ZIL=1 tr(PiAiBflA,i

),oo> , which shows that

0= (g Ehyetra ) et
t€(0,00) S tr (PABTA) Srotr (PABTA)
and by taking
Doy tr (PiAi)
S tr (PB4
in (3.1) we get (3.5). O

a =

Corollary 4. The best inequality in the right side of (3.1) is

1
2221 “'(PiAi)

(3.6) <]j[1 Dp, (Ai|Bi)> < m.

Proof. Consider the function
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If we take the derivative, then we get

SLans), ]

S tr(PiA)

tZz 1tr(PlB) XD [ZZ 1tr(PB)t 1}
Ty w(PA) STt (PA)

Z? 1 tr (P;B;) ~1 Zi:l tr (P; B;)
{zz (P } <t‘z;;1tr<Pz—Ai>)'

g (t) = iexp[

1
= —ex
et P

We observe that the function g is decreasing on (O, %) and increasing
i=1 i4i

on (%, oo) , which shows that

" tr(PB; " tr(PB;
inf g(t)g(zz 1 r( ))_an_l I‘( )
te(0,00) ZL 1tI‘ (PzAz) Zi:l tr (PzAl)
and by taking a = % in in (3.1) we get (3.6). O

4. SOME PARTICULAR CASES

Let P, > 0 with P, € By (H) and tr (P;) =1 for ¢ € {1,...,n} .If we take in (3.5)
and (3.6) A; =1p,4 € {1,...,n}, then we get

Tll Z:L: tI‘(PLBl)
(4.1) S (PB (HAP ) glf

for B; >0,i€{1,...,n}.
Also, if we take B; = 1y, i € {1,...,n} in (3.5) and (3.6), then we get

Z?:1 ti(PiAi)
Zn 1 n
. —1 N L
WD S npa) < H”P S ST w (PAY

The case of one operator is as follows

tr (PA) wiba _ tr(PB)
— < < v =7
tr (PAB—1A) Dr (A1B)" < tr (PA)’

provided that A, B > 0 and P > 0 with P € B; (H) and tr (P) = 1.
In particular, we have

(4.3) ﬁ < Ap(B) < tr (PB)
and
(1.4) o <™ <

provided that A, B > 0 and P > 0 with P € By (H) and tr (P) = 1.
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