SOME IMPROVEMENTS OF THE MONOTONICITY PROPERTY FOR RELATIVE ENTROPIC NORMALIZED P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \geq 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and $\operatorname{tr}(P) = 1$. For positive invertible operators A, B we define the relative entropic normalized P-determinant by

$$D_P\left(A|B\right) = \exp\left\{\operatorname{tr}\left[PA^{\frac{1}{2}}\left(\ln\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\right)A^{\frac{1}{2}}\right]\right\}.$$

In this paper we show among others that, if $C \ge m_1 A > 0$, $B \ge m_2 A > 0$, A > 0 and $A \ge 0$ with $A \in \mathcal{B}_1(H)$ and $A \in \mathcal{B}_1(H)$ and A

$$\exp\left(-\Phi(m_1, m_2) \operatorname{tr}(PA) \|A^{-1/2}(B - C) A^{-1/2}\|\right)$$

$$\leq \frac{D_P(A|B)}{D_P(A|C)}$$

$$\leq \exp\left(\Phi(m_1, m_2) \operatorname{tr}(PA) \|A^{-1/2}(B - C) A^{-1/2}\|\right),$$

where

$$\Phi(m_1, m_2) := \begin{cases} \frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_2 \neq m_1, \\ \\ \frac{1}{m} & \text{if } m_2 = m_1 = m. \end{cases}$$

1. Introduction

In 1952, in the paper [13], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE\left(\lambda\right),\,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (FK-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and 1_H stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \geq 0$) if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. In particular, A > 0 means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [19], [20], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp \langle \ln Ax, x \rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [23].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$(1.1) \sum_{i \in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ are orthonormal bases for H and $A\in\mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{i \in I} \|A^*f_i\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}\left(H\right)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}\left(H\right)$. For $A\in\mathcal{B}_{2}\left(H\right)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i\in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_{2}(H), \|\cdot\|_{2})$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$; (ii) We have the inequalities

$$||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_2(H)$ and, if $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_2(H)$ with

$$(1.6) $||AT||_2, ||TA||_2 \le ||T|| \, ||A||_2$$$

(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_{2}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{2}(H)$$
.

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}\left(H\right)$ is $trace\ class$ if

(1.7)
$$||A||_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$. The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

- (i) $A \in \mathcal{B}_1(H)$;
- (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

$$||A||_1 = ||A^*||_1 \quad and \quad ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_1(H)\mathcal{B}(H)\subseteq\mathcal{B}_1(H)$$
;

(iii) We have

$$\mathcal{B}_{2}\left(H\right)\mathcal{B}_{2}\left(H\right)=\mathcal{B}_{1}\left(H\right);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If $A \in \mathcal{B}_1(H)$ then $A^* \in \mathcal{B}_1(H)$ and

$$(1.10) \operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$$

(ii) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \ \ and \ |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

- (iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$;
- (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \geq 0$, then $P^{1/2}TP^{1/2} \geq 0$, which implies that $\operatorname{tr}(PT) \geq 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n \to \infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For recent results on trace inequalities see [3]-[10] and the references therein.

Now, for a given $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A)P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A)P^{1/2}\right).$$

Assume that $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties [11]:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_P(A)$ and $\Delta_P(t1_H) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \le B$ implies $\Delta_P(A) \le \Delta_P(B)$.

In [11], we presented some fundamental properties of this determinant. Among others we showed that

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}\left(PA^{-1}\right)\operatorname{tr}(PA) - 1\right],$$

for A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

For the entropy function $\eta(t) = -t \ln t$, t > 0, the operator entropy has the following expression:

$$\eta(A) = -A \ln A$$

for positive A.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *entropic* P-determinant of the positive invertible operator A by [12]

$$\eta_{P}\left(A\right):=\exp\left[-\operatorname{tr}\left(PA\ln A\right)\right]=\exp\left\{\operatorname{tr}\left[P\eta\left(A\right)\right]\right\}=\exp\left\{\operatorname{tr}\left[P^{1/2}\eta\left(A\right)P^{1/2}\right]\right\}.$$

Observe that the map $A \to \eta_P(A)$ is norm continuous and since

$$\exp\left(-\operatorname{tr}\left\{P\left[tA\ln\left(tA\right)\right]\right\}\right)$$

$$=\exp\left(-\operatorname{tr}\left\{P\left[tA\left(\ln t + \ln A\right)\right]\right\}\right) = \exp\left(-\operatorname{tr}\left\{P\left(tA\ln t + tA\ln A\right)\right\}\right)$$

$$=\exp\left(-t\ln t\operatorname{tr}\left(PA\right)\right)\exp\left(-t\operatorname{tr}\left(PA\ln A\right)\right)$$

$$=\exp\ln\left(t^{-\operatorname{tr}(PA)t}\right)\left[\exp\left(-\operatorname{tr}\left(PA\ln A\right)\right)\right]^{-t},$$

hence

(1.13)
$$\eta_P(tA) = t^{-t \operatorname{tr}(PA)} \left[\eta_P(A) \right]^{-t}$$

for t > 0 and A > 0.

Observe also that

(1.14)
$$\eta_P(1_H) = 1 \text{ and } \eta_P(t1_H) = t^{-t}$$

for t > 0.

Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If A, B > 0, then we have the Ky Fan type inequality [12]

(1.15)
$$\eta_P((1-t)A + tB) \ge [\eta_P(A)]^{1-t} [\eta_P(B)]^t$$

for all $t \in [0, 1]$.

Also we have the inequalities [12]:

$$\left[\frac{\operatorname{tr}(PA^{2})}{\operatorname{tr}^{2}(PA)}\right]^{-\operatorname{tr}(PA)} \leq \frac{\eta_{P}(A)}{\left[\operatorname{tr}(PA)\right]^{-\operatorname{tr}(PA)}} \leq 1$$

and if there exists the constants 0 < m < M such that $m1_H \le A \le M1_H$, then [12]

$$\left(\frac{m+M}{2\sqrt{mM}}\right)^{-2M} \le \left(\frac{m+M}{2\sqrt{mM}}\right)^{-2\operatorname{tr}(PA)} \le \left[\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}^{2}\left(PA\right)}\right]^{-\operatorname{tr}(PA)} \\
\le \frac{\eta_{P}(A)}{\left[\operatorname{tr}\left(PA\right)\right]^{-\operatorname{tr}(PA)}} \le 1.$$

Kamei and Fujii [17], [18] defined the relative operator entropy S(A|B), for positive invertible operators A and B, by

(1.16)
$$S(A|B) := A^{\frac{1}{2}} \left(\ln \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) \right) A^{\frac{1}{2}},$$

which is a relative version of the operator entropy considered by Nakamura-Umegaki [27]. For various results on relative operator entropy see [14]-[28] and the references therein.

Definition 1. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. For positive invertible operators A, B we define the relative entropic normalized P-determinant by

$$D_P(A|B) := \exp\{\operatorname{tr}\left[PS(A|B)\right]\}$$
$$= \exp\left\{\operatorname{tr}\left[PA^{\frac{1}{2}}\left(\ln\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\right)A^{\frac{1}{2}}\right]\right\}.$$

We observe that for A > 0,

$$D_P(A|1_H) := \exp\{\operatorname{tr}[PS(A|1_H)]\} = \exp\{\operatorname{tr}(-PA\ln A)\} = \eta_P(A),$$

where $\eta_P(\cdot)$ is the *entropic P-determinant* and for B > 0,

$$D_P(1_H|B) := \exp \{ \operatorname{tr} [PS(1_H|B)] \} = \exp \{ \operatorname{tr} (P \ln B) \} = \Delta_P(B),$$

where $\Delta_P(\cdot)$ is the *P*-determinant.

Motivated by the above results, in this paper we show among others that, if $C \ge m_1 A > 0$, $B \ge m_2 A > 0$, A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then

$$\exp\left(-\Phi(m_{1}, m_{2}) \operatorname{tr}(PA) \|A^{-1/2}(B-C) A^{-1/2}\|\right)$$

$$\leq \frac{D_{P}(A|B)}{D_{P}(A|C)}$$

$$\leq \exp\left(\Phi(m_{1}, m_{2}) \operatorname{tr}(PA) \|A^{-1/2}(B-C) A^{-1/2}\|\right),$$

where

$$\Phi(m_1, m_2) := \begin{cases} \frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_2 \neq m_1, \\ \\ \frac{1}{m} & \text{if } m_2 = m_1 = m. \end{cases}$$

2. Main Results

We can state the following representation result that is of interest in itself. In order to simplify the notations, instead of $\lambda 1_H$ with scalar λ , we write just λ .

Lemma 1. For all T, V > 0 we have

$$(2.1) \quad \ln V - \ln T$$

$$= \int_0^\infty \left[(\lambda + T)^{-1} - (\lambda + V)^{-1} \right] d\lambda$$

= $\int_0^\infty \left(\int_0^1 (\lambda + (1 - t)T + tV)^{-1} (V - T) (\lambda + (1 - t)T + tV)^{-1} dt \right) d\lambda.$

Proof. Observe that for t > 0, $t \neq 1$, we have

$$\int_0^u \frac{d\lambda}{(\lambda+t)(\lambda+1)} = \frac{\ln t}{t-1} + \frac{1}{1-t} \ln \left(\frac{u+t}{u+1}\right)$$

for all u > 0.

By taking the limit over $u \to \infty$ in this equality, we derive

$$\frac{\ln t}{t-1} = \int_0^\infty \frac{d\lambda}{(\lambda+t)(\lambda+1)},$$

which gives the representation for the logarithm

(2.2)
$$\ln t = (t-1) \int_0^\infty \frac{d\lambda}{(\lambda+1)(\lambda+t)}$$

for all t > 0.

If we use the continuous functional calculus for selfadjoint operators, we have

(2.3)
$$\ln T = \int_0^\infty \frac{1}{\lambda + 1} (T - 1) (\lambda + T)^{-1} d\lambda$$

for all operators T > 0.

We have from (2.3) for T, V > 0 that

$$(2.4) \qquad \ln V - \ln T = \int_0^\infty \frac{1}{\lambda + 1} \left[(V - 1) (\lambda + V)^{-1} - (T - 1) (\lambda + T)^{-1} \right] d\lambda.$$

Since

$$(V-1)(\lambda+V)^{-1} - (T-1)(\lambda+T)^{-1}$$

= $V(\lambda+V)^{-1} - T(\lambda+T)^{-1} - ((\lambda+V)^{-1} - (\lambda+T)^{-1})$

and

$$V(\lambda + V)^{-1} - T(\lambda + T)^{-1}$$
= $(V + \lambda - \lambda)(\lambda + V)^{-1} - (T + \lambda - \lambda)(\lambda + T)^{-1}$
= $1 - \lambda(\lambda + V)^{-1} - 1 + \lambda(\lambda + T)^{-1} = \lambda(\lambda + T)^{-1} - \lambda(\lambda + V)^{-1}$,

hence

$$(V-1)(\lambda+V)^{-1} - (T-1)(\lambda+T)^{-1}$$

$$= \lambda(\lambda+T)^{-1} - \lambda(\lambda+V)^{-1} - ((\lambda+V)^{-1} - (\lambda+T)^{-1})$$

$$= (\lambda+1)[(\lambda+T)^{-1} - (\lambda+V)^{-1}]$$

and by (2.4) we get

(2.5)
$$\ln V - \ln T = \int_0^\infty \left[(\lambda + T)^{-1} - (\lambda + V)^{-1} \right] d\lambda,$$

we proves the first equality in (2.1).

Consider the continuous function g defined on an interval I for which the corresponding operator function is Gâteaux differentiable on the segment [C, D]: $\{(1-t)C+tD, t \in [0,1]\}$ for C, D selfadjoint operators with spectra in I. We consider the auxiliary function defined on [0,1] by

$$f_{C,D}(t) := f((1-t)C + tD), t \in [0,1].$$

Then we have, by the properties of the integral, that

$$f(D) - f(C) = \int_0^1 \frac{d}{dt} (f_{C,D}(t)) dt = \int_0^1 \nabla f_{(1-t)C+tD}(D-C) dt.$$

If we write this equality for the function $f(t) = -t^{-1}$ and C, D > 0, then we get the representation

$$(2.6) C^{-1} - D^{-1} = \int_0^1 ((1-t)C + tD)^{-1} (D-C) ((1-t)C + tD)^{-1} dt.$$

Now, if we take in (2.6) $C = \lambda + T$, $D = \lambda + V$, then

$$(2.7) \qquad (\lambda + T)^{-1} - (\lambda + V)^{-1}$$

$$= \int_0^1 ((1 - t)(\lambda + T) + t(\lambda + V))^{-1} (V - T)$$

$$\times ((1 - t)(\lambda + T) + t(\lambda + V))^{-1} dt$$

$$= \int_0^1 (\lambda + (1 - t)T + tV)^{-1} (V - T)(\lambda + (1 - t)T + tV)^{-1} dt.$$

By employing (2.7) and (2.5) we derive the desired result (2.1).

Theorem 4. Assume that A, B, C > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then

$$(2.8) \quad \frac{D_P(A|B)}{D_P(A|C)} = \exp\left(\int_0^\infty \left\{ \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + A^{-1/2} C A^{-1/2} \right)^{-1} \right] \right. \\ \left. - \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + A^{-1/2} B A^{-1/2} \right)^{-1} \right] \right\} d\lambda \right)$$

$$= \exp\int_0^\infty \int_0^1 \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + A^{-1/2} B A^{-1/2} \right)^{-1} \right. \\ \left. \times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right) \right. \\ \left. \times \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right] dt d\lambda \right).$$

Proof. If we take $V=A^{-1/2}BA^{-1/2}$ and $T=A^{-1/2}CA^{-1/2}$, then we get the identity

(2.9)
$$\ln\left(A^{-1/2}BA^{-1/2}\right) - \ln\left(A^{-1/2}CA^{-1/2}\right)$$

$$= \int_{0}^{\infty} \left[\left(\lambda + A^{-1/2}CA^{-1/2}\right)^{-1} - \left(\lambda + A^{-1/2}BA^{-1/2}\right)^{-1} \right] d\lambda$$

$$= \int_{0}^{\infty} \int_{0}^{1} \left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + A^{-1/2}BA^{-1/2}\right)^{-1}$$

$$\times \left(A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right)$$

$$\times \left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1} dt d\lambda.$$

We multiply both sides by $A^{1/2}$, then we get

$$\begin{split} &A^{1/2} \ln \left(A^{-1/2}BA^{-1/2}\right) A^{1/2} - A^{1/2} \ln \left(A^{-1/2}CA^{-1/2}\right) A^{1/2} \\ &= \int_0^\infty \left[A^{1/2} \left(\lambda + A^{-1/2}CA^{-1/2}\right)^{-1} A^{1/2} - A^{1/2} \left(\lambda + A^{-1/2}BA^{-1/2}\right)^{-1} A^{1/2}\right] d\lambda \\ &= \int_0^\infty \int_0^1 A^{1/2} \left(\lambda + (1-t) A^{-1/2}CA^{-1/2} + A^{-1/2}BA^{-1/2}\right)^{-1} \\ &\times \left(A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right) \\ &\times \left(\lambda + (1-t) A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1} A^{1/2} dt d\lambda. \end{split}$$

If we multiply both sides of this equality by $P^{1/2}$, take the trace and use its properties, then we get

$$\begin{split} \text{(2.10)} \quad & \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right] \\ & = \int_0^\infty \left\{ \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + A^{-1/2} C A^{-1/2} \right)^{-1} \right] \right. \\ & - \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + A^{-1/2} B A^{-1/2} \right)^{-1} \right] \right\} d\lambda \\ & = \int_0^\infty \int_0^1 \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + A^{-1/2} B A^{-1/2} \right)^{-1} \\ & \times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right) \\ & \times \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right] dt d\lambda. \end{split}$$

If we take the exponential, then we get the desired identity (2.11).

Corollary 1. Assume that B, C > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then

(2.11)
$$\frac{\Delta_P(B)}{\Delta_P(C)} = \exp \int_0^\infty \left(\operatorname{tr} \left[P \left(\lambda + C \right)^{-1} \right] - \operatorname{tr} \left[P \left(\lambda + B \right)^{-1} \right] \right) d\lambda$$
$$= \exp \int_0^\infty \int_0^1 \operatorname{tr} \left[P \left(\lambda + (1 - t) C + B \right)^{-1} (B - C) \right.$$
$$\times \left(\lambda + (1 - t) C + tB \right)^{-1} dt d\lambda.$$

It follows by (2.8) for $A = 1_H$.

Theorem 5. Assume that $C \ge m_1 A > 0$, $B \ge m_2 A > 0$, A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then

(2.12)
$$\exp\left(-\Phi(m_{1}, m_{2}) \operatorname{tr}(PA) \left\|A^{-1/2}(B-C)A^{-1/2}\right\|\right) \\ \leq \frac{D_{P}(A|B)}{D_{P}(A|C)} \\ \leq \exp\left(\Phi(m_{1}, m_{2}) \operatorname{tr}(PA) \left\|A^{-1/2}(B-C)A^{-1/2}\right\|\right),$$

where

$$\Phi(m_1, m_2) := \begin{cases} \frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_2 \neq m_1, \\ \frac{1}{m} & \text{if } m_2 = m_1 = m. \end{cases}$$

Proof. If we take the modulus in (2.10), then we get

$$\begin{aligned} & \left[\operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right] \right] \\ & \leq \int_0^\infty \int_0^1 \left| \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + A^{-1/2} B A^{-1/2} \right)^{-1} \right. \\ & \times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right) \\ & \times \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right| dt d\lambda \\ & \leq \left\| A^{1/2} P A^{1/2} \right\|_1 \left\| A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right\| \\ & \times \int_0^\infty \int_0^1 \left\| \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right\|^2 dt d\lambda \\ & = \operatorname{tr} \left(P A \right) \left\| A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right\| \\ & \times \int_0^\infty \int_0^1 \left\| \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right\|^2 dt d\lambda \end{aligned}$$

Since $C \ge m_1 A > 0$, $B \ge m_2 A > 0$, then $A^{-1/2} C A^{-1/2} \ge m_1$ and $A^{-1/2} B A^{-1/2} \ge m_2$.

Assume that $m_2 > m_1$. Then

$$(1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2} + \lambda \ge (1-t)m_1 + tm_2 + \lambda,$$

which implies that

$$\left((1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} + \lambda \right)^{-1}$$

$$\leq \left((1-t) m_1 + t m_2 + \lambda \right)^{-1},$$

and

$$\left\| \left((1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} + \lambda \right)^{-1} \right\|^{2} \le \left((1-t) m_{1} + t m_{2} + \lambda \right)^{-2}$$

for all $t \in [0, 1]$ and $\lambda \ge 0$.

Therefore

$$(2.14) \left| \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right] \right|$$

$$\leq \operatorname{tr} \left(P A \right) \left\| A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right\|$$

$$\times \int_{0}^{\infty} \left(\int_{0}^{1} \left((1 - t) m_{1} + t m_{2} + \lambda \right)^{-2} dt \right) d\lambda$$

$$= \frac{\operatorname{tr} \left(P A \right) \left\| A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right\|}{m_{2} - m_{1}}$$

$$\times \int_{0}^{\infty} \left(\int_{0}^{1} \left((1 - t) m_{1} + t m_{2} + \lambda \right)^{-1} dt \right) d\lambda,$$

$$\times \left(m_{2} - m_{1} \right) \left((1 - t) m_{1} + t m_{2} + \lambda \right)^{-1} dt \right) d\lambda,$$

for $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

If we use the identity (2.1) for $T = m_1$, $V = m_2$ we get the scalar identity

$$\ln m_2 - \ln m_1 = \int_0^\infty \left(\int_0^1 ((1-t) m_1 + t m_2 + \lambda)^{-1} (m_2 - m_1) \right) \times ((1-t) m_1 + t m_2 + \lambda)^{-1} dt d\lambda$$

and by (2.14) we obtain

$$\left| \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right] \right| \\
\leq \frac{\ln m_2 - \ln m_1}{m_2 - m_1} \operatorname{tr} \left(P A \right) \left\| A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right\|$$

for $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

The case $m_2 < m_1$ goes in a similar way.

Now, assume that $C \ge mA > 0$, $B \ge mA > 0$. Let $\epsilon > 0$, then $A^{-1/2}BA^{-1/2} + \epsilon \ge m + \epsilon$. Put $m_2 = m + \epsilon > m = m_1$. If we write the inequality (2.13) for $A^{-1/2}BA^{-1/2} + \epsilon$ and A, we get

$$\begin{split} & \left| \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right] \right| \\ & \leq \frac{\ln \left(m + \epsilon \right) - \ln m}{\epsilon} \operatorname{tr} \left(P A \right) \left\| A^{-1/2} B A^{-1/2} + \epsilon - A^{-1/2} C A^{-1/2} \right\| \end{split}$$

for $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

If we take the limit over $\epsilon \to 0+$ and observe that

$$\lim_{\epsilon \to 0+} \frac{\ln(m+\epsilon) - \ln m}{\epsilon} = \frac{1}{m}.$$

then we get

$$\begin{split} & \left| \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right] - \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right] \right| \\ & \leq \frac{1}{m} \operatorname{tr} \left(P A \right) \left\| A^{-1/2} B A^{-1/2} + 1 - A^{-1/2} C A^{-1/2} \right\| \end{split}$$

for $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

Therefore

$$-\Phi\left(m_{1}, m_{2}\right) \operatorname{tr}\left(PA\right) \left\|A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right\|$$

$$\leq \operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right] - \operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}CA^{-1/2}\right)\right]$$

$$\leq \Phi\left(m_{1}, m_{2}\right) \operatorname{tr}\left(PA\right) \left\|A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right\|$$

for $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, which, by taking the exponential, gives the desired result (2.12).

Corollary 2. Assume that $C \ge m_1 > 0$, $B \ge m_2 > 0$ and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then

(2.15)
$$\exp\left(-\Phi\left(m_{1}, m_{2}\right) \|B - C\|\right) \leq \frac{\Delta_{P}(B)}{\Delta_{P}(C)} \leq \exp\left(\Phi\left(m_{1}, m_{2}\right) \|B - C\|\right).$$

The proof follows by Theorem 5 for $A = 1_H$.

Theorem 6. Assume that for A > 0, $0 < mA \le B - C \le MA$ and $0 < \gamma A \le C \le \Gamma A$ for some constants m, M, γ and Γ , then

$$(2.16) 1 < \left(1 + \frac{M}{\Gamma}\right)^{\frac{m}{M}\operatorname{tr}(PA)} \le \frac{D_P(A|B)}{D_P(A|C)} \le \left(1 + \frac{m}{\gamma}\right)^{\frac{M}{m}\operatorname{tr}(PA)}$$

for all $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

Proof. Since $0 < mA \le B - C \le MA$, hence by multiplying both sides by $A^{-1/2}$ then

$$0 < m1_H \le A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2} \le M1_H$$

by multiplying both sides by $(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2})^{-1} > 0$ we derive

$$(2.17) m\left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-2}$$

$$\leq \left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1}$$

$$\times \left(A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right)$$

$$\times \left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1}$$

$$\leq M\left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-2}$$

for all $t \in [0,1]$ and $\lambda > 0$.

Observe that

$$\begin{split} &(1-t)\,A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2} \\ &= A^{-1/2}CA^{-1/2} + t\left(A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right), \end{split}$$

and since $\gamma \leq A^{-1/2}CA^{-1/2} \leq \Gamma$, hence

$$\begin{array}{lcl} \lambda + \gamma + tm & \leq & \lambda + (1-t) \, A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \\ & \leq & \lambda + \Gamma + t M, \end{array}$$

namely,

$$(\lambda + \Gamma + tM)^{-1} \leq \left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1}$$

$$\leq (\lambda + \gamma + tm)^{-1},$$

which gives that

(2.18)
$$(\lambda + \Gamma + tM)^{-2} \le \left(\lambda + (1 - t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-2}$$
$$\le (\lambda + \gamma + tm)^{-2}$$

for all $t \in [0, 1]$ and $\lambda > 0$.

By utilizing (2.17) and (2.18), we derive

$$(2.19) m(\lambda + \Gamma + tM)^{-2}$$

$$\leq \left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1}$$

$$\left(A^{-1/2}BA^{-1/2} - A^{-1/2}CA^{-1/2}\right)$$

$$\left(\lambda + (1-t)A^{-1/2}CA^{-1/2} + tA^{-1/2}BA^{-1/2}\right)^{-1}$$

$$\leq M(\lambda + \gamma + tm)^{-2}$$

for all $t \in [0, 1]$ and $\lambda > 0$.

If we multiply both sides by $A^{1/2}$ and then by $P^{1/2}$ we get

$$\begin{split} & m P^{1/2} A^{1/2} \left(\lambda + \Gamma + t M\right)^{-2} A^{1/2} P^{1/2} \\ & \leq P^{1/2} A^{1/2} \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2}\right)^{-1} \\ & \times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2}\right) \\ & \times \left(\lambda + (1-t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2}\right)^{-1} A^{1/2} P^{1/2} \\ & \leq M P^{1/2} A^{1/2} \left(\lambda + \gamma + t m\right)^{-2} A^{1/2} P^{1/2} \end{split}$$

and by taking the trace, we derive

$$(2.20) m \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + \Gamma + t M \right)^{-2} \right]$$

$$\leq \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + (1 - t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right]$$

$$\times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right)$$

$$\times \left(\lambda + (1 - t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right]$$

$$\leq M \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + \gamma + t m \right)^{-2} \right]$$

for all $t \in [0, 1]$ and $\lambda > 0$.

This is equivalent to

$$(2.21) m(\lambda + \Gamma + tM)^{-2} \operatorname{tr} \left(A^{1/2} P A^{1/2} \right)$$

$$\leq \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + (1 - t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right]$$

$$\times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right)$$

$$\times \left(\lambda + (1 - t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right]$$

$$\leq M (\lambda + \gamma + tm)^{-2} \operatorname{tr} \left(A^{1/2} P A^{1/2} \right)$$

for all $t \in [0, 1]$ and $\lambda > 0$.

If we take the integrals in (2.21), then we get

$$m \operatorname{tr} \left(A^{1/2} P A^{1/2} \right) \int_{0}^{\infty} \int_{0}^{1} \left(\lambda + \Gamma + t M \right)^{-2} dt d\lambda$$

$$\leq \int_{0}^{\infty} \int_{0}^{1} \operatorname{tr} \left[A^{1/2} P A^{1/2} \left(\lambda + (1 - t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} \right]$$

$$\times \left(A^{-1/2} B A^{-1/2} - A^{-1/2} C A^{-1/2} \right)$$

$$\times \left(\lambda + (1 - t) A^{-1/2} C A^{-1/2} + t A^{-1/2} B A^{-1/2} \right)^{-1} dt d\lambda$$

$$\leq M \operatorname{tr} \left(A^{1/2} P A^{1/2} \right) \int_{0}^{\infty} \int_{0}^{1} \left(\lambda + \gamma + t m \right)^{-2} dt d\lambda$$

namely, by (2.10)

$$(2.22) m \operatorname{tr} \left(A^{1/2} P A^{1/2} \right) \int_{0}^{\infty} \left(\int_{0}^{1} \left(\lambda + \Gamma + t M \right)^{-2} dt \right) d\lambda$$

$$\leq \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right]$$

$$- \operatorname{tr} \left[A^{1/2} P A^{1/2} \ln \left(A^{-1/2} C A^{-1/2} \right) \right]$$

$$\leq M \operatorname{tr} \left(A^{1/2} P A^{1/2} \right) \int_{0}^{\infty} \left(\int_{0}^{1} \left(\lambda + \gamma + t m \right)^{-2} dt \right) d\lambda.$$

Observe that

$$\int_{0}^{1} (\lambda + \gamma + tm)^{-2} dt = -\frac{1}{m} (\lambda + \gamma + m)^{-1} + \frac{1}{m} (\lambda + \gamma)^{-1}$$
$$= \frac{1}{m} ((\lambda + \gamma)^{-1} - (\lambda + \gamma + m)^{-1}),$$

which gives

$$M \int_0^\infty \left(\int_0^1 \left(\lambda + \gamma + t m \right)^{-2} dt \right) d\lambda = \frac{M}{m} \int_0^\infty \left(\left(\lambda + \gamma \right)^{-1} - \left(\lambda + \gamma + m \right)^{-1} \right) d\lambda.$$

By the first identity in (2.1) in the scalar case, we have

$$\ln (\gamma + m) - \ln \gamma = \int_0^\infty \left[(\lambda + \gamma)^{-1} - (\lambda + \gamma + m)^{-1} \right] d\lambda$$

and then

$$M \int_0^\infty \left(\int_0^1 (\lambda + \gamma + tm)^{-2} dt \right) d\lambda = M \frac{\ln (\gamma + m) - \ln \gamma}{m}$$
$$= \ln \left(1 + \frac{m}{\gamma} \right)^{\frac{M}{m}}.$$

Similarly,

$$m \int_0^\infty \left(\int_0^1 (\lambda + \Gamma + tM)^{-2} dt \right) d\lambda = m \frac{\ln (\Gamma + M) - \ln \Gamma}{M}$$
$$= \ln \left(1 + \frac{M}{\Gamma} \right)^{\frac{m}{M}}$$

and by (2.22) we get

$$\ln\left(1 + \frac{M}{\Gamma}\right)^{\frac{m}{M}} \operatorname{tr}(PA)$$

$$\leq \operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right] - \operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}CA^{-1/2}\right)\right]$$

$$\leq \ln\left(1 + \frac{m}{\gamma}\right)^{\frac{M}{m}} \operatorname{tr}(PA).$$

By taking the exponential, we derive

$$1 < \left(1 + \frac{M}{\Gamma}\right)^{\frac{m}{M}\operatorname{tr}(PA)} \le \frac{\exp\operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)\right]}{\exp\operatorname{tr}\left[A^{1/2}PA^{1/2}\ln\left(A^{-1/2}CA^{-1/2}\right)\right]} \le \left(1 + \frac{m}{\gamma}\right)^{\frac{M}{m}\operatorname{tr}(PA)}$$

for all $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$ and the inequality (2.14) is obtained.

Corollary 3. Assume that $0 < m \le B - C \le M$ and $0 < \gamma \le C \le \Gamma$ for some constants m, M, γ and Γ , then

$$(2.23) 1 < \left(1 + \frac{M}{\Gamma}\right)^{\frac{m}{M}} \le \frac{\Delta_P(B)}{\Delta_P(C)} \le \left(1 + \frac{m}{\gamma}\right)^{\frac{M}{m}}$$

for all $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

3. Related Results

Let C and B be strictly positive operators on a Hilbert space H such that $B-C\geq m>0$. In 2015, [21], T. Furuta obtained the following result for any non-constant operator monotone function f on $[0,\infty)$

$$(3.1) f(B) - f(C) \ge f(\|C\| + m) - f(\|C\|) \ge f(\|B\|) - f(\|B\| - m) > 0.$$
 If $B > C > 0$, then

(3.2)
$$f(B) - f(C) \ge f\left(\|C\| + \frac{1}{\|(B - C)^{-1}\|}\right) - f(\|C\|)$$
$$\ge f(\|B\|) - f\left(\|B\| - \frac{1}{\|(B - C)^{-1}\|}\right) > 0.$$

The inequality between the first and third term in (3.2) was obtained earlier by H. Zuo and G. Duan in [31].

If we write the inequality (3.1) for $f(t) = \ln t$, then we get for $B - C \ge m > 0$

(3.3)
$$\ln B - \ln C \ge \ln \left(\frac{\|C\| + m}{\|C\|} \right) \ge \ln \left(\frac{\|B\|}{\|B\| - m} \right) > 0.$$

If B > C > 0, then by (3.2) we get

(3.4)
$$\ln B - \ln C \ge \ln \left(\|C\| + \frac{1}{\|(B - C)^{-1}\|} \right) - \ln (\|C\|)$$
$$\ge \ln (\|B\|) - \ln \left(\|B\| - \frac{1}{\|(B - C)^{-1}\|} \right) > 0.$$

Proposition 2. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that $B - C \ge mA > 0$ with m > 0, then

(3.5)
$$\frac{D_{P}(A|B)}{D_{P}(A|C)} \ge \left(\frac{\|A^{-1/2}CA^{-1/2}\| + m}{\|A^{-1/2}CA^{-1/2}\|}\right)^{\operatorname{tr}(PA)} \\ \ge \left(\frac{\|A^{-1/2}BA^{-1/2}\|}{\|A^{-1/2}BA^{-1/2}\| - m}\right)^{\operatorname{tr}(PA)} \ge 1$$

If B > C > 0, then

$$(3.6) \qquad \frac{D_{P}(A|B)}{D_{P}(A|C)} \ge \left(\frac{\left\|A^{-1/2}CA^{-1/2}\right\| \left\|A^{1/2}(B-C)^{-1}A^{1/2}\right\| + 1}{\left\|A^{1/2}(B-C)^{-1}A^{1/2}\right\| \left\|A^{-1/2}CA^{-1/2}\right\|}\right)^{\operatorname{tr}(PA)}$$

$$\ge \left(\frac{\left\|A^{-1/2}BA^{-1/2}\right\| \left\|A^{1/2}(B-C)^{-1}A^{1/2}\right\|}{\left\|A^{-1/2}BA^{-1/2}\right\| \left\|A^{1/2}(B-C)^{-1}A^{1/2}\right\| - 1}\right) \ge 1.$$

Proof. Since $B-C\geq mA>0$, hence by multiplying both sides by $A^{-1/2}>0$, we get $A^{-1/2}BA^{-1/2}-A^{-1/2}CA^{-1/2}\geq m1_H>0$ and by (3.3) we get

$$\begin{split} & \ln \left(A^{-1/2}BA^{-1/2} \right) - \ln \left(A^{-1/2}CA^{-1/2} \right) \\ & \geq \ln \left(\frac{\left\| A^{-1/2}CA^{-1/2} \right\| + m}{\left\| A^{-1/2}CA^{-1/2} \right\|} \right) \geq \ln \left(\frac{\left\| A^{-1/2}BA^{-1/2} \right\|}{\left\| A^{-1/2}BA^{-1/2} \right\| - m} \right) > 0. \end{split}$$

If we multiply both sides by $A^{1/2} > 0$, then by $P^{1/2} \ge 0$ and take the trace, we get

$$\begin{split} &\operatorname{tr}\left(P^{1/2}A^{1/2}\ln\left(A^{-1/2}BA^{-1/2}\right)A^{1/2}P^{1/2}\right) \\ &-\operatorname{tr}\left(P^{1/2}A^{1/2}\ln\left(A^{-1/2}CA^{-1/2}\right)A^{1/2}P^{1/2}\right) \\ &\geq \ln\left(\frac{\left\|A^{-1/2}CA^{-1/2}\right\|+m}{\left\|A^{-1/2}CA^{-1/2}\right\|}\right)\operatorname{tr}\left(P^{1/2}AP^{1/2}\right) \\ &\geq \ln\left(\frac{\left\|A^{-1/2}BA^{-1/2}\right\|}{\left\|A^{-1/2}BA^{-1/2}\right\|-m}\right)\operatorname{tr}\left(P^{1/2}AP^{1/2}\right) > 0. \end{split}$$

By taking the exponential, we get (3.5).

If
$$A^{-1/2}BA^{-1/2} > A^{-1/2}CA^{-1/2} > 0$$
, then by (3.4) we get
$$\ln A^{-1/2}BA^{-1/2} - \ln A^{-1/2}CA^{-1/2}$$

$$\geq \ln \left(\left\| A^{-1/2}CA^{-1/2} \right\| + \frac{1}{\left\| A^{1/2}\left(B - C \right)^{-1}A^{1/2} \right\|} \right)$$

$$- \ln \left(\left\| A^{-1/2}CA^{-1/2} \right\| \right)$$

$$\geq \ln \left(\left\| A^{-1/2}BA^{-1/2} \right\| \right)$$

$$- \ln \left(\left\| A^{-1/2}BA^{-1/2} \right\| \right)$$

If we multiply both sides by $A^{1/2} > 0$, then by $P^{1/2} \ge 0$ and take the trace, we get (3.6).

Corollary 4. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that $B - C \ge m > 0$ with m > 0, then

(3.7)
$$\frac{\Delta_P(B)}{\Delta_P(C)} \ge \frac{\|C\| + m}{\|C\|} \ge \frac{\|B\|}{\|B\| - m} \ge 1$$

If B > C > 0, then

$$(3.8) \qquad \frac{\Delta_P(B)}{\Delta_P(C)} \ge \frac{\|C\| \|(B-C)^{-1}\| + 1}{\|(B-C)^{-1}\| \|C\|} \ge \frac{\|B\| \|(B-C)^{-1}\|}{\|B\| \|(B-C)^{-1}\| - 1} \ge 1.$$

References

- S. S. Dragomir, Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74 (2006), no. 3, 471–478.
- [2] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225–248.
- [3] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Applied Mathematics and Computation, 218 (2011), Issue 3, pp. 766-772.
- [4] S. S. Dragomir, Some inequalities for relative operator entropy, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [http://rgmia.org/papers/v18/v18a145.pdf].
- [5] S. S. Dragomir, Some Grüss type inequalities for trace of operators in Hilbert spaces, Oper. Matrices, 10 (2016), no. 4, 923-943. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 114. [https://rgmia.org/papers/v17/v17a114.pdf].
- [6] S. S. Dragomir, Some trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, Korean J. Math., 24 (2016), no. 2, 273-296. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 115. [https://rgmia.org/papers/v17/v17a115.pdf]
- [7] S. S. Dragomir, Jensen's type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, Facta Univ. Ser. Math. Inform., 31 (2016), no. 5, 981-998. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 116. [https://rgmia.org/papers/v17/v17a116.pdf].
- [8] S. S. Dragomir, Some Slater's type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, *Toyama Math. J.*, 38 (2016), 75-99. Preprint *RGMIA Res. Rep. Coll.*, 17 (2014), Art. 117. [https://rgmia.org/papers/v17/v17a117.pdf].
- [9] S. S. Dragomir, Trace inequalities of Cassels and Grüss type for operators in Hilbert spaces, Acta Univ. Sapientiae Math., 9 (2017), no. 1, 74-93. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 121. [https://rgmia.org/papers/v17/v17a121.pdf].

- [10] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [11] S. S. Dragomir, Some properties of trace class *P*-determinant of positive operators in Hilbert spaces, Preprint *RGMIA Res. Rep. Coll.* **25** (2022), Art. 15, 14 pp. [Online https://rgmia.org/papers/v25/v25a16.pdf].
- [12] S. S. Dragomir, Some properties of trace class entropic P-determinant of positive operators in Hilbert Spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 49, 14 pp. [Online https://rgmia.org/papers/v25/v25a49.pdf].
- [13] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530.
- [14] S. Furuichi, K. Yanagi, K. Kuriyama, Fundamental properties for Tsallis relative entropy, J. Math. Phys. 45 (2004) 4868–4877.
- [15] S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Ineq. Appl. 18 (2015), 869–877.
- [16] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595–600.
- [17] J. I. Fujii and E. Kamei, Uhlmann's interpolational method for operator means. Math. Japon. 34 (1989), no. 4, 541–547.
- [18] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory. Math. Japon. 34 (1989), no. 3, 341–348.
- [19] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.
- [20] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [21] T. Furuta, Precise lower bound of f(A) f(B) for A > B > 0 and non-constant operator monotone function f on $[0, \infty)$. J. Math. Inequal. 9 (2015), no. 1, 47–52.
- [22] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. Monographs in Inequalities, 1. Element, Zagreb, 2005. xiv+262 pp.+loose errata. ISBN: 953-197-572-8.
- [23] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645.
- [24] I. H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53(2012), 122204
- [25] P. Kluza and M. Niezgoda, Inequalities for relative operator entropies, Elec. J. Lin. Alg. 27 (2014), Art. 1066.
- [26] M. S. Moslehian, F. Mirzapour, and A. Morassaei, Operator entropy inequalities. Collog. Math., 130 (2013), 159–168.
- [27] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras. Proc. Japan Acad. 37 (1961) 149–154.
- [28] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376-383.
- [29] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [30] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. Phys. Volume 54, Number 1 (1977), 21-32.
- [31] H. Zuo, G. Duan, Some inequalities of operator monotone functions. J. Math. Inequal. 8 (2014), no. 4, 777–781.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

 URL : http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA