REVERSE INEQUALITIES FOR RELATIVE ENTROPIC
NORMALIZED P-DETERMINANT OF POSITIVE OPERATORS
IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by

Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .
In this paper we show, among others that, if 0 < mA; < B; < MA; with

m, M > 0 for j € {1,...,n} and P; € By (H), P; > 0 with tr (P;) = 1 for
j€{l,...,n} and 3%, tr (P;A;) > 0, then

iy tr(PBy)
S5y tr(PyA;)

1< T
ST tr(PAy)

n

H Dp, (AiBi)>

i=1
< exp 1 Mizzzltr(Pij) ZZ:1tr(Pij) m

mM 23:1 tr (PjA;) Zj:l tr (PjA;)
1

< — (M —m)?|.
< exp | o (01— m)?|

1. INTRODUCTION

In 1952, in the paper [13], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 1’ as an integral

T:/ ME (V).
Sp(T)

where E (X) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := T o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).
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For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntd,uT) .
0

If T is invertible, then
Ark (T) :=exp (7 (In(|T1))),

where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1y stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [19], [20], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [22].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B(H) then

(1.2) Do lAell* =Y 1A =141

i€l jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) Al = (erm)
iel
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5 . From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4°]l,-

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:
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Theorem 1. We have:
(i) (B2 (H), ||-l5) s a Hilbert space with inner product

(14) <A, B>2 = Z<A6i,B€Z‘> = Z<B*A€Z‘,€i>
iel icl

and the definition does not depend on the choice of the orthonormal basis {e;},c;;

(ii) We have the inequalities
(1.5) IAIF < [|All
for any A € Ba(H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) IAT |y, I TAll, < IT] Al

(i1i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C B2 (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1Al = (Al esse) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

€;;..7. We denote by by the set of trace class operators in .
ier - Wed by By (H) th f 1 in B(H
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = [[A]], and [[All, < [ Ally
forany A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B, (H)B(H) C By (H);
(i) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup{{A,B), | BBz (H), |Bll, <1};
(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = (Aej,e;),
icl
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:



4 S.S. DRAGOMIR

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(1.11) b1 (AT) = tr (TA) and |ox (AT)| < | A], I1T] ;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T' € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € B, (H),
hence PY/?TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For recent results on trace inequalities see [3]-[10] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [11]:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tly) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [11], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr (PA) <exp [tr (PA) tr (PA™") —1]

~ Ap(4)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [12]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp(—tlnttr (PA))exp (—ttr (PAln A))

= exp In (t_ tr(PA)t) [exp (— tr (PA In A))]_t 5
hence
(1.13) np(tA) =t D [y (A)]

for t >0 and A > 0.
Observe also that

(1.14) np(lg) =1 and np(tly) =t~

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [12]

(1.15) np((L =) A+tB) > [np (A)]' " [np (B))'

for all t € [0,1].
Also we have the inequalities [12]:

—tr(PA
w(pa)] " )
tr? (PA) = Jtr (PA)]T P T
and if there exists the constants 0 < m < M such that mly < A < M1y, then
[12]
—tr(PA
(m+M>—2M § <m+M>—2tr(PA) ) tr (PAQ) tr(PA)
2vmM —\2vmM ~ | tr? (PA)

UP(A)
[tr (PA)]” TP~

Kamei and Fujii [17], [18] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

N

(1.16) S(AB) = A% (n (4" BA™E)) A2,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[26]. For various results on relative operator entropy see [14]-[27] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (A|B) = exp{tr [PS (A|B)]}
= exp {tr [PA% (ln (A*%BA*%)) A%] } .
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We observe that for A > 0,
Dp (A|ly) = exp{tr [PS (A|1g)]} = exp {tr (—PAIn A)} = np(4),
where 7p(-) is the entropic P-determinant and for B > 0,
Dp (1u|B) i= exp {t [PS (14]B)]} = exp {tx (PIn B)} = Ap(B),

where Ap(-) is the P-determinant.

Motivated by the above results, in this paper we show, among others that, if
0<mA; <B; < MA; withm, M >0for je{l,..,n}and P, € By (H), P; >0
with tr (P;) =1 for j € {1,...,n} and 37, tr (P;A;) > 0, then

G- t1(P; By)

2= tr(PAy)

1
Sy (P Ay)

(H Dep, (Az‘|Bi)>

=1

< exp [1 ( y_ Zimt <P-7‘Bj>> (Zgl (B m)}

1<

mM Zj:l tr (P A;) Zj:l tr (P;A;)
< exp [4m1]\4 (M—m)Q] .

2. SOME TRACE INEQUALITIES

We use the following result that was obtained in [2]:

Lemma 1. If f : [a,b] — R is a convex function on [a,b], then

(2.1) OS(b_t)f(al))i'_((:_a)f(b)_f(t)

g(bft)(tfa)_b—ﬁi(b*a) L2 (b) = [} (a)]

for any t € [a,b].
If the lateral derivatives f' (b) and f! (a) are finite, then the second inequality
and the constant 1/4 are sharp.

We have the following reverse for the Jensen’s trace inequality:
Theorem 4. Assume that f is differentiable convex on the interior I of an interval.
Let C;, Q; > 0 with Q; € By (H) for j € {1,...,n} and Z?Zl tr (Q;C;) > 0, then
for all V; with the spectra Sp (V;) C [m, M] C I forje{1,...,n}, we have

(22) 0< 2 tr [C;/QQJC;/Z]E(VJ')} L (Z;;ltr (C;/QQ].C;/%/}))

> i tr(Q,C)) > i tr(Q;C))
o S M) — f (m)

- M—-—m
S (02,07 )\ (5l (¢ Q,0 )
x| M — - o -m
> =1 tr(Q;C5) > =1 t1(Q;C;)
1
< (M —m) [fL (M) = fi (m)] .

4
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Proof. Utilizing the continuous functional calculus for a selfadjoint operator T" with
0 < T < 1p and the convexity of f on [m, M], we have

(2.3) fm @Ay =T)+MT) < f(m) Qg —T)+ f(M)T

in the operator order.
If we take in (2.3)

1
then we get
V»—mlH V»—mlH
24 g — -2 M-
N S A =

7‘/}'—m1H ij—mlH

< f(m) (1H M_m) b () i

Observe that

m <1H _Yizmla mlH) 4o Yizmla

M—-—m M—-—m
m(MlH—Vj)—FM(Vj—mlH)
M—-m

and

_ S (m) (M1g = Vj) + f (M) (V; —mlna)
M—-—m

and by (2.4) we get the following inequality of interest

fm) M1y = V;) + f (M) (Vj —mln)

(25) ) < e

forall j € {1,...,n}.
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If we multiply (2.5) both sides with C;/2 and then with Q;/Q we get by summing
that ‘

ZQ1/QC1/2f( ) UQQ;/Z

j=1
- 12,172 [ f(m) (Mg = Vy) + f (M) (V; —mlp)] 172 ,41/2
= ZQ] Cj [ JJW -m . Cj Qj
n 2 ,~1/2 1/2 ~1/2
_Fm) Y5, Q%0 (Min — V) 6;%Q)
M—m
LAY QP (V; - miw) €]
M—-—m
1 i n
= 3 1 (el el - S el e el )
j=1 j=1
i ZQI/Q 1/2VC1/2 1/2 ZQ1/2C Q1/2 ’

j=1

which implies, by taking the trace and using its properties, that

S} (vh)]

< 3 |10 (W (@00 - S (e )
i=1 =1

itr( 1/2Q] 1/2 ) mZtr (Ql/QC Q1/2) 7
j=1
which gives that

S i [0, ()]
Z?:l tr (Q;C;)

(e asey, S (e a,c
J(m) (M_ 1 ?iltr@j-cj) ]>>+f(M)< 1 ?( —_— _m>

_1 tr(Q;Cy)
S b
M—-—m
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namely

0 o< DO W] (z;_l b (c;/QQjc;/zw))

> tr(Q;C)) > i tr(Q;C))

(e e, )
f(m) (M - ST (@,

M—-—m
nw(C/2q,0M Y,
f(M)( SR G V’)—m)

T=1 tr(Q;C5)
M—-m
St (0,00
Z;'L:1 tr (Q;C;)

<

Here the first inequality is Jensen’s inequality.
Using the inequality (2.1) for

n 1/2 1/2
t= D (Cj/ Qjcj/ VJ) € [m, M]
2=t (Q;C5) T

a=m and b = M we have

(e a,er )
f(m) <M N > i1 t1(Q;C5)

M—-—m

Sy (2,01
f (M) ( To1tr(Q;C5) m

j=1
M—-—m

2.7)

+

i (€2Q,0%;)
> i1t (Q;C5)

pran - poom (S (G00")
251 tr(Q5C5)

n 1/2
(Zj:ltr (Cj/ QJ'C;/ZVJ) )
X -m

i1 tr(Q;C))
< 3 (M —m) [ () ~ 7} (m)]
By making use of (2.6) and (2.7) we derive (2.2). O

We also have [2]:
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Lemma 2. Assume that [ : [a,b] — R is absolutely continuous on [a,b]. If f' is
K -Lipschitzian on [a,b], then

(2.8) |(1—1t) f(a)+tf(b) -
g%K(b—t)(t—a)g

(1 —t)a+1td)|

K (b—a)?

ol = %

for allt €10,1].
The constants 1/2 and 1/8 are the best possible in (2.8).

Remark 1. If f : [a,b] — R is twice differentiable and f" € Lo [a,b], then
(2.9) (L—=t)f(a)+tf(0) = F((A—1t)a+1tb)]
1 1
<3 1 ap,00 0= 1) (t — @) < 3 1" la,5,00 (b= a)?,

where || f"[|14.4,00 = €SSUPeiap |f” (1) < 0. The constants 1/2 and 1/8 are the
best possible in (2.9).

Theorem 5. Assume that f is twice differentiable convex on the interior I of the
interval I and the derivative f" is bounded on I. Let Q; > 0 with Q; € By (H)

forj € {1,...,n} and E;’:l tr (C’;/QQjC’;/Z) > 0, then for all V; with the spectra
Sp (V) C [m, M] C I forje {1,...,n}, we have
010 o< " (120,03 r ()] ((Ear (¢1%Q,c1";)
' - > i tr(Q;C)) > tr(Q;C))
S (€)@, v;)
21t (QC5)

1
5 ||f”||[m,M},oo M —

Sy (€)@, V;)
i1 tr(Q;C5)

1 2
g ||f//||[m.,]\l],oo (M - m) .

X

—m

IN

Proof. From (2.9) and the continuous functional calculus, we get

f(m) M1y —V;)+ f(M)(V; —mly)
M—-—m

1
5 1N vy,00 (MLm= V5) (V; — mlp)

(2.11) 0<

-1 (V)

IN

IN

1
g ||f”||[m,M],oo (M - m)2 1H7

where V} are selfadjoint operators with the spectra Sp (V;) C [m, M], j € {1,...,n}.
Now, by employing a similar argument to the one in the proof of Theorem 4 we
derive the desired result (2.10). O

We also have the following scalar inequality of interest:
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Lemma 3. Let f : [a,b] — R be a convex function on [a,b] and t € [0,1], then

(2.12) 2min {t,1 — £} [f(a);rf(b) _f(a—;b)]

<A —=t)f(a)+tf(b) = f((L—1t)a+tb)

< 2max{t, 1 — 1} {f(“);“b) g (“;rbﬂ .

The proof follows, for instance, by Corollary 1 from [1] for n = 2, p; = 1 — ¢,
pe=t,t€0,1 and 1 = a, x5 = .

Theorem 6. Assume that f is convex on the interior I of an interval I. Let Q; > 0
with Q; € By (H) for j € {1,...,n} and 3°7_, tr (C’;/QQJ-C’;/Q) > 0, then for all V;
with the spectra Sp (V;) C [m, M] C I forj € {1,...,n}, we have

(213)  0< 2 [f(m)Jrf(M)_f(mJ“M)}

“M-m 2 2

) St (€2Q5C) 2 |V = & (m+ M) 14)
x| =(M—-m)— .

2 Zj:l tr (Q;C;)

k

e (C)2Q,0) %) s e (C)?Q,0 ;)
_ f(m) <M = §:13tr(QjC:) ) . f(M) ( J ;?letr(QjCj-) — m)
- M —-—m M—-—m

St (60,0 r (1)

S tr(Q,C))

2 Vﬁw+fwﬂ_f<m+M>]

2 2
Ao s St (c;/szkc;/z [V, — 3 (m+ 3) 14
i 2= 1 (Q5C5)
<2

[Lm s (medr)),

Proof. We have from (2.12) that

(2.14) OSZG—‘?&—;D [f(m);f(M) _f<m4;M)]
<A =t)f(m)+tf(M)—f((1—t)ym+tM)

e ()]

for all t € [0,1].
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Utilizing the continuous functional calculus for a selfadjoint operator 1" with
0 <T <1y we get from (2.14) that

(2.15) 0<2 {f(m);f(M) y ("”;Mﬂ (;11{ - ‘T ;1},‘)

<A=T)f(m)+Tf(M)—f(A=T)m+TM)

e [

in the operator order.
If we take in (2.15)

OgTz%ng,je{l,...,n},
then we get
(2.16) 0§M2m{f(m);f(M) <m+M>}
X (;(Mm)lH ijf (m+ M) IHD
< Jm) Oy = V)T 00V =)
SMim{ﬂm);f(ﬁ)f(m;Mﬂ

X (;(M—m)lH—i—

1

If we multiply both sides by C; /2 and then by le-/ % we derive

o gt [Lme S (me Y]

(or-maraa-qre

1
Vy — 5 (m+ M) 1H’ cj“Q;/Q)

7 (m) (MQ*C,Q"* - @}* 0} *v,c;Q)”?)

J

<
- M—m
£ ) (Q)76;*v,0 7@} - mQ)*,Q)”)
+
M —m

Q1/2C’1/2f( V) C 1/2621»/2

J

fMim[f( >;f<M>_f(m+2Mﬂ

1
x ( (M —m) Q}*C;Q;"” +@Q;°C;"* Vi -

2

1
5 (m+ M) 1H‘ CJWQ;/?) .
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Now, by taking the trace and summing over j from 1 to n, we derive

f (m) + £ (M) f(m;Mﬂ

1 k k
x (2 (M =m) 3 (@,C) = 3 (C}/ Q0
Jj= Jj=

‘/j;(erM)lH‘))

e

[f (Mzk:tr(QjCj) -y (@”@C}”Xg))

< 2 [f<m>+f<M> _f<m+M>]

2 2
1 i & 1
1/2 1/2 1/2 1/2
X §<M—m)Z“ (Cj/ Q¢ ) + D tr <Cj/ Q0% |V - 5 (m+M) 1HD :
j=1 j=1
This proves (2.13). |

We also have:

Proposition 2. With the assumptions of Theorem 6 we have

(2 17) 0< Z_;Lzl tr |:C]1/2QJC]1/2f (‘/J)] ) (Z?—l tr <C71/2QJC71/2‘/]>)

> i tr(Q;C)) > tr(Q;C))
[f( m) + f (M) f<m+M)]

M 2 2
| S (¢1ic?v;) 4
STw(@Q,0) 3 (m+ M)
2

R ()]
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Proof. From (2.6) we have
n 1/2 1/2
Syt €000 (v))]
Z?:1 tr (Q;C;)
j=1 tr(cj/QQjc;/Q‘/f)
- f(m) <M B i1 tr(Q;C5)

- M—m
7?71 tr C}/z ]‘C%/2Vj
f@@( - ﬁ’Q ")—m>

n 1/2 1/2
St (0)%Q;01%;)

(2.18)  0< > tr(Q;C))

—f

_, tr(Q;Cy)
M—-—m
St (070,05
2 tr(Q;C))

_|_

From the second part of the scalar version of (2.16) we also have the scalar inequality

.’;:1 tr(c;/szc;ﬂvi)
f (m) (M - ?thr(QjCj)

(2.19) Y
b (0)?Qic) %y
J (M) < z;v(ltr@jcj) : m>
+ M —m
; Z] ot (Cl/QQ]01/2V>
Zj:l tr (Q;C5)
¢ A [Lmsan (moany]
M 2 2
(M —m)1y + D (C;/QQJ'C;/ZVJ) L (m+ M)
m) 5 —=(m
" S tr(Q,C)) 2
fm)+fM) . (m + M
2 2 ! :
By utilizing (2.18) and (2.19) we obtain the desired result (2.17). O

3. DETERMINANT INEQUALITIES

We can provide now several inequalities for the relative entropic normalized P-
determinants.

Theorem 7. Assume that 0 < mA; < B; < MA; withm, M >0 forj € {1,...,n}
and P; € By (H), P; > 0 withtr (P;) =1 forj € {1,...,n} and 377_, tr (P;A;) > 0.
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Then
Go1 tr(P;By)
(3 1) 1< Z;'l:1 tr(PjA;)

1
X0, tr(PyAy)

(H Dp, <Az-|Bl->)
1 Z?:1 tr (P; B;) Z?:1 tr (P;B;)
= oxp lm]\/_f <M DY (PjAj)> (z;l_l tr(PAy) m)]
< exp [4m1]\4 (M — m)ﬂ .

Proof. If we take the convex function f (t) = —Int, t > 0 in (2.2) then we get the
inequality

St (€20 PV )\ S b |6)%Q,6 vy

=1
3.2 0<In _ - =
(3:2) ST (Q,0)) S (Q,0))
o1 M_Z?:Nr (C;/QQJ'O;/2‘/J‘)
= STt (Q;C5)
sheldod ) N
“ _ Y
2o tr(Q5C)) =AM "

where Cj, Q; > 0 with Q; € By (H) for j € {1,..,n} and >37_, tr (Q;C;) > 0
while Sp (V;) € [m, M] C (0,00) for j € {1,...,n}.

Now if 0 < mA; < B; < MjA;forj € {1,...,n},then0 < mly < A;/*B;ATY? <
M;lp and by taking V; = A;/*B;ATY?, C; = Aj and Q; = P, for j € {1,...,n}
in (3.2), then we get
St (A;/QPjA}“A;l/QBjA;”Q)

0<In -
Zj:l tr (P A;)

Syt [AYPRAY I (477847
2= tr (PA)

. Yt (A;/QPjA}/QAgl/QBjAgl/Q)
= mM - > tr(PiAy)
) Yt (A}/QP]»A;/QA;WBjA;I/Q) .
> tr(PjAy)
< — (M- m)?,

4dmM
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namely

n n 1/2 5 41/2 -1/2 5 4—1/2
o<1y [ Zi=tBB) Xt {Aj PiA; " In (Aj Bj4; )]
T\ X tr(PA)) > tr (PjA;)

1 (M Xt (Pij)> (Z?—l tr(PB)) m)

mM i tr(PAy) |\ X5, tr (P Ay)
1 2
< — .
< Gt M ™
Now, if we take the exponential, then we get
jo1 tr(P; By)
(P A;)
3.3 1< e
(3:3) - Sy tr[A) 2P AL 2 (A 2B A7)
oxp G tr(PAj)
< exp 1 M Z;’L:ltr(Pij) Z?thr(Pij) o
B mM Zj:l tr (P 4;) Zj:l tr (P A;)
1 2
< M —
~ 4dm ( m)
Since
- tr . VA n T f -
b (AR (47,7
P Dima tr(PiA)
1
- 1/2 5 41/2 —1/2 4—1/2 iz (rids)
= | exp Z tr (Ai PA; " In (Ai B; A, ))
i=1
- 1/2 5 41/2 ~1/2 —1/2 S A
= Hexp {tr (Ai PA; " In (Ai B;A; ))}
i=1
= (H Dp, (AiBi)> ;
i=1
hence by (3.3) we derive (3.1). O

Corollary 1. Assume that0 < mly < B; < M1y withm, M >0 forj € {1,...,n}
and P; € By (H), P; > 0 with tr (P;) =1 for j € {1,...,n}. Then
;1:1 tr(P;B;)

(3.4) 1< n

< exp [mlM <M X t;(Pij)> (Z;’l_l t;(Pij) B m)]
< exp [47711]\4 (M — m)ﬂ
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The proof follows by (3.1) for A; =1y with j € {1,...,n}.

Corollary 2. Assume that 0 < klyg < A; < Klg with k, K >0 for j € {1,...,n}
and P; € By (H), P; > 0 with tr (P;) =1 for j € {1,...,n}. Then

(3 5) 1< ;‘l:ltr(PjAj)

T
Ty (P Ay)

Proof. Since 0 < klyg < A; < Klg, hence %Aj <1y < %Aj and by taking
B; =1y with j € {1,...,n} in (3.1), we derive (3.5). O

Remark 2. The case of a pair of operators is as follows. If 0 < mA < B < MA
with m, M >0 and P € By (H), P > 0 with tr (P) =1 and tr (PA) > 0. Then

(3.6) 1< .

(3.7) 1< zgg < exp [mlM (M — tr (PB)) (tr (PB) — m)}
< exp [4m1M (M — m)ﬂ

Assume that 0 < kly < A; < Klp, then

1

r(PA
(3.8) 1< L)l

mp(A)"

< exp {kK (kl - tr(llpA)) (tr (1lDA) - Klﬂ

< exp lelK (K — k)2] .

Theorem 8. Assume that 0 < mA; < By < MA; withm, M >0 forj € {1,...,n}
and P; € By (H), P; > 0 withtr (P;) =1 forj € {1,...,n} and 377_, tr (P;A;) > 0.
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Then
;’Lzl tr(P;B;)
(3 9) 1< ;‘l:ltr(PjAj)

1
Yoy tr(PiAy)

Y tr(PiAy) )\ X5y tr (PiA;)

ll <M >2]

<exp|=|— -1 .

8 \m

Proof. If we take the convex function f (¢) = —Int¢, ¢t > 0 in (2.10) then we get the
operator inequality

[1 (M— Z;'L_fﬂr(Pij)) <Z?_1 tr (P;B;) —m)]

St (€20 v\ X b [ %Q,0 v

o<n| = _ L
Ej:l tr(Q;C;) Zj:l tr (Q;Cy)
n 1/2 1/2
< 1 M Zj:l tr (Cj Q;C; VJ)
- 2m? Z?:l tr (QJCJ)

1/2 1/2
2 tr (Cj/ ;05 Vj) 1 (M )2
X -m S é ’

- =1
Zj:l tr (QJCJ) m
where Cj, Q; > 0 with Q; € By (H) for j € {1,..,n} and >37_, tr(Q;C;) > 0
while Sp (V;) € [m, M] C (0,00) for j € {1,...,n}.

By utilizing a similar argument as in the proof of Theorem 7 we deduce the
desired result (3.9). O

Corollary 3. we the assumptions of Corollary 1 we have

n_, (P B))

(3.10) 1< n -

R (M— Z;'l:1 tr(Pij)> (Z?_ﬁr(Pij) —m)]

n

The proof follows by (3.9) for A; =15 with j € {1,...,n}.
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Corollary 4. With the assumptions of Corollary 2 we have

3.11) 1< i=1 (P 45)

1
ZEL:1 “(PiAi)

| )

It follows by taking B; = 15 with j € {1,...,n} in (3.9).

Remark 3. The case of a pair of operators is as follows. If 0 <mA < B < MA
with m, M >0 and P € By (H), P > 0 with tr (P) =1 and tr (PA) > 0, then

(3.12) 1<

(3.13) 1< Xffig; < exp {27;2 (M — tr (PB)) (tr (PB) — m)}
1 (M 2
< exp S(ml) H

tr(PA) K2 1 1 1 1
< —7_ < I _ _
1= " —— eXp[ 2 (k tr (PA)> (tr(PA) K
n

4. SOME RELATED RESULTS

We also have the complementary inequalities:

Theorem 9. Assume that 0 < mA; < By < MA; withm, M >0 forj € {1,...,n}
and P; € By (H), P; > 0 withtr (P;) =1 forj € {1,...,n} and 377_, tr (P;A;) > 0.
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Then
2 1
M m(E(M*m)*Vm,M(A,B,P))
(4.1) 1< <m+ )
2vmM
(H Dp, (AZ-IBZ-))
< =1
N i1 t(PiB) Sy, w(rB;
]\4Mim (Eﬁ% "(PJ'AJ' L>mMi"" (M Z;L:I tr(PjAj)>
_ <m+M)M2Mé(Mm)+v,”,M(A,B,P)) ) <m+M>2
— \2vVmM = \2vmM
with
1/2 1/2] ,—1/2 _1/2
Vi (A, B,P) : 2t <AJ’/ P ‘AJ‘ 2B A7 — g (m o+ M) 1HD
m,M B 5 = .

Y tr(PiA;)

Proof. If we take the convex function f (t) = —Int¢, ¢ > 0 in (2.13) then we get the
inequality

2

0<In (?%) o (; (M —m) — Vit (A, B, P)>

Sy tr (AP AY In (A7 By A7)
- > tr (PiAy)
(St —m) M + (M - Hetmpy ) nm
i B

ZJ L tr(PjA;)
M —m
2 2
m+M\M-m (1 m+ M
<ln|— (M —-—m)+ Vi (A,B,P)) <In .
< ()T (00— m v (B < (2L
By taking the exponential and performing the required calculations, we derive (4.1).

O

Corollary 5. Assume that0 < mly < Bj < M1y withm, M >0 forj € {1,...,n}
and P; € By (H), P; > 0 with tr (P;) =1 for j € {1,...,n}. Then

Corollary 6.

(4.2) | < <m+M>M3m<%<M—m>—"m=M<BvP>)

2vVmM

1
n

<ﬁ Ap, (Bz-))

S n n
1 7y (P Bj) 1 M Iy (P B;)
M—m n -m M—m - n
M m

w75 (2 (M=m) 4V 11 (B,P)) 2

2vVmM 2vmM
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with

Vit (B,P) = Yja tr(Pi|B) — 5 (m+ M) 1ul)

Corollary 7. Assume that 0 < klyg < A; < Klg with k, K >0 for j € {1,...,n}
and P; € By (H), P; > 0 with tr (P;) =1 for j € {1,...,n}. Then
k+K>W(é(Mm)Vk=K(A7P))

48 1< (m

1
o er(PiAy)

H np, (Ai)
i=1

kk*1:11<*1 (z;lzl t:-l(PjAj _K71>K1r1:11<*1 (kil_z;lzlc:-l(PjAj )
_ (k + K) a2 (3 (M=—m)+ Vi k (AP)) _ (k + K>2
2vVEK - \2VEK

IN

with
Syt (V2P AY? (A L (K k) 1))

Vix (A, P) =
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