SOME TENSORIAL AND HADAMARD PRODUCT
INEQUALITIES FOR SELFADJOINT OPERATORS IN HILBERT
SPACES IN TERMS OF KANTOROVICH RATIO

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if A; and B; are selfadjoint operators with 0 < m < A;, B; < M, p; >0
for i € {1,...,n} with 37 ; p; =1 and v € [0,1], then

(zpmg—v) . (zpiBi”)

i=1 i=1

<(1-v) ZPiAi> ®1+vl® ZpiBi>
i=1

i=1
M n n
<k (30 zpmw)@ zpiBr),
i=1 i=1

where K (-) is Kantorovich ration and R = max {1 — v,v}. We also have the
following inequalities for the Hadamard product

ZPiAz}_”> ° ZpiBf> <> pil1-v)Ai+vBilo1l
i=1 i=1

i=1

M n n
<u (M) (Smare)o Sma).
i=1 i=1

where v € [0,1].

1. INTRODUCTION
The famous Young inequality for scalars says that, if a,b > 0 and v € [0, 1], then
(1.1) a7y < (1—v)a+uvb

with equality if and only if @ = b. The inequality (1.1) is also called v-weighted
arithmetic-geometric mean inequality.

Kittaneh and Manasrah [8], [9] provided a refinement and an additive reverse for
Young inequality as follows:

2 2
(1.2) r(\f—\/ls) g(l—y)a—i—ub—al_”b”gR(\f—\/g)
where a,b > 0, v € [0,1], » = min {1 — v,v} and R = max {1l —v,v}. The case

v = 5 reduces (1.2) to an identity and is of no interest.
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We recall that Specht’s ratio is defined by [13]

1

— BT it he (0,1) U (1, 00)
(13) S(h) — eln(hh,—1)

1if h=1.

It is well known that lim,_, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function S is decreasing on (0, 1) and increasing on (1, 00).

The following inequality provides a refinement and a multiplicative reverse for
Young’s

(1.4) S ((%)T) a7 < (1—-v)a+vb< S (%) a'=vY,

where a,b > 0, v € [0,1], r = min {1 — v, v}.

The second inequality in (1.4) is due to Tominaga [14] while the first one is due
to Furuichi [7].

It is an open question for the author if in the right hand side of (1.4) we can

replace S (%) by S ((%)R> where R = max {1 —v,v}.
We consider the Kantorovich’s ratio defined by

(h+ 1)

(1.5) K (h) := e

, h>0.

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s ratio holds

(1.6) K" (%) a7 < (1—-v)a+vb< KR (%) a' v,

where a,b >0, v € [0,1], r =min {1 — v,v} and R = max {1 —v,v}.

The first inequality in (1.6) was obtained by Zuo et al. in [16] while the second
by Liao et al. [12].

In [16] the authors also showed that

K" (h)> S(h") for h>0and r € [0,;}

implying that the lower bound in (1.6) is better than the lower bound from (1.4).
We can give a simple direct proof for (1.6) as follows.
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Recall the following result obtained by the author in 2006 [4] that provides a
refinement and a reverse for the weighted Jensen’s discrete inequality:
je{1,2,...,n}

1 « 1 «
1. i F=S @)oY g
(1.7) n  min {p;} n (x;) "2 T

1 n 1 n
< szj¢($j)—¢ szjfj

SRS

<n max ;
- je{l,z,...,n}{pj}

n 1 n
Z‘I’(%’) - EZ%’ ;
Jj=1 j=1

where ® : C' — R is a convex function defined on convex subset C of the linear space
X, {zj}je{l 5.} are vectors in C' and {p;} n) are nonnegative numbers

with P, = 3 p; > 0.
For n = 2, we deduce from (1.7) that
(1.8) 2min {v,1 — v} P(x);rq)(y) —@(x;y)}
<v®(2)+(1—)®(y) — @ e+ (1—v)y

< 2max {r,1 - v} [‘I’(w);“b(y) 3 <x—;—y>}

jef1,2,...,

for any z,y € R and v € [0, 1].

Now, if we write the inequality (1.8) for the convex function ® (z) = —Inx, and
for the positive numbers a and b we get (1.6).

Let Iy,..., Ix be intervals from R and let f : I; X ... Xx I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., 4,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hy such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

I;
is the spectral resolution of A; for i = 1,..., k; by following [2], we define

(19) f(A1,7Ak) :\/I , f(A177)\1)dE1 ()\1)®®dEk (Ak)

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [11] for functions of two
variables and have the property that

f (Al, ...,Ak) = fl(Al) ®...Q fk(Ak),

whenever f can be separated as a product f(t1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

F(st) > (L) f(s) f(t) for all s,t € [0,00)
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and if f is continuous on [0, 00), then [6, p. 173]
(1.10) f(A®B) > (<) f(A)® f(B) forall A, B> 0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.11) ,ﬂA@B):/' /‘ £ (st) dE (t) ® dF (s)
[0,00) J/[0,00)
for the continuous function f on [0, 00).
Recall the geometric operator mean for the positive operators A, B > 0

A#tB — Al/Q(A_l/QBA_1/2)tA1/2,

where t € [0,1] and
A#B = AY2(A~V2BAY/2)1/2 4172,

By the definitions of # and ® we have

A#B = B#A and (A#B)® (B#A)=(A®B)#(B® A).

In 2007, S. Wada [15] obtained the following Callebaut type inequalities for ten-
sorial product

(1.12)  (A#B) @ (A#B) < - [(A#4B) ® (A#1-aB) + (A#1-oB) @ (A#.B)]

— DN =

< Z
-2
for A, B>0and o € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,ej) = (Aej, e5) (Bej, e5)

(A B+B® A)

for all j € N, where {e; }j cn 1s an orthonormal basis for the separable Hilbert space
H.
It is known that, see [5], we have the representation

(1.13) AoB=U"(A® B)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [6, p. 173]

(1.14) f(AoB) > (L) f(A)o f(B) forall A, B> 0.
We recall the following elementary inequalities for the Hadamard product

AY? 0 BY? < <A+2B> olfor A, B>0

and Fiedler inequality
(1.15) Ao A7l >1for A>0.
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As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that

AoB< (A%01)?(B201)"? for 4, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (A%0B%)"? for A, B>0.

It has been shown in [10] that (A% o 1)1/2 (B%o 1)1/2 and (A% o B2)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we show among others that, if A;
and B; are selfadjoint operators with 0 <m < A;, B; < M, p; > 0fori € {1,...,n}
with >, p; = 1 and v € [0, 1], then

() (22

(1-v) (Zpl ) R1+vl® <iPiBi>

i=1

) ()

We also have the following inequalities for the Hadamard product

(i piAzl—V) o <iplBi’> < ipi [(1-v)A;+vB;]o
i=1 i=1 i=1

R (%) (; piA}_”> 0 (iz:;piB;) ,

2. MAIN RESULTS

IN

where v € [0, 1].

We have the following result for the tensorial product:

Theorem 1. Assume that A and B are selfadjoint operators with 0 < m < A,
B < M for some constants m < M, then for all v € [0, 1]

M

(2.1) A1”®B”§(1—V)A®1+1/1®B§KR(>A1”®B”
m

and, in particular
M

(2.2) A" QA< (1-v)AR1+vi@ A< KR () Al @ AY.
m

For v =1/2 we derive that

[t

M+m

2.3 A2 @BY?2 < (A®1+1® B) < ——— Al/2 g B1/2
23) - 2( )< 2v/mM
and, in particular

1 M+m
2.4 AV @AV < Z (A1+10A) < ———AY2 g A2,
24 - 2( )< 2v/mM
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V<Mwithﬂ<

M
(2.5) s <(1-v)t+vs< KE <m) tvs”,

where R = max{l —v,v}.
If

A/MtdE(t) andB/Mde(s)

m m

are the spectral resolutions of A and B, then by taking the integral ff f:f over
dE (t) @ dF (s) in (2.5), we derive that

(2.6) / / (1= 1)t + vs] dE (t) @ dF (s)

m m

<K (%) /mM /mM t7VsYdE (t) @ dF (s).

Observe, by (1.9), that

M M
/ / [(1—v)t+vs]dE (t) ® dF (s)

1_y/ / {AE () @ dF () + /M/mMsdE(t)Q?dF(s)

=(1-v)A®1+v1®B

and
M M
/ / 1Y/ dE (£) @ dF (s) = A1 @ BY
and by (2.6) we derive (2.1). O

Corollary 1. Assume that A; and B; are selfadjoint operators with 0 < m < A;,
B; <M, p; >0 forie{l,..,n} with> " p; =1 and v € [0,1], then

(2.7) <zn: p#ﬁ‘”) ® (ipﬁé’)
(1—v (Zp, ) @1+vl® <zn:pi3i>

i=1

< KR ( ) (ZpZAl ) ® (ipi3§’> .
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In particular,

(2.8) (i: mA}‘”) ® <zn:piA§ )
1-v <Zpl ) R14+rvl® <iPiAi>

i=1
@) ()
i=1
Proof. From (2.1) we get
(29) A7"@B/<(1-v)A;®1+v1®B; < K" <M> Al @ BY
m

for all i,5 € {1,...,n}.
If we multiply by p;p; and sum, then we get

n n

i,j=1 i,j=1

M - —V v
< K" (m) S pipy (AV7 @ BY),

ij=1

that is equivalent to (2.7).

Remark 1. We observe that, if in Corollary 1 we take v =1/2, then we get

(2.10) (imﬁ) ® (imBS”)

() e (50)

M+m < - 1/2) - 1/2)
< i szB .
2 =1

I /\

In particular,

(2.11) (ZPiA;M) ® (ZpiA3/2>
i=1 i=1

;Kgml,)®m®(§%)

Corollary 2. With the assumptions of Theorem 1 we have

IN

(2.12) A" oBY <[1—-v)A+vB]ol< K" (M> AV o BY
m
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and, in particular

M
(2.13) AV oAV < Aol < K () ATV o AV,
m
For v =1/2 we derive that
(2.14) Aopiz < AFB Gy MAM up gy
2 2vVmM
and, in particular
M+m
2.15 AY20 AY? < Aol < ———=AY2 0 AY2,
(2.15) - T 2vmM

Proof. We have the representation
XoY=U"(XY)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If we take U* at the left and U at the right in (2.1), then we get

U (A" @B U< (1-v)U (A )U+vU* (1@ B)U
< K" <M> U (A~ e B")U,
m
which gives
1—v v R M 1—v v
A7V oB"<(l-v)Aol+vlioB<K <)A oB
m

that is equivalent to (2.12). O

Remark 2. Assume that A; and B; are selfadjoint operators with 0 < m < A,
B; <M, p; >0 forie{l,...,n} with Y, p; =1 and v € [0,1], then by (2.12)
we get

(2.16) (ZPZA}I) ° (ZpiBz‘V) < l(l )Y piAi+v Y piBi
i=1 i=1 =1 =1
R M S 1—v - v
<K — Z]%Ai o ZpiBi
m
i=1 i=1
and, in particular,

(2.17) (ipi/ﬁ_”) ) <ip1A;’> < Y piAi> ol
=1 3 3

ol

Forv=1/2 we get

(2.18) (Zp,»Aj/?) o (ZpiBil/z
=1 =1

S~
IN
< N
NE
S
=
|+
oy
S~
—




TENSORIAL AND HADAMARD PRODUCT INEQUALITIES 9

and

=1 =1

IN

(i:piAz)Ol
i=1

M+m [ 41/2 - 41/2
(B ) ()

We also have the following bounds when the spectra of the operators are not
located in the same interval:

Theorem 2. Assume that the selfadjoint operators A and B satisfy the conditions
0<mp <A< M and 0 < mg < B < Ms. Define

(2.20) U (my, My, ma, My) := maX{K(M K(m—)} ifmo< 1< M

and
K () 1< 5,
(2.21) w(ma, Miyma, Mp) i= § Lif 2 <1< 2L,

then for all v € [0,1]

(2.22)  u” (my, My, me, M)AV @B <(1-v)A®1+v1®B
< U™ (my, My, mg, Mp) A" ® BY,

where r = min {1 — v,v} and R = max {1 —v,v}.
In particular, we have
1
(2.23) w'/? (my, My, ma, My) AY? @ BY/? < 5 (A@1+18B)

< UY? (my, My, ma, My) AV? @ BY/2.
Proof. If t € [m1, M;1] C (0,00) and s € [ma, Ma] C (0,00), then

t M
c |:m1 1

-€|—,— 0,00) .
. MQ’mJC(’OO)
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The function K is decreasing on (0,1) and increasing on [1,00), then we observe
that

K(M1 7K(ml)}

max K (1) = ax{ ma M =U (m1, My, ma, M2)
m i ma 1

TE{A{;’%] if Mo <1< ma’

and

K () 1<

min K (7)= 1if%<1<%, =u(my, My, ma, Ms).

my M
TE [Mz Y

K (M) 2 <,

By (1.6) we then get
(2.24) u” (my, My, mg, My) t' ="

t
< K" () s < (1—v)t+wvs
S
t
< K™ () t17rsY < UM (my, My, mg, My) 177",
S

where 7 = min {1 — v,v} and R = max {1 —v,v}.
If

M, Mo
A= tdE (t) and B = / sdF (s)

mi m2

are the spectral resolutions of A and B, then by taking the integral ntZl me; over
dE (t) ® dF (s) in (2.24), we derive that

u” (ml,Mth,Mg)/ / t'7"s"dE (t) @ dF (s)
s/mM/M (1= v)t+ vs]dE (1) @ dF (s)

<U"® (ml,Ml,mg,Mg)/ / VsV dE (t) @ dF (s),
which, by (1.9), gives (2.22). O
Corollary 3. With the assumptions of Theorem 2, we have the Hadamard product
inequalities for all v € [0, 1]
(2.25) u” (my, My, mg, My) A"V o B” < [(1—-v)A+vB]ol
< U™ (my, My, mg, M) A*™" 0 B,

where r = min {1 —v,v} and R = max {1 —v,v}.
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In particular, we have

A+ B
(2.26) w2 (my, My, ma, Mz) AY2 0 B2 < % ol

S ljl/2 (ml,Ml,mg,MQ) A1/2 o B1/2.

Corollary 4. Assume that the selfadjoint operators A; and B; satisfy the conditions
0<m <A4; <M and 0 < me < B; < My, p; > 0 fori € {1,...,n} with
S pi=1andv €[0,1]. Then

(2.27) u” (ma, My, ma, M) (ZmA}”) ® (ZmB;’ >
i=1 i=1
=1

i=1

n n
< U™ (my, My, mg, My) (ZpiA}_l) ® <2p135>
i=1 i=1

and

(2.28) u” (my, My, mg, My) (Zpﬁﬁ‘”) ° (Zm&”)
< (ipi [(1-v)A; + VBA) ol

i=1
< U™ (my, My, mgy, M) (Zm/ﬁ‘”) o (Zmﬂj) :
i=1 i=1

3. RELATED RESULTS
We also have:

Theorem 3. Assume that A, B >0 and v € [0,1], then

1

3.1 1-V)A" @BV 4+vA" '@B"" < (A@B '+ A '®@B+2).
4

In particular
1

(3.2) (1-v)A" @AV +vA" 1 ATV < 1 (A A"+ A" ®A+2).

For v =1/2 we obtain

(33)  AYV?e@B Y24+ AV2@BY2<Z(A®B'+A'®B+2)

N

and

(3.4) AV2 @ A7V 4 A7V2 9 AY? < % (AA + A '@ A+2).

Proof. We have from (1.6) that
2
1-v)t+vs < K" (t) <K(t) _(+s)
s

tl-vgv s
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namely
1
(3.5) (1—v)t's™ + vt tsl™v < I (ts™ '+t 's+2)

for t,s > 0 and v € [0,1].
If

A:/OootdE(t) ande/ooode(s)

are the spectral resolutions of A and B, then by taking the integral fOOO fooo over
dE (t) @ dF (s) in (3.5) we get

(3.6) / / [(1—v)t’s ™" +vt" 's' 7] dE (t) ® dF (s)
,4/ / +t's+2)dE (t) @ dF (s).

Since

/ OO / Tl s AR (@) © R ()

(11— /Oo /oo s~V dE () ® dF (s)
+u/ / t"~1s'VdE (t) ® dF (s)
(1-v)AY®@ B Y +vA"~ l® BV

and
/ / (ts™'+t7's+2)dE (t) @ dF (s)
o Jo
=A®@B'+A'®@B+2,
hence by (3.6) we obtain (3.1). O

Corollary 5. With the assumptions of Theorem 2, then

(3.7) (1-v)A" o BV +vA" toB™V < = (A oB'+A'oB+2).
In particular

(3.8) (1-v)A" 0 A7 +vA" 1o A7V < % (Ao A" +1).

For v =1/2 we obtain

(3.9) A2 o B712 4 A7V2 6 BY2 < % (AoB '+ A oB+2)

and

(3.10) AY20 A712 < % (Ao A7t +1).

Theorem 4. Assume that the selfadjoint operators A and B satisfy the conditions
0<m <A< M; and 0 < mg < B < M. Then

(3.11) u” (my, My, ma, M) (1-v)AY®@ BV +vA" e B
UR (ml,MlamQa MZ) )

IA A
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where U (my, My, ma, Ms) is defined by (2.20), u (mq, M1, ma, M) is given by (2.21),
r=min{l —v,v} and R =max{l —v,v}.
In particular,
(3.12) ul’? (my, My, ma, Ms) < (1—v) AY? @ B~1/? 4+ A2 @ BY/?
S U1/2 (mlv Mlam27 MQ) .

Proof. From (2.24) we get

1-v)t
w < UR (my, My, ma, M),

u” (mlaMlva’Mz) < tl-vgv -

namely
(3.13) " (my, My, mg, My) < (1 —v)t¥s™ +vt' " 1s'™" < U (my, My, ma, My),
for t € [my, M;] and s € [mo, M) .

If

A= /M1 tdE (t) and B = /M2 sdF (s)

mi m2

are the spectral resolutions of A and B, then by taking the integral fxl fTJr\f over
dE (t) ® dF (s) in (3.13) we get (3.11). O
Corollary 6. With the assumptions of Theorem 4, we have
(3.14) u” (my, My, mg, My) < (1-v)A”oB™" +vA" toBY

S UR(mlaMlam27M2)

and
(3.15) w!? (my, My, ma, My) (1—v)AY2 0 B7YV2 4 pA~1/2 o p=1/2

U1/2 (mla MlamQa MQ) .

IN N

Similar inequalities may be stated for the weighted sums of operators, however
the details are omitted.
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