TENSORIAL AND HADAMARD PRODUCT INEQUALITIES OF
SCHWARZ TYPE FOR SELFADJOINT OPERATORS IN
HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if the functions f, g : I C R —[0,00) are continuous and A, B are
selfadjoint operators with spectra Sp (A), Sp (B) C I, then

F2(A) © g% (B)+9* () ® 12 (B)

> [£2070 () g ()] © [ (B) 207 (B)]
+ [£2 () g2~ ()] @ [£2072 (B) ¢ (B)]
>2(f (A)g (A @ [f (B)g (B,

for all A € [0,1]. We also have the following inequalities for the Hadamard
product

12 (4) 0 % (B) + g° (4) o 2 (B)
> [£207 () g2 ()] o [12 (B) 27V (B)]
+ 12 () 620N ()] o [1207Y (B) g (B)]

22[f(A)gA)]ef(B)g(B)],
for all X € [0,1].

1. INTRODUCTION

Let Iy,...,Ix be intervals from R and let f : I; X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, ..., H; such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; :/ NdE; (A;)
I;

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
(11) f(Al,...,Ak) ::/ f(Al,...,Al)dEl (A1)®...®dEk ()\k)
I Iy

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.
If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
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This construction [2] extends the definition of Kordnyi [4] for functions of two
variables and have the property that

(AL, A) = f1(A) @ ... ® fir.(A),

whenever f can be separated as a product f(¢1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) = (L) f(s) f(t) for all s,t € [0,00)
and if f is continuous on [0, 00), then [6, p. 173]
(1.2) f(A®B) > (L) f(A)® f(B) forall A, B >0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.3) ,ﬂA@B):/' /‘ £ (st) dE (t) ® dF (s)
[0,00) J/[0,00)

for the continuous function f on [0,00) .
Recall the geometric operator mean for the positive operators A, B > 0
A#tB — Al/Z(A—1/2BA—1/2)tA1/2
where t € [0, 1] and
A#B — A1/2(A71/2BA71/2)1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A)=(A®B)#(B® A).
In 2007, S. Wada [8] obtained the following Callebaut type inequalities for ten-

sorial product

(1.4)  (A#B) @ (A#B) < 3 [(A#aB) © (A#1-aB) + (A#1-aB) @ (A#aB)]

— N

<-(A® B+ B®A)

2
for A, B>0and a €0,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,ej) = (Aej, e5) (Bej, )

for all j € N, where {ej}j cn is an orthonormal basis for the separable Hilbert space
H. ‘
It is known that, see [5], we have the representation

(1.5) AoB=U"(A® B)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [6, p. 173]

(1.6) f(AoB)>(<)f(A)o f(B) forall A, B>0.
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We recall the following elementary inequalities for the Hadamard product
AY? 0 BY? < (A;B> olfor A, B>0

and Fiedler inequality
(1.7) Ao A~ >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that

AoB < (A201)?(B201)"? for A, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

AoB < (A20B%)"? for A, B >0.

It has been shown in [7] that (A% o 1)1/2 (B%o1) Y2 and (A? 0 B?) "2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we show among others that, if the
functions f, g : I C R —[0,00) are continuous and A, B are selfadjoint operators
with spectra Sp (A), Sp (B) C I, then

(A @g* (B)+g* (A) @ f*(B)
> [7207 (4) g2 ()] @ [12 (B) 207 (B)]
+ [ () 20N ()] @ [12079 (B) ¢ (B)]
>2[f(A)gA)]e[f(B)g(B)],
for all A € [0,1]. We also have the following inequalities for the Hadamard product

12 (A)0 g% (B) + g* (A) o f2(B)
> [/2079 (4) g2 (4)] o [ (B) 207V (B)]
+ [ (4) 20 (4)] o [ 12070 (B) g™ (B)]
> 2[f (A) g (A)] o [f (B) g (B)],

for all A € [0,1].

2. MAIN RESULTS
The following result providing a refinement of Cauchy-Schwarz inequality holds:

Theorem 1. Assume that the functions f, g : I C R —[0,00) are continuous and
A, B are selfadjoint operators with spectra Sp (A), Sp (B) C I, then

(2.1) (A @g* (B)+g° (A) @ *(B)
> [7207 (4) g2 ()] @ [12 (B) 207 (B)]
+ [/ @ P ()] @ [1207Y (B) ¢ (B)]
>2[f (A)g (W] @[f (B)g (B),

for all X € [0,1].
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In particular, for B = A
(22) FA)®g* (4) +g° (4) ® 2 (4)
> [2079 (4) g2 (4)] @ |12 (4) 207V (4)]
+ [ () 20 (4)] @ [£2079 (4) g (4)]
> 2 (A) g (A)] @ [ () g (A)].

Proof. Using the weighted arithmetic mean-geometric mean inequality for positive
numbers, we have for a, b, ¢, d > 0 and A € [0, 1] that

(1 o )\) a2b2 + )\C2d2 > a2(1—/\)b2(1—)\)62>\d2>\
and

)\a2b2 + (1 _ A) C2d2 > a2Ab2)\CQ(17)\)d2(17)\).
If we add these two inequalities, then we get

a2b? + 2d? > g2 VRN (232X 4 (2223 2(1-X) g2(1-)

By arithmetic mean-geometric mean inequality we also have

q2(1=2)p2(1=2) (2X g2X | (22p2) (2(1-2) 72(1-)

_ (al_’\bl_)‘c’\d’\)z n (a’\b’\cl_)‘dl_’\)2

> 2 A d e M e A = 2abed

for a, b, ¢, d >0 and X € [0, 1].
Therefore we have

(23) a2b2 + C2d2 Z a2(1—)\)b2(1—)\)62)\d2>\ + a2Ab2ACQ(1—A)d2(1—A) Z 2abed

for a, b, ¢, d >0 and A € [0, 1].
If wetake a = f(t),b=yg(s),c=g(t) and d = f(s) for ¢, s € I in (2.3) to get

(2.4 72 () 6% () + 9 () £ (5)
> 2N (1) 20N (5) P () 12 (5)
£ (002 () 20N (1) 20N (5)
>2f ()9 (s) 9 (1) £ (5)

for all ¢, s € I and A € [0, 1].
Now, if we take the double integral [, [, over dE (t) ® dF (s), then we get

(2.5) / / [12(8) 6 (5) + 6% (1) 12 ()] dE (t) ® dF (s)
2(1-) 2(1-2) (g o2* 27 (g s
z/l/lf (£) 21N () g (t) 12 (5) dE (1) ® dF (s)
2 2X () g21-N) 2(1-2) (g s
+/I/If (1) g (5) 20 (1) 207N (5) dE (t) ® dF (s)
zQ/I/If(t)g(s)g(t)f(s)dE(t)®dF(s),
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namely, by (1.1),
2 2 2 2
/If <t>dE<t>®/lg (s)dF(sH/lg (t)dE(t)®/If (s) dF (s)
> / F20-N (1) g2 (1) dE (1) ® / 20 (s) £ (s) dF (s)
I I
+ / 2 (1) 20N (1) dE (1) @ / g2 (5) 20N (5) dF (s)

z2/If(t)g(t)dE(t)®/Ig(s)f(s)dF(s)

and the inequality (2.1) is thus proved. O

Corollary 1. With the assumptions of Theorem 1, we have

(2.6) f3(A)o ( ) 9°(A) o f(B)
[fQ (1-X) X (4) } o [sz 2(1 /\) )}
[f” 2(1 ) Ao {fza /\) B)]

>2[f(A)gA]e[f(B)g(B)],

for all A € 10,1].
In particular, for B = A

(27) (A og(A) =[OV (A) g ()] o [£2 (1) 201V ()
> [f(A)g (Ao [ (4)g ().
Proof. By the inequality (2.1), we derive
U [£2(4) @ ¢* (B) + g* () & /2 (B)| U
>u { [P0V () g ()] @ |12 (B) g (B)]
+ [P 2N ()] @ 2070 (B) g2 (B)] }
> {[f (A) g (A & [F (B)g (B} U,
which is equivalent to
u*[f2< ) g (B >]u+u*[92< )®f2( Ju
u {0 A W] e [B) g ()] u
e ([ s [0 12 )
(

>2U{[()()] [F (B)g (B)}U

By utilizing the representation (1.5) we deduce the desired result (2.6). O

Corollary 2. Assume that the functions f, g: I C R —[0,00) are continuous and
A;, B, 1 € {1,...,n} are selfadjoint operators with spectra Sp (A;), Sp (B;) C 1,
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and p;, g; > 0 fori e {l,...,n}, then

(2.8) <Zpif2 (z‘h)) ® (Z 49> (Bj))
+ (ZPWQ (Ai)> ® (Z q; f? (Bj))
=1 =1

2 [ipzfQ(lk) (A [Zq f2)\ 2(1 A) (BJ)
i=1

+ Y pif? (A PtV ® [Z%’fz(l” (Bj) g (Bj)]
i=1 j=1

> 2 [Zpif(Ai)g(Ai) ® {Zij(Bj)g(Bj)]

o (o) )
e )
g

n [Zq f2>\ 2(1 A) (Bj)

f2(1 A)

3

+

ZpiQ)\ 2(1 )\) [Zq f2 (1=X) (B])

3

zﬁzmmmm>
=1

4wamw>
j=1

for all X € [0,1].

Proof. From (2.1) we get

> pigif? (A Z pig;g® (Ai) @ f* (By)

i,j=1 i,j=1

> Y iy [0 (40 (4] & [ (B) 20 (By)

7,7=1
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£ 3 e [ (406207 ()] & [0 (B,) ¢ (8]

7,7=1

>2 % pig [f (Ai) g (A)] @ [f (By) g (B)],

i,j=1
which gives (2.8). O
Remark 1. If we take in Corollary 2 q; = p; and B; = A;, i € {1,...,n}, then

(2.10) (Zpif2 (Ai)> ® (Zpng (Ai)>
+ (ngﬁ (Az)) & <Zpif2 (Az)>
i=1 i
> [ZpifQ(lA) (A )g Zp1f2)\ 2(1 ») (Az)

szf% G20 (

>2 [ZPif(A
=1

pr2<1 Y (496> (4)

® Zpif (4
i=1

and

(2.11) (sz-ﬁ (A») o (me (AZ->>
i=1

> [zn:p f2(1 )\) [Zp f2)\ 2(1 A) (AL)

M: i

> pif (A

sz

Il
_

3

for all X € [0,1].

Theorem 2. Assume that f is monotonic nondecreasing and convez on [0,00) and
A B>0.Ifp, g>1 with%—i—%:l, then

(2.12) f(A® B) < f(AP)®1+$1®f(Bq).

SRR

In particular,
(2.13) fA®B) <3 [f (A el1+1ef(BY)].

If f is monotonic nonincreasing and concave on [0,00) , then the reverse inequal-

ity holds in (2.12) and (2.13).

Proof. Using Young’s inequality and the monotonicity and convexity of f we have

Lo L) ol L
f(ts)Sf<pt " >§pf(t)+qf( )

q
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for all £,s > 0.
Now, if we take the double integral f[o 00) f[o s) OVer dE (t) ® dF (s) , then we
get

(2.14) /[0 . /[0 OO)f(st)dE(t)@CJF(S)
/ooo/m [ F(#) + f(sq)} E(t)®dF (s).
Since

/[ooo>/[000)[ )+ f(Sq)] E (t) ® dF (s)
/[Ow)/[wo) F#)dE(8) ® dF (s /000)/000 f(s1)dE (t) @ dF (s)

— P @110 ] (B,
hence by (1.3) and (2.14), we derive (2.12). O

Corollary 3. Assume that f is monotonic nondecreasing and operator convexr on
[0,00) and A, B> 0. Ifp, ¢ > 1 with % + % =1, then

(2.15) f(A0B) < |2 (A7) + ] (BY)
In particular,
(2.16) f(AoB) < % [f (&%) + f(B?)] o

Proof. By (1.5) and Davis-Choi-Jensen’s inequality, we have
(2.17) f(AoB)=f(U" (AB)U)<U'f(ARB)U
By (2.12) we get

(218) W F(AeBU<U %f(Ap)®l+$1®f(Bq) U
:%u*(f(A”)®1)u+éu*(1®f(Bq))L{
1 1
= - Ap o —10 q .
pf( ) 1+q1 f(B%)

By making use of (2.17) and (2.18) we derive (2.15). O

Theorem 3. Assume that f is convex on R and A, B > 0. If p, ¢ > 1 with
% + % =1, then

(2.19) f(ln(A®B))§1f(p1nA)®1+$l®f(qlnB).

bS]

In particular,

(2.20) Fn(A®B) < -[f2mA)®1+1® f(2InB).

DN | =
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Proof. We observe that for ¢,s > 0 that

1 1
In(ts)=lnt+Ins=—In(t’) + —In(s?).
p q

Now, if we take the function f and use its convexity, then we get

F (n(ts)) = f (; In (@) + S1n <sq>) <27 () + L1 (n ()

for t,s > 0.
Now, if we take the double integral [;;  [i) .y over dE () ® dF (s), then we
get

(2.21) /[Om) /[Om) £ (n (ts)) dE () @ dF (s)

< /[Om) /[Om) P+ 2 ()] B (@) 9 aF ().

Observe that
/ / £ (In (ts)) dE () © dF (s) = f (In (A @ B))
[0,00) J/[0,00)
a

nd

00 S
1

1 1 1 1
= Ef(lnAp) ®1+ 51 ® f(InB?) = ;f(plnA) ®1+ ;1 ® f(¢glnB),
then by (2.21) we derive (2.19). O
Corollary 4. Assume that f is conver on R with f oln is operator convex on

(0,00).IfA,B>Oandp,q>1with%—kézl, then

(2.22) f(n(AoB)) < %f(plnA)Jréf(qlnB) ol.
In particular,
(2.23) f(n(AoB)) < %[f(2lnA)+f(21nB)]ol.

The proof is similar to the one from Corollary 3 for the operator convex function
foln.

Theorem 4. Let f (z) = Z;’io anz™ be a power series with nonnegative coefficients
and convergent on the open disk D (0,R) C C, R > 0. Assume that 0 < A, B <
RY2 then

(2.24) fP(A®B) < f(A*) ® f(B?).
If R = oo, then the inequality (2.24) holds for A, B > 0.
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Proof. For 0 < s, t < VR we get that 0 < st, s?, t* < R. By Cauchy-Schwarz
inequality, we have

(2.25) (Z ak (ts)k> = (Z aktksk> < (Z akt2k> <Z aks%> .
k=0 k=0 k=0 k=0
Since the series

o0 o0 o0

k
g ag (ts)", g apt?® and g a2k
k=0 k=0 k=0

are convergent for 0 < s, t < v/R, then by taking the limit over n — oo in (2.25)
we deduce that

f2(ts) < f(t2) f (s?) for all s, t € [0, VR).
Now, if we take the double integral f[o.\/ﬁ) f[o VE) Over dE (t) ® dF (s), then we

get
2 S S
/[m) /[m)f (ts) dE (1) © dF (s)
< /[om /[Wﬁ)f(t ) £ (%) dE(t) © dF (s)
_ 2 82 s
(o) )
which gives (2.24). O

3. SOME EXAMPLES

Assume that A, B > 0. If we take f(t) = t” and g (t) = t%, p,q # 0, in (2.1),
then we get

(81) A% @B 4 A% @ B > (AWOVEN) g (g0
4 (AQp)\+2q(1f)\)> ® <B2p(17)\)+2q)\>
> 2APT4 @ prta

and, in particular

(82) A% @A 4 A% @ AT > (AWONEIN) g (f2A200-0)
n (AQp)\+2q(1f)\)) ® (AQp(lf/\)+2q)\>
> 24P @ APTY,

where A € [0,1].
For ¢ =1/2 and p = —1/2 we get
(3.3) A @B+ A@B > A1 BI-2 f A1-20 o B2A-1 > 9

and, in particular
(34) A—l ®A+A®A_l 2A2k—1®A1—2A+A1—2)\®A2A—1 Z 27
where A € [0,1].
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We also have the inequalities for the Hadamard product
(3.5) A% o B2 4 A% o B2 > (AQp(l—)\)+2q)\) o (szwrzq(l—,\))
T (A2pk+2q(lfk)) o (B2p(17/\)+2q/\)
> 92 APTI o BPta
and, in particular
(3.6) A% o A20 4 A%1 5 AP > (A2p(1—)\)+2q)\> o (AZp)\+2q(l—)\))
+ (AQp)\+2q(1—>\)) o (AQp(l—)\)+2q)\)

> 2APTY o Ap+q,

where A € [0,1].
For ¢ =1/2 and p = —1/2 we get
(3.7) AT o B4+ AoB 1 > AV Lo BIm A L g1m2 o p2A-1 > 9
and, in particular
(3.8) ATl oA > AP 1o A7 > 1,
where A € [0,1].

We notice that the inequality (3.8) is an improvement of Fiedler inequality (1.7).
If A;,B; >0and p; >0 fori e {1,..,n}, then by (2.8) we get

(3.9) <ZpiA3p> ® (ZPiB?q> + (ZPiA?q> ® <ZPiBz‘2p>
i=1 i=1 1=1 =1
n n
> (ZpiA?p(1A)+2q,\> ® <ZpiBi2p,\+2q(1,\)>

i=1 i=1
(Z  AZPA2a(1=3) ) ® (i_zlpiB?p(l)\)+2q>\>
(z": Afﬂ) . (2": ” Bfw)
and B .
(3.10) (ip A2p> (ZpZBM) + (iPiA?q> o (iPiB?p>
i=1 i=1 i=1

< 21)(1 ) +2q>\> o <ipiBi2p/\+2q(1—>\)>
=1 i=1

+ (Z iA?P)\+2q(1)\)> o (ZpiBiQp(l)\)Jqu)\)
=1

i=1

>2 ( piAf+q> o (ZpiBf”) :
i=1 i=1

3



12 S.S. DRAGOMIR

If we take p = 1/2 and ¢ = —1/2 and also assume that Y., p; = 1, then we get
(.11) (Zwu) : (zpiBf) + (zpiAf) : (zpia)
=1 i=1 i=1 1=1
> (zpzAg%) . (zpiaz“) N (ZmA?“) . (zpiB;%)
=1 =1 =1 =1

2.

v

In particular, we have

=1 =1 =1

i=1

where X € [0,1].
Consider the function f (t) = ¢", r > 2. This function is monotonic nondecreasing
and convex on [0,00). If A, B >0 and p, ¢ > 1 with % + % =1, then by (2.12)

1 1

(3.13) (A@B)" < -A"®1+ -1® B".
D q

In particular,

(3.14) (A B)" < - (A ®14+1® B”).

DN =

Moreover, if 7 € [1,2], then f is operator convex and by (2.15) we get

(3.15) (Ao B) < <1A”” + 13”1) ol.
p q

In particular,

(3.16) (AoB)" < = (A*" +B*)ol.

N =

Now, we consider the function f (t) = || that is convex on R for u > 2. By
(2.19) we derive

(3.17) In(A® B)|" <p" 'mA|"®1+¢"'1®InB|",

WhereA,B>0andp7q>1with%—i—%:l.
In particular,

(3.18) In(A® B)|* <2* ' (InAl"®1+1®|InB[")

for A, B > 0.
Let h(z) = > .07 yan2" be a power series with complex coefficients and conver-
gent on the open disk D (0, R) C C, R > 0. We have the following examples
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1 1
3.19 h = E Zam = D(0.1):

=1
h(z) = Z 22" = coshz, z € C;

h(Z) = Z_;) m22n+1 = Sinhz, A C,

hz)=Y "= 2eD(0,1).

1—=2

13

Other important examples of functions as power series representations with non-

negative coefficients are:

1
(3.20) h(z) = E Ez":exp(z) z€C,
n=0
N T e
= " =1 D (0,1);
h(z) nE:12n—1Z 211(1_2), z€ D(0,1);
ZOO F(”"'%) 2n+1 .1
h(Z) = P mz = S1n (Z), z € D (0, 1),

(3.21) h(z) = i ! 221 = tanh ™! (2), z€ D(0,1)

—~ 2n—1
T(n+a)T(n+pB)T(y)
h =9 F LSRN E) = n’ By >0,
B =2 (0075 = 2 S T © )
z€ D(0,1);
where I' is Gamma function.
Assume that 0 < A, B < 1, then by (2.24)
(3.22) (1-AB)2<(1-4%)"a(1-B%)"",
(3.23) I(l-A®B)?<h(l-A%)®h(l-B?
and
(3.24) [sin™! (A@ B))” < sin~! (4%) @sin~! (B?).
If A, B > 0, then by (2.24) we get
(3.25) exp (2A ® B) < exp (4%) ® exp (B?),
(3.26) [sinh (A ® B)]* < sinh (A?) ® sinh (B?)
and

(3.27) [cosh (A ® B)]* < cosh (A%) ® cosh (B?).
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