TENSORIAL AND HADAMARD PRODUCT INEQUALITIES FOR
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT
SPACES IN TERMS OF KANTOROVICH RATIO

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if f, g are continuous on the interval I with

O<’Y§M§Ffortel
g(t)

and if A and B are selfadjoint operators with Sp (A), Sp (B) C I, then
177 (A) " (D] @ [f¥ (B)g' " (B)]
<A-v)f(A)®g(B)+vg(A)® f(B)

(v+1)2"

<|Toro| @ @lelr g )]

We also have the following inequalities for the Hadamard product
[F177(A) g (D] o [f (B)g' " (B)]
< (1—v)f(A)og(B)+vg(A)o f(B)

R
(y+1)?
44T

<

(S (A) g” (D] o [ (B) g~ (B)] -

1. INTRODUCTION

Let Iy,..., I be intervals from R and let f : I; x ... Xx I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (41, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hi such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

I.

i

is the spectral resolution of A; for i = 1,..., k; by following [2], we define
(11) f(A1,7Ak) :/ f()\177>\1)dE1 ()\1)®®dEk ()\k)
I I

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.
If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
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This construction [2] extends the definition of Kordnyi [11] for functions of two
variables and have the property that

(AL, A) = f1(A) @ ... ® fir.(A),

whenever f can be separated as a product f(¢1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) = (L) f(s) f(t) for all s,t € [0,00)
and if f is continuous on [0, 00), then [6, p. 173]
(1.2) f(A®B) > (L) f(A)® f(B) forall A, B >0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.3) ,ﬂA@B):/' /‘ £ (st) dE (t) ® dF (s)
[0,00) J/[0,00)

for the continuous function f on [0,00) .
Recall the geometric operator mean for the positive operators A, B > 0
A#tB = 141/2(14—1/2314—1/2)t141/27
where t € [0, 1] and
A#B — A1/2(A71/2BA71/2)1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A)=(A®B)#(B® A).
In 2007, S. Wada [15] obtained the following Callebaut type inequalities for ten-

sorial product

(1.4)  (A#B) @ (A#B) < 3 [(A#aB) © (A#1-aB) + (A#1-aB) @ (A#aB)]

— N

<-(A® B+ B®A)

2
for A, B>0and a €0,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,ej) = (Aej, e5) (Bej, )

for all j € N, where {ej}j cn is an orthonormal basis for the separable Hilbert space
H. ‘
It is known that, see [5], we have the representation

(1.5) AoB=U"(A® B)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [6, p. 173]

(1.6) f(AoB)>(<)f(A)o f(B) forall A, B>0.
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We recall the following elementary inequalities for the Hadamard product
AV/2 6 BU2 < (AJ;B> olfor A, B>0

and Fiedler inequality
(1.7) AoA™' >1for A>0.
As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
AoB< (A2 o 1)1/2 (B2 o 1)1/2 for A, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

1/2

AOBS(A2OBQ) for A, B> 0.

It has been shown in [10] that (A2 o 1)1/2 (B%01) 2 and (A?o 32)1/2 are incom-
parable for 2-square positive definite matrices A and B.

The famous Young inequality for scalars says that, if a,b > 0 and v € [0, 1], then
(1.8) a7 < (1—v)a+vb

with equality if and only if @ = b. The inequality (1.8) is also called v-weighted
arithmetic-geometric mean inequality.

Kittaneh and Manasrah [8], [9] provided a refinement and an additive reverse for
Young inequality as follows:

(1.9) r(\f—\/l;yS(1—u)a+ub—a1_”b”§R(\f—\/5)2

where a,b > 0, v € [0,1], » = min {1 —v,v} and R = max {1l —v,v}. The case
v = 5 reduces (1.9) to an identity and is of no interest.
We recall that Specht’s ratio is defined by [13]

L e (0,1)U (1, 00)
(110) S(h) — eln(hh—1)

1if h=1.

It is well known that lim,; S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function S is decreasing on (0, 1) and increasing on (1,00).

The following inequality provides a refinement and a multiplicative reverse for
Young’s

(1.11) S ((%)7) a7 < (1-v)a+vb< S (%) al=rp,

where a,b >0, v € [0,1], r = min {1 — v, v}.

The second inequality in (1.11) is due to Tominaga [14] while the first one is due
to Furuichi [7].

It is an open question for the author if in the right hand side of (1.11) we can
replace S (%) by S ((%)R> where R = max {1 —v,v}.

We consider the Kantorovich’s ratio defined by

(h+1)?

h > 0.
4h,>0

(1.12) K (h) =
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The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (+) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s ratio holds

(1.13) KT (%) AW < (1-v)a+vb< KR (%) al=p,

where a,b >0, v € [0,1], r =min{l — v,v} and R = max {1 — v, v}.

The first inequality in (1.13) was obtained by Zuo et al. in [16] while the second
by Liao et al. [12].

In [16] the authors also showed that

1
K"(h)>S(h") for h>0and r € [0,2}

implying that the lower bound in (1.13) is better than the lower bound from (1.11).
We can give a simple direct proof for (1.13) as follows.
Recall the following result obtained by the author in 2006 [4] that provides a
refinement and a reverse for the weighted Jensen’s discrete inequality:

. Iy Ly
(1.14) n_min{p) 52@(%—)—@ 52:@
j=1 j=1

je{1,2,...,n

1 & 1 &
<5 > pi® (x;) - P 5 > pj
noi=1 =1

1 1o
<n ma — - Ty
S, i ng ”; ik

where ® : C' — R is a convex function defined on convex subset C of the linear space
X, {acj}je{l 5,..ny are vectors in € and {p;} } are nonnegative numbers

with P, =377 p; > 0.
For n = 2, we deduce from (1.14) that

(1.15) 2min {v,1 - }[ (@ )+‘I’( )_q)(w;y)}

<v®(z)+(1-v) (b(y) <I>[1/a:+(1—u)y}

< 2max {r,1 - v} [q)(m @(I;yﬂ

je{1,2,...n

for any z,y € R and v € [0, 1].

Now, if we write the inequality (1.15) for the convex function ® (z) = —Inz,
and for the positive numbers ¢ and b we get (1.13).

Motivated by the above results, in this paper we show among others that, if f, g
are continuous on the interval I with

O<y<—=<Tfortel
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and if A and B are selfadjoint operators with Sp (A), Sp (B) C I, then
S (A) " (D] @ [f(B) g~ (B)]
SA-v)f(A)©g(B)+rg(A) f(B)

27 R
DR @ @) e [ B ).

We also have the following inequalities for the Hadamard product
77 (A) g" (A)] o [ (B) g™ (B)]
<@=v)f(A)og(B)+vg(A)o f(B)

2 R
DL g @l [ g o).

2. MAIN RESULTS
‘We have:

Theorem 1. Let I and J be two intervals and f, g defined and continuous on an
interval containing I U J. Assume that

[
0< < ——2<Iy fortel
NS St
and
0<yy < I (s) <TIy forseJ
g(s)
Define
Iy ; 71
K(B) k(2
| ()6
Zfi <1l< 72,
1 y Fl
K(@) <,
and
K (g) ifl< i,
U(713F13727F2): Laf 7; <1<%7
r r
k(2 o<
If A and B are selfadjoint operators with Sp (A) C I and Sp (B) C J, then
(2.1) u” (71,0172, Ta) [F177 (A) g” (A)] @ [ (B) ¢ (B)]

<(I-v)f(A)eg(B)+rg(A)e f(B)
< UM (71,T1,72,02) [f177 (A) g7 (A)] @ [£7(B) g' ™ (B)]
for v €[0,1], where r = min {1 — v, v} and R = max {1l —v,v}.
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In particular,

(22)  w! (3, T1, 7, T2) [£72(A) g2 ()] @ [£12(B) g2 (B)]
<A egB)+g(A)ef(B)
< UM (3, T1, 70, 1) [ £12 (4) g2 (A)] @ [ /2 (B) /2 (B)) -

Proof. If a € [y1,T1] C (0,00) and b € [y,,T'2] C (0, 00), then

%e [71 } C (0,00).

The function K is decreasing on (0,1) and increasing on [1,00), then we observe

that
max K (1) =U (v1,T1,7,,T2)
rel# 5]
and
rninr K (1) =u(v1,T1,72,T2).
rel# 53]

y (1.13) we then get
(23) u” (7171—‘177271—‘2) 1_be
<Kr(b) a vy < (1 —-v)a+uvb
< KR (2) a8 < UR (3, T1 70, D) !0,

where 7 = min {1 — v,v} and R = max {1 —v,v}.
Now, if we take

f(s)

“= te]andb:g(s), s€J
n (2.3), then we get
FONT (F()\”
(2.4) (717F1’72’F2)<g(t)) <g(8)>
ERACRC)
S(l )g()+ g(s)
<U 71arla72vr2 j;;) ( j))) ’

fort €l and s € J.
This is equivalent to

(2.5) u” (v, T1,79,T2) F170 () g7 (8) 7 (s) g7 ()
<S(A=v)f(t)g(s)+vg(t)f(s)
S U (v1,T1,79,T2) f177 () g7 () £ (5) g7 (),

fort €I and s € J.
If
A:/tdE(t) andB:/de(s)
I J
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are the spectral resolutions of A and B, then by taking the integral [, [, over
dE (t) ® dF (s) in (2.5), we derive that

(26) " (7,,T1,7,Ts) / / P (1) 9" (1) £ (5) g () dE (t) ® dF (s)
// [(1-v)f s)+vg(t) f(s)]dE (t) ® dF (s)
< U™ (71,T1,79,T2) //f1 v fY(s)g* " (s)dE (t) ® dF (s).

By utilizing (1.1) we get

//fl v £ (5)g'" () dE (1) ® dF (5)
— [ (4) ¥ (4 >] 77 (B) g~ (B)]

// [(A=v) f@)g(s) +vg(2) f(s)]dE(t) @ dF (s)

1—1///]‘ s)dE (t) ® dF (s +1/// t) @ dF (s)

=(1-v)f(A)@g(B)+rg(A)® f(B)
Therefore, by (2.6) we obtain the desired result (2.1). O

Corollary 1. With the assumptions of Theorem 1,
(2.7) u” (71,0172, Ta) [F177 (A) g” (A)] o [f7(B) ¢~ (B)]
<(1=v)f(A)og(B)+vg(A)o f(B)
S UM (y1,T172,Ta) [ (A) 9" (A)] o [f7(B) g' 7" (B)]
forv e [0,1].
In particular,

(28) w2 (3, Try70,T2) |12 (A) /2 (A)] o [ £1/2(B) g2 (B)]

<51 (A)og(B)+g(A)o f (B)

< UM (1, T30, 1) [ 172 (4) g2 ()] o [ 112 (B) g/ (B)]
Proof. We have the representation
XoY=U"(XY)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If we take U* at the left and U at the right in (2.1), then we get

u” (1, T ve, T) U ([F177 (A) 9" (A)] @ [f7(B) g~ (B)) U
<SUt[l-v)f(Aeg(B)+vg(4) e f(B)U
SUR (7, Py, ) U ([F177 (A) g” (D] @ [£7 (B) g™ (B)]) U,
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namely
u” (1, D1, v2, T2) U ([F77 (A) ¢” ()] @ [ (B) g' ™" (B)]) U
SA-vur[f(Aeg(B )]U+VU lg(A) & f(B)U
S UM (70,1 yo, D) U ([f177 (A) g7 ()] @ [£7(B) g (B)]) U,
which is equivalent to

u” (v, T ve, T) U ([F177 (A) g” (A)] o [f7(B) g~ (B)]) U
SA=v)U[f(A)og(B)U+vU [g(A)o |

(B)u
S U (y1,Tay g, L) U ([F177 (A) g7 ()] o [f7(B) "7 (B)]) U
and the inequality (2.7) is obtained.
Corollary 2. Assume that f,g are continuous on I and
O<7§£E3§Ff0rt6].

If A and B are selfadjoint operators with Sp (A), Sp (B) C I, then
(2.9) [F77(A)g" (A @ [ (B) g™ (B)]

<A-v)f(A)eg(B)+rg(4) e f(B)

51 R
< [CELD (e (aygr ()] o [ (B) g (B))

44T
In particular,

(2.10) 72 (A) g2 ()] @ (12 (B) g2 (B)]
[f (A)®@g(B)+g(A) @ f(B)]

< g [t @] e [ s o).

We also have for B = A that

(2.11) S (A) g" (A @ [f (4) g™ (4)]
<A-v)f(A)@g(A)+rg(A)® f(A)

R
2
< |0+D)
44T

<

DN =

[F177(A) g" (D] @ [£7 (A) g~ (4)] .

In particular,
(2.12) PR )] @ 1172 (4) 2 ()]
[f (A) @9 (A)+g(A)® f(A)
r
< o 120 @] @ [ ()92 ()]
The proof follows by taking v, = v, = and I'y =I'y = I" in Theorem 1.

<

M| —
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Remark 1. With the assumptions of Corollary 2 we have the following inequalities
for the Hadamard product

(2.13) [f177 (A) g” (A)] o[£ (B) g* " (B)]
(1—V) (A )OQ(B)+V9(A) f(B)
G+0?]"

(£ (A) g” (D] o [f7(B) g~ (B)].

44T
In particular,
(2.14) ) g2 ()] o [11/2(B) g (B)]
[ (4)og(B)+g(A)e [ (B)

< g [ @] e [ s ).
We also have for B = A that

(2.15) [F77 (A g” (D] o[£ (A) g' ™ (4)]
< f(A)og(A)

R
(V;ﬂ? i £ (A)g” (A)] o [ (A) g"7 (A)] -

<

N | =

<

In particular,

(2.16) 772 () g2 ()] o [£172 (4) g2 ()]
< f(4)eg(a)

< T [ @ @] e [ (g2 ).

We also have:

Theorem 2. With the assumptions of Theorem 1, we have

(2.17)  w" (7, Ty, Te) S (=) [f7(A) g7 (A)] ® [f7(B) g" (B)]
+v g (A) T A)] @ [ (B) 17V (B)]
< UR (’YlaFl?’VQvF?)a

for allv € ]0,1].
In particular,

(2.18) u’? (v1,T'1,72, T2)
<SP @) e [ B )]

£ [ @ @] @ [g2 B) 7 (B)
S U1/2 (717F1772’F2) .
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Proof. From (2.5) we also have

A=) ft)g(s)+vg (@) [f(s)
frv(e) gr () fv (s)g' = (s)
< UR (71’ I'y, Y2, FQ) ’

u” (’717 Flu’yzv FQ) <

namely

(2.19) u (71, 01,72,T2) < (=) f7 () g7 (1) 77 (5) 9" (s)
Fugt () ) g (s) F1Y (s)
SUR(VDFD’VQ?FQ)»

forte€ I and s € J.
By taking the integral [} [ over dE (t) ® dF (s) in (2.19), we derive the desired
inequality (2.17). O

Corollary 3. With the assumptions of Theorem 1, we have

(2:20)  u (y1,T1,7,T2) S (L =) [f (A) g™ (A)] o [f7(B) g" (B)]
+v g (A) T (A)] o [gH(B) £ (B)]
< UR (71’ F1’72’F2) )

for all v € ]0,1].
In particular,

(221) ' (3;,T1,75,T2) S%[fm g o [F72 () g (B)]
w2 [0 @ @] o [ (8) 72 ()]
< Ul/ (717F17’727F2)

If we assume that f and g satisfy the conditions of Corollary 2 and A has the
spectrum Sp (A4) C I, then by (2.21) we get the following inequality of interest

!

7+

(2.22) 1< |[fY/2(A)g /2 (A)} o [f—1/2 (4) "2 (4)] <

%

3. INEQUALITIES FOR SUMS

We can state the following result:

Proposition 1. With the assumptions of Theorem 1 and if A; and B; are self-
adjoint operators with Sp (A;) C I and Sp(B;) C J, p; > 0,4 € {1,...,n} with
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S pi =1, then

Zplf” ) 9" (B)

(31) u’ (71) F1a723 FQ) [Zpiflu ( i V

i=1

1-wv (sz i ) ® (Zmﬂ&))
+v (Zpig (Ai)> ® (me(&))

< UM (71,T1,72,T2) [Zpifl”( ) 9"

i=1

szfy i v )

forv €[0,1], where r = min {1 — v, v} and R = max {1l —v,v}.
In particular, for v =1/2, we get

(32) 1/2 (717F17727F2)

[Zp f1/2 1/2 Zp f1/2 1/2( )

{(Zpl i ) ® (;pig (Bi)>
g(An) © (ipifwi))}

1/2 (717F17’727F2)

% % [Zp f1/2 1/2

Proof. From (2.1) we get

(33) W (1, TimTa) [ (A) g (4] ® [17 (B) g~ (By)]

S =v) f(A)®g(Bj)+rg(A)® f(B))

<SUR (74, T1,79,T2) [f177 (4) ¢” (A)] @ [f7 (B)) g* 7 (By)]

fori,5 € {1,...,n}.
If we multiply (3.3) by p;p; > 0 and sum, then we get

<

+
Q/—\NH

<

® prl/Q 1/2( ) )

(34) " (v, 71,72, T2) > pipj [£177 (Ai) 9" (A)] @ [ (B;) 9" (By)]

ij=1
<(1-v) Z pipj f(Ai) @ g(Bj) +v Z pipjg (Ai) ® f (B;)
i,j=1 h,j=1
S UR (7,10, T2) Y pay [F177 (Ai) g% ()] @ [ (By) 9" (By)]
ij=1

which is equivalent to (3.1). O
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Remark 2. Assume that f, g are continuous on I and

~

0<y< (t

S

<T fortel.

~—

ks

For B; = A;, i € {1,...,n} we get from (3.1) that

(3.5) [Zpifl_y(Ai) v szfy ) g' Y (Ai)

(1-v (Zp, ) ® (;ng(z‘li)>
+ (;pig (Az')) ® (;pif("‘i))

2181 n
i [,Zpifl-%Ai)g”(Ai)

n

> pif” (A) g T (A

i=1

<

®

In particular, for v =1/2

(36) lzp f1/2 1/2

szfu i 171} (Ai)] -

From (3.7) we get the following inequality for the Hadamard product

(37) lzpifl—u (Az) v [Zplfu 1 v )

< (me(&)) o <Zpi9 (Az)>
i=1 i=1

(7 + F)Q ) - 1-v 1/
44T Z o (A
i=1

<

[szfy V(A -
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In particular, we have

(38) [ZP f1/2 1/2 [Zp f1/2 1/2( z)

<Zpif (Ai)> © (Zpig (Az')>

IN

y+T 2 (A) g2 (A U2 (4,) g"/2 (A
g—2ﬁ;f (A1) g [pr (4:)

4. EXAMPLES
Assume that the operators A and B satisfy the conditions
0<m<A B<M

for some constants m and M.

Consider the functions f (t) = tP, g (t) = t% for ¢t > 0 and p # ¢ are real numbers.
We have th: =tP~% and

mP~9 < ) < MP 9 forp>gq
g(t)
and
MP~1 < 1) <mP 9 forp<ygq
g(t)

for all t € [m, M].
For p > ¢q we get by Corollary 2

(4.1) AU=vptre o prp+(l-v)q
<(1-v)A?P®@ B! +vA?® BP

(mP=1 4 MP=9)°

i AA=vptre o pre+(l-vig

where v € [0,1] and R = max {1 —v,v}.
In particular,

pTaq pPTg 1
(4.2) A= @ B < <A@ B+ A BY)
pP—q p—q
< MR MY Y e g gt
om=t M

We also have for B = A that
(4.3) AA=v)ptva o gvp+(1-v)g
<(1-v)AP @ AT+ vAT® AP

A(lfu)erVq ® AVer(lfl/)q.

- l(mpq + MP—1)?

Amp—aMPr—a
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In particular,

pTq pTq

1
(4.4) AT @A < DAV R AT+ AT A7)

mP~9 4+ MP~9 piq pta
_ 2

pP—aq pP—a AT ® A
2m—= M =
For p > ¢ we get by Remark 1 the following inequalities for Hadamard product
(4.5) AQ=)ptva o grp+(1-v)q
<(1-v)APo B+ vA90B?

(mP=1 4 MP=9)°
= | 4mp—aMr—a

A(l*l/)erl/q o Bup+(171/)q.

In particular,
1
(4.6) A2 oB = gg[Apqu—f—Aqon]

p—q P—q
< = p*—q'_]\{*q APTM ®Bp2ﬁ
2m—=z M=
We also have for B = A that
(4.7) AQ=vIptra o Avp+(1=v)a < AP 5 A4

_ —oy2
(mP~4 + MP~1) AQ=v)ptrvq o gvp+(1-v)q

- AmP—aMP—a
In particular,
P—q 4 )\[P—d
2m =2 M=

Similar inequalities may be stated if one consider the functions f (¢) = exp (at),
g (t) = exp (Bt) with a # 0 and t € R.
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