ON THE SUB-MULTIPLICATIVE PROPERTY FOR THE
RELATIVE ENTROPIC NORMALIZED P-DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B(H) and tr(P) = 1. For
positive invertible operators A, B we define the relative entropic normalized
P-determinant by
Dp (A|B) = exp {tr [PA% (1n (A*%BA*%)) A%] } .
Assume that A, B, C >0 and P > 0 with P € B; (H) and tr (P) = 1. In this
paper we show among others that, if BA~1C + CA~1B > 0, then
Dp (A|B+C+ A) < Dp (A|B+ A)Dp (A|C + A).
If B4+ C < ©A, with © a positive constant, then
Dp (A|B+ A)Dp (A|IC+ A)
Dp (A|IB+C+ A)
< exp [@2 tr <A1/2PA1/2 (B+C+ A)—l)] .

1. INTRODUCTION

In 1952, in the paper [13], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 1" as an integral

T / ME (),
Sp(T)

where E ()) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp </ lntduT> .
0

If T is invertible, then
Apk (T) := exp (7 (In (|T7))),

where In (|7']) is defined by the use of functional calculus.
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Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and 1g stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [19], [20], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [24].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 * 2
(1.2) Do lAell® = IAL1T =D 147
i€l jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) Al = <2Aei|2>
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in 2 (1), one checks that By (H) is a vector space
and that ||-||, is a norm on Bs (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)'/?

Because |||A| z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A4|, = [||A]|l,. From (1.2) we have that if A € By (H), then A* €
By (H) and [|All, = | A%],

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y (B*Aeie;)
i€l i€l
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

(1.5) [A]l < [| Al

iel’



ON THE SUB-MULTIPLICATIVE PROPERTY 3

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, [T Ally < 1T 1Al

(#ii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1Al ==Y (|Al i, ei) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei},cr - We denote by By (H) the set of trace class operators in B (H).
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[A]l,
for any A€ By (H);

(i1) By (H) is an operator ideal in B (H), i.e.

B(H)Bi (H)B(H) < Bi(H);
(iti) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup {(A, B), | B € By (H), |Bl,<1};

(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) = (Aej,e;),

i€l

where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr (P1/2TP1/2)

forall T € B(H).

If T >0, then PY/2TP'Y/? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 3 T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT'), namely
B(H) > T+ tr (PT) is also continuous in the norm topology.

For recent results on trace inequalities see [3]-[10] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [11]:

(i) continuity: the map A — Ap(A) is norm continuous;
(i) power equality: Ap(At) = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tAp(A) and Ap(tly) =t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In [11], we presented some fundamental properties of this determinant. Among
others we showed that

tr (PA) 1
1< < exp [tr (PA) tr (PA -1
< Ap(a) <ol @Ay (PAT) —1]
and
Ap (A
< #)71 < exp [tr (PA_l) tr (PA) — 1] ,
[tr (PA~1)]
for A>0and P > 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tlnt¢, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by [12]

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/zn (A) Pl/z} } .
Observe that the map A — np(A) is norm continuous and since
exp (—tr{P[tAln (tA)]})

=exp(—tr{P[tA(lnt+InA)]}) =exp(—tr{P (tAlnt+tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

— expln (ftr(PA)t) [exp (— tr (PAIn A))] 7",
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hence
(1.13) np(tA) =t~ D [ (A) 7
for ¢t >0 and A > 0.
Observe also that
(1.14) np(lg) =1and np(tly) =t"

for ¢t > 0.
Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we have the Ky
Fan type inequality [12]

(1.15) np((1 =) A+tB) > [np (A" [np (B)]'

for all t € [0,1].
Also we have the inequalities [12]:

—tr(PA
w(Pa)] "
tr? (PA) T [t (PA)TEEA T
and if there exists the constants 0 < m < M such that mly < A < M1y, then
[12]
—tr(PA
<m+M>2M ) <m+M>2tr(PA) ) tr (PAQ) tr(PA)
2vmM —\2vmM ~ | tr? (PA)

np(A)
T ftr(pA) TN T
Kamei and Fujii [17], [18] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by
(1.16) S(A|B) == A% (m (A—%BA—%))A%,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[28]. For various results on relative operator entropy see [14]-[29] and the references
therein.

Definition 1. Let P > 0 with P € By (H) and tr (P) = 1. For positive invertible
operators A, B we define the relative entropic normalized P-determinant by

Dp (A[B) := exp{tr [PS (A|B)]}
— exp {tr [PA% (1n (A—%BA—%)) A%} } .
We observe that for A > 0,
Dp (Ally) := exp{tr [PS (A[1p)]} = exp {tr (~PAIn A)} = np(4),
where 77,(-) is the entropic P-determinant and for B > 0,
Dp (1u|B) i= exp {tr [PS (1] B)]} = exp {tx (PIn B)} = Ap(B),

where Ap(-) is the P-determinant.
Assume that A, B, C > 0 and P > 0 with P € B; (H) and tr (P) = 1. In this
paper we show among others that, if BA='C' + CA~'B > 0, then

Dp (A|B+C+ A) < Dp (A|B + A) Dp (A|C + A).
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If B+ C <©A, with © a positive constant, then
Dp (A|B+ A)Dp (A|C + A)
Dp(AB+C+A)

< exp [@2 tr (,41/213,41/2 (B+C + A)*l)} .

2. SOME PRELIMINARY FACTS

To simplify the notations, instead of aly we write @ when this is a scalar. The
following representation result holds:

Lemma 1. For all U, B > 0 and a > 0 we have
(2.1) In(U+a)+In(V+a)—In(U+V +a)—Ina

:/ (a+)\)_1S(/\,a,U,V)d)\+/ (a+X)""Q(\a,U,V)dA,
0 0

where
SNa,UV):=U+V+a+N) " UV+VU)(U+V+a+N)""
and
QN a,UV):=U+V+a+"
X [V(U+a+/\)_1UV+U(V+a+>\)_1VU
x(U+V+a+N)™"
for A > 0.

Proof. Observe that for ¢t > 0, t # 1, we have

/“ d\ _Int n 1 I u+t
o A+t)yA+1) t—1 1-t u+1
for all u > 0.

By taking the limit over © — oo in this equality, we derive

Int _/°° d\
t—1  Jo A+t)(A+1)

which gives the representation for the logarithm

e dA
2.2 Int=(t—-1 —_——
22) nt = )/0 A+ (A +1)
for all ¢t > 0.
If we use the continuous functional calculus for selfadjoint operators, we have
oo

1 -1
2.3 InT = —— (T -1 (A+T) "dX
(2.3 oT= [ @-D(+7)

for all operators T > 0.
Observe that

/OmAlﬂ(Tl)(MT)ldA—/OOO11(T+AA1)(A+T)1dA

:/OO A+ = +T) " dA
0
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and then

InT = /Ooo [(A F)T O T)*l} d).
Therefore
(2.4) m@Ha)HMV+a)IMU+V+®maAMKWA
where

Kyi=U+V+a+N) 4@+ —U+a+A) ' =V+at+".
To simplify calculations, consider § := a + A and set
Li=U4V4+0) "+ —U+8 "' =(V+6".
If we multiply both sides by U +V + § we get
Ws:=(U+V +08)Ls (U+V +9)

—(U+V+8)+6U+V+6)?
—(U+V+0) (U486 (U+V+0)
—(U+V 48V 48 U+V+0)
—U+V+0)+5 " (U+V+6)
—(U+V+0) -V U+6) " (U+V+90)
—UWV4+0) " (U+V+68)—U+V+9)
=0 U+ V+0)’ -V U+6) ' V-V
—U(V+8)'U-U—-(U+V +90)

=0 L (U + UV +6U + VU + V2 46V 46U + 6V + %)
— V(U8 V-2 UV 4686 U-20-6
=0 U+ UV +VU+V?) +2V +2U +6
— VU8 'V-UWV+§)T'U-2U0-2V -4
=0 (UPHUVHVU V) V(U +8) 'V -U(V +48)' U
=07 U2+ UV + VU + V26V (U+6)"'V = 6U (V + )" U]
=0 U UV VU VIV (0T U 1) VU (6T V1) U]
Observe that
VoV (u+1) 'y
—V@EU+) U V=V (6T U+) Y
—VEU+1) T T+ V
— V(@ U+) UV =V (U8t UV
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and
Ul-U(5T'V+1) U
—UE V)T V) U-U (V1)U
—UE VD) (V11T
=6 U (V) VU =U(V+6) VI
Therefore

Wy =06t [UV+VU+V(U+5)*1UV+U(V+5)*1 VU}

which gives that
Ls=U+V+8) " "Ws(U+V+68".
We obtain then the following representation

25) Ky=@+N " (U+V+at+ N OVH+VU)U+V+a+N)"
+@+N) T U+V+a+N""
X V(U—i—a—l—)\)_lUV—l—U(V—i-cH—)\)_lVU} U+V+a+A)"

—(a+ N SNa,UV)+(a+ X" P(\a,UV)

for a, A > 0.
By utilizing (2.4) and (2.5) we derive the representation (2.1).

Corollary 1. For oll U, V > 0 we have
(2.6) In(U+1)+In(V+1)-In(U+V+1)

:/OO(1+/\)_1S()\,U7V)d)\+/oo(1+)\)_1Q()\,U,V)d)\,
0 0

where
SNUV):=U+V+1+N)(UVH+VU)U+V+1+N)""
and
QN a,UV)=U+V+14+X1""
X |[VU+14+XNUV+U V414N VU
x(U+V+1+07"
for A > 0.

We have the following operator inequalities:

Theorem 4. For allU, V >0 and a > 0 we have

(2.7) /OO (a+XN)""S(\a,U,V)dx
§Oln(U+a)+ln(V—|—a)—ln(U—|—V—|—a)—lna
g/ooo(a+)\)1R()\,a,U,V)d)\,

where

RNa,UV)=U+V+a+N) " (U+V)> U+V+a+""
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for A > 0.
In particular,
(2.8) /OO 1+ XS\ U, V)dx
§Oln(U+1)+ln(V—|—1) —In(U+V+1)
< /Ooo (1+X) "R\ U, V) dA,

where
RANUV)=U+V+1+N) UV U+V+1+0)""
for A > 0.
Proof. Assume that U, V > 0. Observe that for a, A > 0
Uda+ N U=U+a+N" " (U+a+r—a—-2)N)
=1—(@+NU+a+N"",

which shows that
0<(U+a+N U<

If we multiply this inequality both sides by V| then we get
0<VU+a+N)'UV <V

Similarly,
0<UWV +a+N) " "VU<U2

Therefore

0<VWU+a+AN) " UVHUV +a+N)""VU<U*+V?
and by multiplying both sides by (U +V + 1+ A)"" we deduce
0<QNa,UV)<(U+V+a+ N (U +V)(U+V+a+A)"

for a, A > 0.
Now, if to this inequality we add S (A, a,U, V), then we obtain

29 SOaUV)<QW\a,UV)+S\aU,V)
SU+V+a+ N (U+VU+V+a+A)!
+ U4V +a+N)"UV+VU)U+V+a+N)""
U4V +a+ N U+V?U+V +a+N)""

= R (A7 a’ U’ V)
for a, A > 0.
If we multiply (2.9) by (1+A)~" > 0, integrate over X on [0, 00) and use repre-
sentation (2.1) we derive (2.7). O

Corollary 2. Let U, V >0 and a > 0.
(i) IfUV +VU > 0, then
(2.10) In(U+V+a)+ha<In(U+a)+In(V+a).
In particular,

(2.11) mh(U+V+1)<In(U+1)+In(V+1).
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(ii) If U 4+ V < Q, with Q a positive constant, then

0?2 _
(212)  WU+a)+m(V+a)-nU+V+a)—na<—(U+V+a) L

In particular,
(2.13) n(U+1)+m(V+1)-In(U+V+1)<QU+V+1)"".

Proof. (i) If UV 4+ VU > 0, then by multiplying both sides by (U +V +a + )\)71
we get

0<(U+V+a+N) " (UVHVU)(U+V +a+A)"
for a, A > 0, which implies that

OS/ @+ U+V+at+r)"
0
X (UV+VU)(U+V+a+X)""dx
:/ (a+X)""S(\a,U,V)dA

0

and by (2.7) we get (2.10).
(i) K U +V < Q, then

U4V4a+N) " U+V)? U4V +a+A) " <QPU+V+a+A)2

for a, A > 0. This implies that
(2.14) / (a+ N U+V4+a+N)"U+V?PU+V+a+r)"dr
0
SQQ/ (a+N)""(U+V+a+r)2d
0
Q2 [ _9
< — (U+V+a+A) “dAr
a Jo
Now, if we take the derivative over ¢ in (2.2), then we get
> t—1Y\
= A1) 7 ) dA
[ oo (55)

[ 1 A+1 [ )
_/0 A+ 1) ()\+t)2d)\—/0 (A+ )2 dA.

This gives that
/ U4V4+a+N)?dA=U+V+a)"
0

and by (2.14) and (2.7) we obtain (2.12). O

3. MAIN RESULTS

We also have the following representation result:
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Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B, C >0
and a > 0 we have the representation

Dp (A|B + aA) Dp (A|C + aA)

3.1
(3.1) P Dy (AIB 1 C + ad)
:/ (a+X) " tr [AV2PAYY (4, B,C 0, 0)] dA
0
+/ (a+XN)"tr [Al/QPAl/QZ(A7B7C,a7)\)} X,
0
where
Y (A, B,C,a,)\)
=AY (B+C+(a+ M)A (BAT'C +CAT'B)
X (B+C+ (a+\)A)"AY?
and

Z(A,B,C,a,\)
= AYV2(B+C+ (a+ )\ A)~"
X [C (B+(a+XN)A) " BA'C+B(C+(a+\) A" CA—lB]
X (B+C+(a+A) A~ AY2,
Proof. From (2.1) we have for U = A=/2BA=1/2 and V = A='/2CA~1/2 that
In (A2 (B +ad) A72) 410 (472 (C + ad) A712)
I (A*1/2 (B +C + aA) A*W) “Ina
- /Ooo (a+XN7's (A, a, A"V2B A1/, A‘1/2CA‘1/2) d\

" /ooo (a+N™Q (A’ a, AT2BATY2, A‘l/QoA‘”Q) A,
where
S (N a, AT2BAT2 AT R0A 1)
- (Ail/?BAil/Q +ATV20A7Y2 fa A)il
X (A—l/zBA—1/2A—1/2CA—1/2 + A—l/QCA—1/2A—1/QBA_1/2)

X (A—l/?BA—l/2 + ATV2CATY? o+ /\> B
=AY2(B+C+(a+ M) A) T AV2ATV2(BATIC + CATIB) ATY?
x AY2 (B4 C+ (a4 ) A)~" A2

=AY2(B+C+(a+ XN A~ (BATIC+CA™'B)

X (B+C+ (a+A)A)~" A2

=Y (A, B,C,a,\)
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and
0 ()\,a,Afl/QBA71/2’A71/2CA71/2)

-1
- (A—l/QBA—1/2 L AV2ZCATY? 4+ A)

% [A—l/QCA—l/z (A—l/zBA—l/z ‘a4t )\)71 A-12B A2 4120 412

+ATY2pA-1/2 (A—1/2CA—1/2 +a+ A) -1 AY204-1/2 412 A 1/2

-1
x (A*WBA*W L AV2CATY? g+ A)

=AYV2(B+ O+ (a+ ) A) A2
x [A*WCA*WAVQ (B4 (a+X) A" AVZATV2BAT2ATI2C AT
+ATVPBATIPAV2 (C 4 (a+0) A7 Al/ZA*”QOA*1/2A*1/QBA*1/2]
x AY2(B+C+ (a+X) A)~" A2

=AV2B+CH (a+NA)"

% [C(B+ @+ N A) " BAIC+B(C+ (a+\) A" CA”B}

X (B+C+(a+A\)A)~"AY?
=Z(A,B,C,a,)\).

If we multiply both sides of (2.1) by A2 and then by P'/2, then we get
P2 412, <A71/2 (B + aA) A71/2) AL/2pl/2
1 pl241/2), (A—1/2 (C + aA) A—1/2) AL/2pl/2
_ pU2Al2Yy (A*W (B +C + aA) A*1/2> AV2PY2 1y qpl/2 APl

:/ (a+X)""PY2A4Y2Y (A, B,C,a,\) AV2 P24\
0

+/ (a+X)"'PY2AV2Z (A, B,C,a,\) AY2PY2d),
0

If we take the trace and use its properties, then we get

(3.2) tr [A1/2PA1/2 In (A*I/Q (B + aA) A*1/2)}

+tr [AV2PAY2 I (A7Y2 (C + ad) A712)]

oo

A
—tr [Al/QPA1/2ln ATV? B+c+aA)A—1/2)] —Inatr (PA)
A

(a+X)~ tr[ 12pA1/2y ( ABCa/\)] X

o0

+ Lt [AI/ZPAUQZ (A,B,C,a A)} dX.

J,
o
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Further, if we take the exponential in (3.2), then we get the desired result (3.1). O

Corollary 3. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B, and
C > 0 we have the representation

Dp (A|B + A) Dp (A|C + A)

3.3
(3:3) Dp (A[B+C + A)
:/ (142t [AYV2PAY2Y (A, B,C, )] dA
0
+/ 1+ tr [A1/2PA1/2Z(A,B,C,A)} d,
0
where
Y (A, B,C,\)
=AYV (B+C+ 1+ XN A) " (BATIC+CA™'B)
X (B4+C+(1+X)A)~"AY?
and

Z (A, B,C,\)

= AV (B+C+(1+0A)"

X [c (B+(1+NA) " BAIC+B(C+ (1+A)A)" CA*IB]
X (B+C+ 1+ A)~"AY2,

Remark 1. If we take A =1y in Theorem 5, then we get

Ap (B +a)Ap (C +a) _/°° 1
(3.4) ArBiCra — ) (a+X)""tr[PY (B, C, a,\)] dA
+/ (a+N)""tr[PZ (AB,C,a,\)] d,
0
where
Y (B,C,a,\) :i= (B+C+a+ X\ """ (BC+CB)(B+C+a+ X"
and

Z(B,C,a,)):=(B+C+a+)\)""
X [C(B+a+A)*1BC+B(C+a+A)*1CB]
X (B+C+a+N"".

In particular, we have

Ap(B+1)Ap(C+1

(3:5) Ap(B+C+1)

) _ /OO (1+X) "'t [PY (B,C,\)]dA
0

+/ (14+X)""tr[PZ (AB,C,\)] dA,
0
where

Y (B,C,\):=(B+C+1+X)""(BC+CB)(B+C+14+))""
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and
Z(B,C,\) = (B+C+1+N"
X |C(B+1+X) "BC+B(C+1+)\""'CB
X (B+C+1+X)"".
We have the following super-multiplicative properties:

Theorem 6. Assume that A, B, C > 0 and P > 0 with P € By (H) and tr (P) = 1.
(i) If BAT'C + CA™'B > 0, then
(3.6) Dp(A|IB+C+ A)<Dp(AlB+ A)Dp (A|IC+ A).
(ii) If B4+ C < ©A, with © a positive constant, then
Dp (A|B+ A)Dp (A|C + A)
Dp (A|IB+C+ A)
< exp [@2 tr (Al/QPAl/2 (B+C+ A)_l)] .

(3.7)

The proof follows by Corollary 2 and Theorem 5 and the details are omitted.
Corollary 4. Assume that B, C > 0 and and P > 0 with P € By (H) and
tr (P) = 1.

(i) If BC+ CB >0, then
(3.8) Ap(B+C+1)<Ap(B+1)Ap(C+1).
(ii) If B+ C < O, with © a positive constant, then
Ap(B+1)Ap(C+1)
Ap(B+C+1)

The symmetrized product of two operators C, B € B(H) is defined by S(C, B) =

CB + BC. In general, the symmetrized product of two operators C, B is not

positive. Also Gustafson [23] showed that if 0 <m < C < M and 0<n < B <N,
then we have the lower bound

(3.9)

< exp [@2 tr (P(B +C + 1)71)} .

(3.10) S(A, B) > 2mn — i(M—m) (N —n),

which can take positive or negative values depending on the parameters m, M, n,
N.
So, if0<m<C<Mand0<n<B<N with

8mn > (M —m) (N —n),

then by (3.8) we get that
(3.11) Ap(B+C+1)<Ap(B+1)Ap(C+1),
for all P > 0 with P € By (H) and tr (P) = 1.

F0O<m<C<MandO<n<B<N,thenC+B < M+ N and
(B+C+1)"" < (m+n+1)"" and by (3.9) we also obtain that
Ap(B+1)Ap(CH+1) _ (M + N)*

Ap(B+C+1) = oxp (m+n+1) )’

for all P > 0 with P € By (H) and tr (P) = 1.

(3.12)
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