SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR
S-CONVEX FUNCTIONS

LOREDANA CIURDARIU

ABSTRACT. In this paper an identity is presented in order to establish several
Hermite-Hadamard type inequalities for functions whose powers of absolute
values of third derivatives are s-convex. Some consequences are also presented.

1. Introduction

The convex analysis has an important role in mathematics and in many other
fields such as numerical analysis, convex programming, statistics and approximation
theory. The classical inequality of Hermite-Hadamard was extended and generalized
in many directions in recent years by many authors, like for example, [9, 8, 1, 12,
11, 15, 10, 5, 2, 3, 13, 4, 16, 17] and the references therein.

We begin by recalling below the classical definition for the convex functions and
then for s-convex functions([5], [8],[6],[7]).

Definition 1. A function f: I C R — R is said to be convex on an interval I if
the inequality

(1) flz+ (1 =t)y) <tf(z) + (1 —1)f(y)

holds for all x,y € I and t € [0,1]. The function f is said to be concave on I if the
inequality (1) takes place in reversed direction.

Definition 2. A function f: R — R is said to be s-convex if the inequality

(2) flz+ (1 =t)y) <t°f(x)+ (1 —-1)°f(y)
for each x,y € R and t € (0,1), s € (0,1].

The classical Hermite-Hadamard’s inequality for convex functions, see [14] is

(3) f(a;b><bia/abf(x)dx<f(a);f(b).

Moreover, if the function f is concave then the inequality (2) hold in reversed
direction.
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The aim of this paper is to give several Hermite-Hadamard type inequalities for
functions whose powers of absolute values of third derivatives are s-convex. For this
goal an identity is presented as a main tool in the demonstrations of these results.

2. Several Hermite-Hadamard type inequalities for convex functions

Starting from a result from [2], the aim of this section is to present some Hermite-
Hadamard type inequalities for functions whose powers of absolute values of third
derivatives are s-convex .

Lemma 1. Let f : I° C R = R be a differentiable mapping on I° a,b € I° with
a<b. IffeC3R), f" € Lla,b], then for all z € I° the following inequality takes
place:

26 (a) — (x —b)2F 2)(b—a z—a)f(a) — (z— ’
(—a)’f'(a) = (z = b)*f (b) + 2f (x)(b— @) + 4[(x — a)f(a) — (x = b)f(B)] 1 / Flu)du

6(b—a) b—a

1 1 11 1"
= 7/ t(1—t)?*[(x —a)*f (tr+ (1 —t)a) — (x —b)*f (tx+ (1 —t)b)]dt
6(b — Cl) 0
Proof. Tt will be denoted I; = [y t(1 — t)2(x — a)*f" (tx + (1 — t)a)dt and I =
fo t(1—t)? b)4fm (tz+ (1 —1t)b). By mtegratlng by parts three times Iy and I
we get,

1
L =—(z— a)3/0 (1—4t+382)f (to + (1 — t)a)dt =

1
— (o= 0f (@) + 2/(2)(e ~ @) + 4] (@)@~ a) = 6w ~a) [ f(tw+ (1~ o)
0
and here by using u = tz + (1 — t)a, it is obtained

I = (¢ — a)*f (a) + 2/(2)(x — a) + 4f(a)(x — a) — 6 / " f(u)du
and ,
I = (02 (b) + 2f () (x — b) + 4f (B)(x — b) + 6 / f(v)dv

where v = ta + (1 — t)b. Now substracting I from I;, we have,

b
N—I = (z—a)*f (a)— (2—b)*f (b)+2(b—a) f(z)+4[(x—a) f (a) — (z—b) £ (b)]—6 / f(u)du

and dividing by 6(b — a) last equality the desired inequality is obtained.
O

Theorem 1. Let f : I C R — R be a differentiable mapping on I°,a,b € I with
a<b If feC3R), f" € Lla,b], and |f"| is convex on [a,b], then for all x € I°
the following inequality is satisfied:

(0 = @S (@) = (e = bPF () + 24 )b — a) + 4l — )f @) — (x = D)S®)] 1 [
| i i [ fwd <

" "

1 (@) @+ @b B (@)t (@b
S H0—a) 5 + ; £ @)
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Proof. Tt will be used Lemma 1, the definition of convex functions for |f" | and the
properties of the Gamma and Beta functions. We will have then

(2= a)*f (a) = (@ = 02F () + 2 (@)(b— o) + 4w — ) f(a) — (@ —O)JB)] 1 [
| i 5= | <

(x—a)4 1 e » e (x_b)4 1 Y » N -
< 6(b—a)/0 t(1=t)°|f  (tz+(1-1) )|dt+6(b_a)/0 t(1—t)2|f" (ta+(1—t)b)|dt <

(z —a)*

< Lo [ a2ty @l + 0= 0 @)+

(.’L‘—b)4 1 ) » o
+6(b—a)/0 t1 =% @)+ A= Dlf - ©)lde <

(z —a)*

< 6(b—a [|f”/($)|/ t2(1—t)2dt+|f/”(a)|/ t(l—t)?’dt]—i—

+é( \/tQ t)%dt + | ( \/ t(1 —t)*dt] =

:(9«“—@)4+($—) (2 —a)'|f " ()| + (= = b)*|f” ()lB
6(b—a) 6(b—a)
_ 1 (@-a)t+(z-b) (z —a)*|f" (@) + (= — b)*| " (b)|
- = ! @)+ . 1
where B(z,y) is the Beta function, B(z,y) = fol t*~ Y1 -ty ldt, 2 >0, y > 0
and the Gamma function is I'(z) = [~ e "*~'dt, = > 0.

If" (2)|B(3,3) + (2,4) =

O

Corollary 1. Let f: I° C R — R be a differentiable mapping on I°, a,b € I° with

a<b IffeC*R), f € Lla,b)], and |f"| is convex on [a,b], then the following
inequality is holds:

‘b—a ’ ’ 1 a—l—b

217 (@) = 1 O]+ 51(@) + 1) + £

1
L (b—ap
- 960

G @I+ 17 @+ 215 (52

-

Proof. We put in previous theorem x = ‘%"b. O

Corollary 2. As in Corollary 1, by using the convexity of \f”/|, we can obtain
further,

—a , , a b
Pl @ = £ O+ 5@+ 10+ F ) - s [ S <

o (b—a)’

< S @l 117 -
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Theorem 2. Let f: I° C R — R be a differentiable mapping on I°, with a,b € I°
and a < b. If f € C3(R), f € L[a,b], and |f | is s-convex on [a,b], then for all
x € I° the following inequality takes place:

(x—a)*f (&) = (@ =0>2f (D) +2f(x)(b—a) +4[(x —a)f(a) = (x =b)f(B)] 1 [°
| o= — / f(u)dul <
1 1 ()] 1/ ()]
S6(b—a){(”c_ )4[2(8+4)(s+3)(s+2) (s—|—4)(s—|—3)]+
+(.’E—b)4[2 ‘fm(x” + |fm(b)| ]}

(s+4)(s+3)(s+2) (s+4)(s+3)

Proof. The method of demonstration is analogue to Theorem 1 but it is used the
definition of s-convexity instead of convexity for function |f  |9. O

Corollary 3. Let f : I° C R = R be a differentiable mapping on I°,a,b € I° with
a<b If feC¥R), f" € Lla,b], and |f"'| is s-convex on [a,b], then we get the
following:

— Q. . ’ a b
2o @ = £ O+ 515 @ + 10+ A2 - [ sl <

1"

iG] 1" (a)]
(s+4)(s+3)(s+2) (s+4)(s+3)

11 "

_ (-
- 6

+[2

{2 I+

f (5] 1S ()]
(s+4)(s+3)(s+2) (s+4)(s+3)

Theorem 3. Let f: I° C R — R be a differentiable mapping on I°,a,b € I° with
a<b. If feC3R), e Lla,b], and |f/”|‘1 is s-convex on [a,b], ¢ > 1 then for
all z € IV the following inequality holds:

r—a)2f (a) — (x—b)2f z2)(b—a x—a)f(a) — (x — ’
‘( )2f (a) — ( b)2f (b) + 2f(z)(b ) +4[( )f(a) = ( b)f(b)] 1 /f(u)du|

6(b—a) b—a

1 (1\'"" " @) @l
= 60 —a) <12) (x_a)4[2(s+4)(5+3)(3—|—2) t i s T

If ()] n EQIE &
(s+4)(s+3)(s+2) (s+4)(s+3) °

+(z —b)*[2

Proof. Using Lemma 1, Holder’s inequality and that |f" |7 is s-convex function we
have succesively next inequalities,

(x —a)?f (a) — (x —b)2f (b) + 2f (z)(b—a) + 4[(x — a) f(a) — (x — b) f(b)] 1 b
| 6(b—a) _b—a/a f(u)du| <
(l‘—a)4 1 - B (x—b)4 1 2 i} - -
< G(b_a)/o t(1-1) f1 (tz+(1 t)a)ldt+6(b_a)/0 t(1=t)2|f " (te+(1—t)b)|dt =
_ @ e — 02 (e + (1 - a
S | =0 = 75 o+ (= )t
(z — )

*6(17_@)/0 [t =) " a[t(1 = )| f (to+ (1 —t)b)|dt <
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< gb‘_‘lx ( / - t)th) % ( / P e (1 t>a>|th)é +

*éffb__bij (/01 (1 — t)th) ' (/01 t1 =02 f (te+ (1 — t)b)|th); <

1—

1—

z—a)t 1 1 5
< ES(b—Cl)[B(273” q <A t(l 7t)2[ts|f (:L‘)|q (1 *t |f dt) I
z —b)* : 1 B
*é@ _bi) (B2 3)" ( | =l @ - dt)
_ )" (@ — a1 @B +2,3) + 1 (@) B(2.s + 3] +

6(b—a)

+a =)' @)]B(s +2,3) + |f " (B)|"B(2, s +3)] 7 }.
Now by taking into account that B(s + 2,3) = m and B(2,s+3) =

m we find the inequality from conclusion.

Corollary 4. Let f: I° C R — R be a differentiable mapping on I°, a,b € I° with
a<b If f e C¥R), f € Lla,b), and |f"|? is s-convex on [a,b], ¢ > 1 then the
next inequality holds:

b
51—l @ = £ O+ 1@ + 10 + 15D - = [ fwdul <

LB 1 | (@)
-~ 96 121*l (s+4)(s+3)(s+2) (s+4)(s+3)

FAEOIL I (b))
R P P Yy Sl pury p

Jit

Ja}.

Proof. We put x = “—H’ in Theorem 2. O

Theorem 4. Suppose that f : I° C R — R is a differentiable mapping on I°,a,b €
I° with a < b. If f € C3(R), e Lla,b], and |f”|‘1 is s-convex on [a,b], ¢ > 1
with % + % =1 then we have the following inequality:

(x—a)f(a) = (x = 0)*f () + 2f(2)(b—a) +4[(x —a)f(a) = (= b)f(B)] 1 [°
| 6(b—a) b—a /a fluyul

1

2\* T@Tp+3) 1 A e
() T(p+ HT(p+ 2) (5+1)5{( IS @I+ 1 (@) +

= b @)+ 17 )5}
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Proof. Like in the proof of Theorem 1 we have,

( —a)>f (@) = (z = 0)2F (B) + 2f(2)(b — @) + 4[(x — a)f(a) — (x —B)F(B)] 1 / b fu)du| <

6(b—a) b—a

(z—a)*
~ 6(b—a)

(z —b)*
6(b—a)

In view of Holder’s inequality and s-convexity for | I |7 we get,

(v~ @)F (@) ~ ( — BPF () 4 2f@)(b—a) + 4l(z ~ a)f(a) ~ (e~} ®)] 1 [*
| i e R E

< gzb__ai;l (/Ol[t(l —t)Q]pdt>; (/01 (4 (1 —t)a)|th)}1+

([ - t)?]pdt); ([ 17 aa- t)bnthf <

< PO LB Dol @l [ eas 1 @ [ - arani+

0

/1 H1—2If” (tat-(1—t)a)|di+ /1 HA—2|f " (tat-(1—t)b)|dt.
0 0

1

1
o= @ [ edr i OF [a- ot -

alf @)+ 1 (a)]71
) T E

_Br(p+ L2pl)
T 6(b—a) roa

+

|f”/(m)|q + ‘f///(b)‘q
s+1
On the other hand, by Gauss multiplication formula,

+(a — b)[ Ja}.

n—1
k 1
I(z) H T'(z+ ﬁ) =7 "%(27) " V/2D (nz)
k=1

we get

for n = 3 and by Legendre’s duplication formula for the Gamma function,

1
I'(z)0(z + 5) = 21722 /71'(22), Rez >0

, we have,

BLEC) _ - T +y) 227

Blp+1,2p+1) = 2P 2b) .
P2 = Sy O Ge Y T+ DI + 3 317

Last expression will be replaced in last inequality and the proof will be finished.
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Corollary 5. Under conditions of previous theorem, if we take x = %rb the fol-
lowing inequality holds:

Ol @ £ O+ 217 470 + 50 - [ i <
12 (2\7 T@Pp+d) (b—aP a+b . 1
<prvm 81<\/§> T(p+ O+ 2) (s—i—l)é{[‘f ( )7+ 1" ()| +
D1 o).

Theorem 5. Suppose that f : I' C R — R is a differentiable mapping on I°,a,b €
19 with a < b. If f € C3(R), f € L[a,b], and |f |2 is s-convex on [a,b], ¢ > 1
with % + % =1 then we have the following inequality:

(x—a)’f (a) — (z — B)2F (O) + 2f (@) (b — a) + 4[(x — a)f(a) — (e —B)F®)] 1 [
| i e / £ (u)dul

"

L[ " @
<o 1) (@m0l @rBe s+ 0+ O

@ =)'l @ B2q + 1,5+ 1) + 2|qf+<s >+|q1]q

Proof. In view of s-convexity of |f m|q and Holder’s inequality, the first inequality
from the proof of Theorem becomes,

(x—a)?f (a) — (x = b)*f () + 2f()(b—a) +4[(x —a)f(a) — (x = b)f ()] 1 [°
| o= [ fdul <

< 6(b1—a){(x —a)* (/01 fpdt>’1) (/01(1 R (4 (1 t)a)lth>(ll .\
+(z —b)* (/01 tpdt) B (/01(1 Rl (1 t)b)|th) a} g
- ﬁ (ﬁl) te- ‘”4[/01(1 =02 (#1" @)+ (L= 07| (@))7) e+
a0 @ (P15 0= 0l ) )

which leads to desired inequality, by taking into account the definition of Beta
function B(p,q) = fol tP=1(1 —t)4=tdt, p,q > 0.

]

Corollary 6. Under conditions of previous theorem, if we take © = a—"‘b we have,

20l @~ £ O+ 5@+ 10+ 5 F 0 [l <

S

LYP o= a ety £ @I
< (o) St tesea s s+ + g O
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wath, e
HIF (S BRa + s+ 1) + 52

Q=

}.
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