SOME IMPROVEMENTS OF THE MONOTONICITY PROPERTY
FOR RELATIVE ENTROPIC NORMALIZED P-DETERMINANT
OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by

Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .
In this paper we show among others that, if C > m1A > 0, B > m2A > 0,
A>0and P >0 with P € By (H) and tr (P) =1, then
exp (7<1> (m1,ma) tr (PA) HA—1/2 (B—C) A‘1/2H>
Dp (AB)
= Dp (4C)

< o (2[5 -0 4-]).

1 —1 .
% if mo # ma,
® (m1,m2) :=

1. _ _
Elfmzfmlfm.

where

1. INTRODUCTION

In 1952, in the paper [13], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T'| := (T*T)"/? its modulus. By the spectral theorem
one can represent 1" as an integral

T = / AE (X)),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure pp := 7o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :==exp (/ lntduT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1g stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [19], [20], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [23].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) [A]l < [|All

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Aec By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [l = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(1.11) b1 (AT) = tr (TA) and |ox (AT)| < | A], I1T] ;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T' € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € B, (H),
hence PY/?TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For recent results on trace inequalities see [3]-[10] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [11]:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tly) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [11], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr (PA) <exp [tr (PA) tr (PA™") —1]

~ Ap(4)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [12]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

= exp In (t_ tr(PA)t) [exp (— tr (PA In A))]_t 5
hence
(1.13) np(tA) =t D [y (A)]

fort >0 and A > 0.
Observe also that

(1.14) np(lg) =1 and np(tly) =t~

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [12]

(1.15) np((L =) A+1tB) > [np (A)]' " [np (B))'

for all t € [0,1].
Also we have the inequalities [12]:

—tr(PA
tr (PA?) o)
tr? (PA) = Jtr (PA)]T P T
and if there exists the constants 0 < m < M such that mly < A < M1y, then
[12]
—tr(PA
(m+M>—2M § <m+M>—2tr(PA) ) tr (PAQ) tr(PA)
2vmM —\2vmM ~ | tr? (PA)

UP(A)
[tr (PA)]” TP~

Kamei and Fujii [17], [18] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by

N

(1.16) S(AB) = A% (n (4" BA™E)) A2,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[27]. For various results on relative operator entropy see [14]-[28] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (A|B) = exp{tr [PS (A|B)]}
= exp {tr [PA% (ln (A*%BA*%)) A%] } .
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We observe that for A > 0,
Dp (A|ly) = exp{tr [PS (A|1g)]} = exp {tr (—PAIn A)} = np(4),
where 7p(-) is the entropic P-determinant and for B > 0,
Dp (1u|B) i= exp {t [PS (14]B)]} = exp {tx (PIn B)} = Ap(B),

where Ap(-) is the P-determinant.

Motivated by the above results, in this paper we show among others that, if
C>mA>0,B>meA>0,A>0and P >0 with P € By (H) and tr (P) = 1,
then

exp (*(I)(mhmz)tr (PA) HA 2(B-C)A 1/2")
< Dp (A|B)
= Dp(A[C)
<exp (@ (my,mg)tr (PA) HA 2(B-C)A 1/2H)

where
Inms—Inm,y

rp——— if mo # myq,

P (ml,mg) =

1 — =
mlfmg—ml—m.

2. MAIN RESULTS

We can state the following representation result that is of interest in itself. In
order to simplify the notations, instead of A1y with scalar A, we write just A.

Lemma 1. For all T, V > 0 we have
(2.1) InV —InT

—/OOO (D7) =)
:/Oo </1 At (=0T V)" (V—T)()\+(1—t)T+tV)_1dt> dx.
0 0

Proof. Observe that for t > 0, t # 1, we have

/“ d\ _ Int n 1 In u+t
o A+t)A+1)  t—1 1—-t \u+l
for all u > 0.

By taking the limit over © — oo in this equality, we derive

Int / o dX
t—1 Jo A+t)(A+1)’
which gives the representation for the logarithm

o0 A
(2.2) lnt:(t—l)/o Es e

for all £ > 0.
If we use the continuous functional calculus for selfadjoint operators, we have

(2.3) lnT:/oo%H(T—l) (A+T)""dx
0

for all operators T' > 0.
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We have from (2.3) for T, V > 0 that
(24) InV-InT= /OOO ALH [(V— DOA+V) ' —(T-1) (/\+T)—1} .
Since
V-1DMN+V)"' =T -1)A+T)"
VOV =T+ = ()T = (D)
and
VOo+v)y =T +1)!
—(VHEA-NA+WV) ' =T +r=NOA+1)"!
—1-AQ+V) T =14+ A0+ T = A0+ D) T =AM+ V)
hence
V-1)A+WV)'=T-1)A+1T)""
AN ANV ((/\+ vyt - (/\+T)_1)
=(A+1) {()\+T)’1 — (A V)*l}
and by (2.4) we get
—InT = > -1 -1
(2.5) IV —InT /O [(A+T) A +V) ]dA,

we proves the first equality in (2.1).

Consider the continuous function g defined on an interval I for which the cor-
responding operator function is Gateaux differentiable on the segment [C, D] :
{1=t)C+1tD, t€]0,1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

fC,D (t) :f((l_t)c+tD)7 te [071}
Then we have, by the properties of the integral, that

1 1
FD) =10 = [ §en@it= [ Vi peun (D=0t

If we write this equality for the function f(t) = —t~! and C, D > 0, then we get
the representation

1
(26) Cl-D'= / (1= #)C+tD)" (D —C) (1 —)C + D) d.
0
Now, if we take in (2.6) C =A+T, D = A+ V, then

(2.7) A+T) ' =N+ V)
:/1((1—t)()\+T)+t()\+V))_1 (V=T)
0
X (1=t)A+T)+tA+V)) " dt

_/1 A+Q =T +tV) " (V-T) AN+ (1 —t)T+tV) " dt.
0
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By employing (2.7) and (2.5) we derive the desired result (2.1). O

Theorem 4. Assume that A, B, C' >0 and P > 0 with P € By (H) and tr (P) =1,
then

Dp (A|B) _ > 1/2p A1/2 —1/2 —1/2 -1
Dy (A10) (Al0) = exp /o tr |A/*PA ()\+A CA )

—1
—tr [A1/2PA1/2 ()\ i A—l/QBA—l/Q) ] } dA)

(2.8)

eS] 1 -1
= exp/ / tr [A1/2PA1/2 ()\ +(1—t)A™V2CcA2 ¢ A‘l/QBA‘W)
0 0

% (A—l/QBA—1/2 _ A—1/2CA—1/2)

—1
X (/\ +(1—t)AV2CcA2 4 tA*WBA*l/?) } dtd/\) :

Proof. If we take V.= A~Y2BA~Y2 and T = A~Y2CA~1/2, then we get the
identity
29) In (A*1/2BA*1/2) —In (A*1/2CA*1/2)
[e%e] —1 —1
:/ [()\—i—A_l/QCA_l/Q) — (A+ a7 2pan?) ]d)\
0
[eS) 1 1
:/ / (A+ (1 —t)A‘l/QCA_l/Q+A‘1/2BA_1/2>
o Jo
% (A’1/2BA’1/2 B A’l/QC’A’l/Q>

-1
x (A+ (1—t)A~120A1/2 +tA‘1/QBA‘1/2) dtd.
We multiply both sides by A'/2, then we get

A2 (A71/2BA71/2) AV2 _A1/2, (A71/2CA71/2) AL/2
[e%s) —1 —1

- / {AW (A+A72CAT2) a2 12 (g AT 2pATYR) Al/ﬂ dA
0
o] 1 -1

= / A2 ()\+ (1—t)A2cAa™!/? +A’1/2BA*1/2)
o Jo

% (A71/2BA71/2 _ A71/20A71/2)

—1
X ()\ F(1—t)ATV20A7Y2 4 tA*l/QBAfl/z) AY24dtd).
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If we multiply both sides of this equality by P'/2, take the trace and use its prop-
erties, then we get

(2.10) tr [A1/2PA1/2 In (A*l/QBA*/?)} —tr [Al/QPAl/Q In (A*”QCA*/?)}

/oo {tr [Al/?PAl/2 ()\ + A*WCA*/?) _1]
0

—1
—tr [Al/?PAl/2 (A + A*l/QBA*1/2> ] } d\

00 1 _1
= / / r [Al/?PAl/2 (A+(=pa2oat2 4 A 2pa?)
0 0
% (A’l/zBA’l/z _ A’I/QCA’1/2>

-1
x ()\ +(1—t)AV2cA12 4 tA—1/2BA—1/2) } dtd\.
If we take the exponential, then we get the desired identity (2.11). O

Corollary 1. Assume that B, C > 0 and P > 0 with P € By (H) and tr (P) =1,
then

38 o [ e[ - wpire )

:exp/ooo/oltr[P(A+(l—t)C+B)1(B—C)

XA+ (1—1)C+ tB)*l] dtd).

(2.11)

It follows by (2.8) for A =1g.

Theorem 5. Assume that C > miA >0, B> msA >0, A >0 and P > 0 with
P e By (H) and tr (P) =1, then

(2.12) exp (—fI) (my,m2) tr (PA) HA_1/2 (B—-C) A—1/2H>
Dp (A|B)
— Dp(A|C)

< exp (@ (my,mg) tr (PA) HA—1/2 (B -C) A—1/2H) :

where

1 —1 .

ma—Inms yf py £ my,
(0] (ml, m2) =

1

— if mg =my = m.
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Proof. If we take the modulus in (2.10), then we get
tr [AY2P A2 (A72BAT2) | tr [AY2PAY2 I (A7 20 A1) |

Il

y (A—l/QBA—l/Q _ A—1/2CA—1/2)

(2.13)

—1
tr [A”QPAW ()\ b (1—t)A"V20A? 4 A‘l/QBA‘l/Q)

X ()\ P (1) ATV20AY? 4 tAl/ZBAW)l} ‘dtdA
< HA1/2PA1/2H HA71/2BA71/2 _ A71/20A71/2H
1

S

1 —1
</\ F(1—t)ATV20ATY2 4 tA*WBA*”Q) dtd)\
— tr (PA) ]A*l/zBfrl/2 - A*l/QCA*NH

2

fe%s) 1 1
X / / </\ +(1—t)A"V2CAY? 4 tA‘l/QBA‘l/Q) dtd\
0 0

Since C' > mqA > 0, B > moA > 0, then A~Y/2CA~Y/2 > mq and A~Y/2BA1/2 >
mso.
Assume that mo > mq. Then

(1—t) A"YV2CA™Y2 14 A7YV2BAY2 X > (1= t)my +tma + A,
which implies that
-1
((1 —t) ATYV2CATY? 4 1AV BATY? )\)

<((1=t)my +tma+ A",

and
2

-1
H ((1 — ) ATY2CATV2 4 ATV BATY2 o /\>

<((1=t)ymy +tmy +A)"°

for all t € [0,1] and A > 0.
Therefore

(2.14) ‘tr {AWPAI/Q In (A*WBA*W)} b {AWPAW In (A*WCA*W)] ’

<t (PA) [A712BAT Y2 - 42012

x/ooo </01((1—t)m1+tm2+)\)2dt>d)\

_ tr (PA) HA_1/2BA_1/2 _ A—1/2CA—1/2H

ma — MMy

‘ /0oo (/01 (1 =1t)mq +tmy _‘_)\)71

% (ms —mi) (1 — t)my + tms + A) " dt) d,
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for P > 0 with P € By (H) and tr (P) = 1.
If we use the identity (2.1) for T'=my, V = my we get the scalar identity

) 1
lnmg—lnmlz/ (/ (1 = t)my + tmg + A) "' (mg —my)
0 0
x (1 —t)my +tmg + \)~" dt) X
and by (2.14) we obtain

tr [AV2PAY I (ATY2BAT2) | < [AV2PAY I (4720712 |

Inms —Inm
< 2 1

tr(PA)||A=/2BA"12 — a1 20a1 2|
ma — My
for P> 0 with P € By (H) and tr (P) = 1.

The case mg < mj goes in a similar way.

Now, assume that C > mA > 0, B > mA > 0. Let ¢ > 0, then A~1/2BA~1/2 4+
e >m+e Put mg = m+e>m = m. If we write the inequality (2.13) for
A"Y2BA-Y2 4 ¢ and A, we get

tr [AV2PAY I (A72BAT2) | < [AV2PAY I (A7 202 |

In(m+¢€) —Ilnm

tr (PA) HAfl/zBAfl/z +e— A71/2CA71/2H

€
for P> 0 with P € By (H) and tr (P) = 1.
If we take the limit over € — 0+ and observe that

. In(m+e€)—Ilnm 1
lim —
e—0+ € m

then we get
tr [AV2PAY 200 (A72BAT2) | < [AV2PAY I (47120712 |

< 1 tr (PA) HA71/2BA71/2 +1— A—1/20A71/2H
m

for P> 0 with P € By (H) and tr (P) = 1.
Therefore

— ® (mq, ms) tr (PA) HA—l/QBA—1/2 B A_1/2CA_1/2H
< tr {A1/2PA1/2 In (A_I/QBA_I/z)} —tr [A1/2PA1/2 In (A_l/QCA_l/Qﬂ
< @ (ma,ma) tr (PA) 471234712 - A7V 20A712)

for P > 0 with P € By (H) and tr (P) = 1, which, by taking the exponential, gives
the desired result (2.12). O

Corollary 2. Assume that C > my >0, B > ms >0 and P > 0 with P € By (H)
and tr (P) =1, then

(2.15) exp (=@ (m1, ma) |B - Cl|) <

< exp (® (m1,m2) | B - C).
The proof follows by Theorem 5 for A = 1g.
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Theorem 6. Assume that for A>0,0<mA<B-C<MAand0<~yA<LC<
T'A for some constants m, M, yand T, then

if tr(PA) M tr(PA)
M) <DP(AB)S<1+7TL>

(2.16) 1< (1 + T < Br(Al0)

for all P> 0 with P € By (H) and tr (P) = 1.

Proof. Since 0 < mA < B — C < MA, hence by multiplying both sides by A~1/2
then

0<mly <A YV2BA Y2 _ A='20AY2 < M1y

by multiplying both sides by (A + (1 —t) A~Y/2CAY2 + tA‘l/QBA_l/Q)_1 >0

we derive
(2.17) m(>\—|—(1—t) A71/20A71/2—|—tA*1/2BA*1/2)72
< (/\ +(1—t) A V20A7 12 ¢ tA*l/"’B/rl/?)_1
% (A—l/zBA—l/z B A—l/QcA—l/Q)
x (A -paTroay tA*l/QBA*W)_l
<M(A+(1-tAa oA tA*1/2BA*1/2)_2

for all t € [0,1] and A > 0.
Observe that

(1—t)A"Y2CA™Y2 4t A=Y2BA—Y/?
—AV20471/2 41y (A—l/QBA—1/2 _ A—1/2CA—1/2) ,

and since v < A~1/2CA~1/2 < T, hence

A+ (1—t)AYV2CA™Y2 4 A1 /2BATL/?
A+T +tM,

Ad+y+tm <
<

namely,

—1
AT+ < (A+(1-HAT2CA 2447 2pA2)

A+ +1tm)~",

IA

which gives that
-2
(218) (A+T+tM) %< (A +(1—t)AV20A2 4 tA‘l/QBA‘1/2)
<Aty +tm)?

for all ¢t € [0,1] and A > 0.
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By utilizing (2.17) and (2.18), we derive
(2.19) m (A4 +tM)™>
<(r+@-parroay tA*1/2BA*1/2>_1
(A71/2BA71/2 _ A71/20A71/2>
()\ F(1—t)ATV20A7Y2 tA*l/?BA*/?)_1
<M A+~ +tm) >

for all t € [0,1] and A > 0.
If we multiply both sides by A'/2and then by P'/? we get

mPY2AYV2 (N 4T +tM) "2 A2 pl/2
-1
< pY/271/2 (A P (1—t)AV20A2 4 tA*l/QBA*/?)

< (A—1/2BA—1/2 - A—1/20A_1/2>
X (/\ +(1—t)A"V20A" Y2 ¢ tAfl/QBA*1/2> ~2pe
< MPY?2A1/2 ()\—i—'y +tm)_2 Al/2p1/2
and by taking the trace, we derive
(220)  mtr[AV2PAY2(A 4T+ 0) ]
<tr [A1/2PA1/2 ()\ +(1—t)ATPCAT2 tA—1/2BA—1/2)_1
% (A—1/2BA—1/2 _ A—l/ZCA_l/Q)
X (A +(1—t)A"V20A7Y2 4 tA‘l/QBA—1/2>1]
< Mt [AV2PAY (A4 4 tm) 7]

for all ¢ € [0,1] and X\ > 0.
This is equivalent to

(221)  mA+T+tM) *tr (A1/2PA1/2)
<tr [141/2P,41/2 ()\ (1) AY20A Y2 tA_1/zBA_1/2)*1
% (A—l/ZBA—l/Q _ A—l/QCA_1/2>
X ()‘ +(1—t)APCAT? 4 tAl/QBAl/Z)_l]
<M +7y+tm) r (A1/2PA1/2)

for all t € [0,1] and A > 0.
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If we take the integrals in (2.21), then we get

0o 1
mtr (A1/2PA1/2>/ / (A +T + tM) 2 dtdx
0 0

[e’s} 1 1
g/ / tr [Al/QPAl/Z (H(1_t)Afl/QCAfl/Q+tA*1/2BA*1/2)
o Jo
% (A’1/2BA’1/2 B A’1/2C’A’1/2)

-1
X (A +(1—t)A~Y2cA™1/? +tA*1/2BA*1/2) } dtd\

o) 1
§Mtr(A1/2PA1/2)/ /(A+7+tm)72dtd)\
0 0
namely, by (2.10)
e} 1
(2.22) mtr (A1/2PA1/2) / ( / (>\+F+tM)2dt) d\
0 0
< tr [AWPAU2 In ( —1/23,4—1/2)}
e [A1/2PA1/2 In (A*1/2CA*1/2)}

[e%s} 1
< Mtr (Al/QPA1/2> / (/ A+ +tm) > dt) dA.
0 0

Observe that

1
-2 _ i -1 l -1
/0 A+y+tm) " dt = m(/\+'y+m) +m(A+v)

= (O = )Y,

m

which gives

M/OOO (/01(A+7+tm)2dt)d>\:]\n{/ooo ((A+7>*1—(A+v+m)*1)cu.

By the first identity in (2.1) in the scalar case, we have

1n(7+m)—1m—/000 [(A+7)*1—(A+w+m)*1} dX

and then
[e’e) 1 B 1 71
M </ A+ + tm) 2dt> ir= i Fm =iy
0 0 m
M
=1In <1 + m) .
Y
Similarly,

ool In(I'+M)—InT
m/ (/ ()\+F+tM)_2dt>d)\:mn( +M)—In
0 0 M

B
—n(1+=
(1)
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and by (2.22) we get

(1 + ) L (PA)

<tr[AV2PAY2 I (A712BAT) | < [AV2PAV2 I (47120 A7) |

M

< (1+m>mtr(PA).
Y

By taking the exponential, we derive

» (1 M) = tr(PA) _ exp tr [A1/2PA1/2 In (A’1/2BA*1/2)}
T ~ exptr [A1/2PAY/2In (A-1/2CA-1/?)]

% tr(PA)
m
< <1 + )
0

for all P > 0 with P € By (H) and tr (P) = 1 and the inequality (2.14) is obtained.
d

Corollary 3. Assume that 0 <m < B—C < M and 0 < v < C < T for some
constants m, M, v and T', then

M\ Ap(B) ( m>%
2.23 1< {1+ —= < < (14—
(223) < F) ~Ap(C) T ¥
for all P >0 with P € By (H) and tr (P) = 1.

3. RELATED RESULTS
Let C' and B be strictly positive operators on a Hilbert space H such that
B —C > m > 0. In 2015, [21], T. Furuta obtained the following result for any
non-constant operator monotone function f on [0, 00)
31 fB)=f@) = fUCl+m)—fdICl) = fABI) = fUB|—m)>o0.
If B> C >0, then

32 f®-f©) = flIcl+ ——0 | -rach
[-or

> (Bl - 1 B”H(BlO)_lu

The inequality between the first and third term in (3.2) was obtained earlier by
H. Zuo and G. Duan in [31].
If we write the inequality (3.1) for f (¢) = Int, then we get for B—C >m >0

ICll+m 1Bl
(3.3) InB—InC >1In < >In|(—=——]>0.
1€ 1Bl —m
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If B> C >0, then by (3.2) we get

(3.4) mB—1InC>n (||0|| + 11) “m(C])
|-

> In([|B]]) - In (HB” - M) > 0.

Proposition 2. Let P > 0 with P € By (H) and tr (P) = 1. Assume that B—C >
mA > 0 with m > 0, then

(3.5)

Dp(AlB) |A=V2CA=12|| 4 m tr(PA)
Dp (A|C) — [A—172C A1/

|| —1/2 71/2” tr(PA)
> >1
HA—l/QBA—l/QH -m

If B>C >0, then

tr(PA)

—1/2 —1/2 1/2 _ -1 41/2
. DP(A|B)2(||A cA 2| a2 B-c) A H+1)

Dp (A|C) HA1/2 (B—C)_l Al/zH HA—l/QCA—l/QH
|A-1/2BA-12)| HA1/2 (B—C)! A1/2H
> >1
B <||A1/2BA1/2|| |41z (B - )t || - 1)

Proof. Since B — C > mA > 0, hence by multiplying both sides by A=/2 > 0, we
get ATY/2BAY2 — A=Y2C A2 > mly > 0 and by (3.3) we get

In (A*1/2BA*1/2) I (A71/2CA71/2)

.- HA_l/QCA_l/QH—I—m - HA—1/2BA—1/2H -
A ) 2 M\ ) 7

If we multiply both sides by A2 > 0, then by P'/2 > 0 and take the trace, we get
tr (P1/2A1/2 In (A—l/zBA—1/2) A1/2P1/2)

ity (P1/2A1/2 In (A—1/2CA—1/2) A1/2P1/2>

JA-2042] 4
> In < A2 tr (p1/2AP1/2)

A B
~\[ATEBAT A = m

) tr (P1/2AP1/2) > 0.

By taking the exponential, we get (3.5).
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If A=V/2BA=Y2 > A=12CA~1/2 > 0, then by (3.4) we get
InA~Y2BA"Y?2 —1n A~YV20 A2

1
HAl/z (B — C’)_l Al/zH

>n | [|a=V20a712]| +
(s
>n ([|a-12pa712)

1
‘ - HA1/2 (B—0)! A1/2H

“In ‘A‘l/QBA‘l/Q

> 0.

If we multiply both sides by A2 > 0, then by P'/2 > 0 and take the trace, we get
(3.6). O

Corollary 4. Let P > 0 with P € By (H) and tr (P) = 1. Assume that B — C >
m > 0 with m > 0, then

Ap(B) _ [Cll+m _ _|B]

(3.7) 3@ = el S TBl-m ="
If B> C >0, then
arw) _ ICl|B-0 [ +1_sife-o
(8 Ao 2 [E=cr el “ 151 |B-oyf|-1~
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