
TENSORIAL AND HADAMARD PRODUCT INEQUALITIES FOR
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT

SPACES IN TERMS OF KANTOROVICH RATIO

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a Hilbert space. In this paper we show among others
that, if f; g are continuous on the interval I with

0 < 
 � f (t)

g (t)
� � for t 2 I

and if A and B are selfadjoint operators with Sp (A) ; Sp (B) � I, then�
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
� (1� �) f (A)
 g (B) + �g (A)
 f (B)

�
"
(
 + �)2

4
�

#R �
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
:

We also have the following inequalities for the Hadamard product�
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
� (1� �) f (A) � g (B) + �g (A) � f (B)

�
"
(
 + �)2

4
�

#R �
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
:

1. Introduction

Let I1; :::; Ik be intervals from R and let f : I1 � ::: � Ik ! R be an essentially
bounded real function de�ned on the product of the intervals. Let A = (A1; :::; An)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1; :::;Hk such that
the spectrum of Ai is contained in Ii for i = 1; :::; k: We say that such a k-tuple is
in the domain of f . If

Ai =

Z
Ii

�idEi (�i)

is the spectral resolution of Ai for i = 1; :::; k; by following [2], we de�ne

(1.1) f (A1; :::; Ak) :=

Z
I1

:::

Z
Ik

f (�1; :::; �1) dE1 (�1)
 :::
 dEk (�k)

as a bounded selfadjoint operator on the tensorial product H1 
 :::
Hk:
If the Hilbert spaces are of �nite dimension, then the above integrals become

�nite sums, and we may consider the functional calculus for arbitrary real functions.
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This construction [2] extends the de�nition of Korányi [11] for functions of two
variables and have the property that

f (A1; :::; Ak) = f1(A1)
 :::
 fk(Ak);
whenever f can be separated as a product f(t1; :::; tk) = f1(t1):::fk(tk) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0;1), namely

f (st) � (�) f (s) f (t) for all s; t 2 [0;1)
and if f is continuous on [0;1) ; then [6, p. 173]
(1.2) f (A
B) � (�) f (A)
 f (B) for all A; B � 0:
This follows by observing that, if

A =

Z
[0;1)

tdE (t) and B =
Z
[0;1)

sdF (s)

are the spectral resolutions of A and B; then

(1.3) f (A
B) =
Z
[0;1)

Z
[0;1)

f (st) dE (t)
 dF (s)

for the continuous function f on [0;1) :
Recall the geometric operator mean for the positive operators A; B > 0

A#tB := A
1=2(A�1=2BA�1=2)tA1=2;

where t 2 [0; 1] and
A#B := A1=2(A�1=2BA�1=2)1=2A1=2:

By the de�nitions of # and 
 we have
A#B = B#A and (A#B)
 (B#A) = (A
B)# (B 
A) :

In 2007, S. Wada [15] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B)
 (A#B) � 1

2
[(A#�B)
 (A#1��B) + (A#1��B)
 (A#�B)](1.4)

� 1

2
(A
B +B 
A)

for A; B > 0 and � 2 [0; 1] :
Recall that the Hadamard product of A and B in B(H) is de�ned to be the

operator A �B 2 B(H) satisfying
h(A �B) ej ; eji = hAej ; eji hBej ; eji

for all j 2 N, where fejgj2N is an orthonormal basis for the separable Hilbert space
H:
It is known that, see [5], we have the representation

(1.5) A �B = U� (A
B)U
where U : H ! H 
H is the isometry de�ned by Uej = ej 
 ej for all j 2 N.
If f is super-multiplicative (sub-multiplicative) on [0;1) ; then also [6, p. 173]

(1.6) f (A �B) � (�) f (A) � f (B) for all A; B � 0:
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We recall the following elementary inequalities for the Hadamard product

A1=2 �B1=2 �
�
A+B

2

�
� 1 for A; B � 0

and Fiedler inequality

(1.7) A �A�1 � 1 for A > 0:
As extension of Kadison�s Schwarz inequality on the Hadamard product, Ando [1]
showed that

A �B �
�
A2 � 1

�1=2 �
B2 � 1

�1=2
for A; B � 0

and Aujla and Vasudeva [3] gave an alternative upper bound

A �B �
�
A2 �B2

�1=2
for A; B � 0:

It has been shown in [10] that
�
A2 � 1

�1=2 �
B2 � 1

�1=2
and

�
A2 �B2

�1=2
are incom-

parable for 2-square positive de�nite matrices A and B:
The famous Young inequality for scalars says that, if a; b > 0 and � 2 [0; 1]; then

(1.8) a1��b� � (1� �) a+ �b
with equality if and only if a = b. The inequality (1.8) is also called �-weighted
arithmetic-geometric mean inequality.
Kittaneh and Manasrah [8], [9] provided a re�nement and an additive reverse for

Young inequality as follows:

(1.9) r
�p
a�

p
b
�2
� (1� �) a+ �b� a1��b� � R

�p
a�

p
b
�2

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g : The case
� = 1

2 reduces (1.9) to an identity and is of no interest.
We recall that Specht�s ratio is de�ned by [13]

(1.10) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1)

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function S is decreasing on (0; 1) and increasing on (1;1) :
The following inequality provides a re�nement and a multiplicative reverse for

Young�s

(1.11) S
��a
b

�r�
a1��b� � (1� �) a+ �b � S

�a
b

�
a1��b� ;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g.
The second inequality in (1.11) is due to Tominaga [14] while the �rst one is due

to Furuichi [7].
It is an open question for the author if in the right hand side of (1.11) we can

replace S
�
a
b

�
by S

��
a
b

�R�
where R = max f1� �; �g :

We consider the Kantorovich�s ratio de�ned by

(1.12) K (h) :=
(h+ 1)

2

4h
; h > 0:
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The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:

The following multiplicative re�nement and reverse of Young inequality in terms
of Kantorovich�s ratio holds

(1.13) Kr
�a
b

�
a1��b� � (1� �) a+ �b � KR

�a
b

�
a1��b� ;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
The �rst inequality in (1.13) was obtained by Zuo et al. in [16] while the second

by Liao et al. [12].
In [16] the authors also showed that

Kr (h) � S (hr) for h > 0 and r 2
�
0;
1

2

�
implying that the lower bound in (1.13) is better than the lower bound from (1.11).
We can give a simple direct proof for (1.13) as follows.
Recall the following result obtained by the author in 2006 [4] that provides a

re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
j2f1;2;:::;ng

fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35(1.14)

� 1

Pn

nX
j=1

pj� (xj)� �

0@ 1

Pn

nX
j=1

pjxj

1A
� n max

j2f1;2;:::;ng
fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35 ;
where � : C ! R is a convex function de�ned on convex subset C of the linear space
X; fxjgj2f1;2;:::;ng are vectors in C and fpjgj2f1;2;:::;ng are nonnegative numbers
with Pn =

Pn
j=1 pj > 0.

For n = 2, we deduce from (1.14) that

2min f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
(1.15)

� �� (x) + (1� �) � (y)� � [�x+ (1� �) y]

� 2max f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
for any x; y 2 R and � 2 [0; 1].
Now, if we write the inequality (1.15) for the convex function � (x) = � lnx;

and for the positive numbers a and b we get (1.13).
Motivated by the above results, in this paper we show among others that, if f; g

are continuous on the interval I with

0 < 
 � f (t)

g (t)
� � for t 2 I
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and if A and B are selfadjoint operators with Sp (A) ; Sp (B) � I, then�
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
� (1� �) f (A)
 g (B) + �g (A)
 f (B)

�
"
(
 + �)

2

4
�

#R �
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
:

We also have the following inequalities for the Hadamard product�
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
� (1� �) f (A) � g (B) + �g (A) � f (B)

�
"
(
 + �)

2

4
�

#R �
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
:

2. Main Results

We have:

Theorem 1. Let I and J be two intervals and f; g de�ned and continuous on an
interval containing I [ J: Assume that

0 < 
1 �
f (t)

g (t)
� �1 for t 2 I

and

0 < 
2 �
f (s)

g (s)
� �2 for s 2 J:

De�ne

U (
1;�1; 
2;�2) :=

8>>>>>>>>><>>>>>>>>>:

K
�
�1

2

�
if 1 � 
1

�2
;

max
n
K
�
�1

2

�
;K
�

1
�2

�o
if 
1�2 < 1 <

�1

2
;

K
�

1
�2

�
if �1
2 � 1;

and

u (
1;�1; 
2;�2) =

8>>>>>><>>>>>>:

K
�

1
�2

�
if 1 � 
1

�2
;

1 if 
1�2 < 1 <
�1

2
;

K
�
�1

2

�
if �1
2 � 1:

If A and B are selfadjoint operators with Sp (A) � I and Sp (B) � J; then
ur (
1;�1; 
2;�2)

�
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
(2.1)

� (1� �) f (A)
 g (B) + �g (A)
 f (B)
� UR (
1;�1; 
2;�2)

�
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
for � 2 [0; 1]; where r = min f1� �; �g and R = max f1� �; �g :
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In particular,

u1=2 (
1;�1; 
2;�2)
h
f1=2 (A) g1=2 (A)

i


h
f1=2 (B) g1=2 (B)

i
(2.2)

� 1

2
[f (A)
 g (B) + g (A)
 f (B)]

� U1=2 (
1;�1; 
2;�2)
h
f1=2 (A) g1=2 (A)

i


h
f1=2 (B) g1=2 (B)

i
:

Proof. If a 2 [
1;�1] � (0;1) and b 2 [
2;�2] � (0;1), then
a

b
2
�

1
�2
;
�1

2

�
� (0;1) :

The function K is decreasing on (0; 1) and increasing on [1;1) ; then we observe
that

max
�2
h

1
�2
;
�1

2

iK (�) = U (
1;�1; 
2;�2)
and

min
�2
h

1
�2
;
�1

2

iK (�) = u (
1;�1; 
2;�2) :
By (1.13) we then get

ur (
1;�1; 
2;�2) a
1��b�(2.3)

� Kr
�a
b

�
a1��b� � (1� �) a+ �b

� KR
�a
b

�
a1��b� � UR (
1;�1; 
2;�2) a1��b� ;

where r = min f1� �; �g and R = max f1� �; �g :
Now, if we take

a =
f (t)

g (t)
; t 2 I and b = f (s)

g (s)
; s 2 J

in (2.3), then we get

ur (
1;�1; 
2;�2)

�
f (t)

g (t)

�1�� �
f (s)

g (s)

��
(2.4)

� (1� �) f (t)
g (t)

+ �
f (s)

g (s)

� UR (
1;�1; 
2;�2)
�
f (t)

g (t)

�1�� �
f (s)

g (s)

��
;

for t 2 I and s 2 J:
This is equivalent to

ur (
1;�1; 
2;�2) f
1�� (t) g� (t) f� (s) g1�� (s)(2.5)

� (1� �) f (t) g (s) + �g (t) f (s)
� UR (
1;�1; 
2;�2) f1�� (t) g� (t) f� (s) g1�� (s) ;

for t 2 I and s 2 J:
If

A =

Z
I

tdE (t) and B =
Z
J

sdF (s)
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are the spectral resolutions of A and B; then by taking the integral
R
I

R
J
over

dE (t)
 dF (s) in (2.5), we derive that

ur (
1;�1; 
2;�2)

Z
I

Z
J

f1�� (t) g� (t) f� (s) g1�� (s) dE (t)
 dF (s)(2.6)

�
Z
I

Z
J

[(1� �) f (t) g (s) + �g (t) f (s)] dE (t)
 dF (s)

� UR (
1;�1; 
2;�2)
Z
I

Z
J

f1�� (t) g� (t) f� (s) g1�� (s) dE (t)
 dF (s) :

By utilizing (1.1) we getZ
I

Z
J

f1�� (t) g� (t) f� (s) g1�� (s) dE (t)
 dF (s)

=
�
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
andZ

I

Z
J

[(1� �) f (t) g (s) + �g (t) f (s)] dE (t)
 dF (s)

= (1� �)
Z
I

Z
J

f (t) g (s) dE (t)
 dF (s) + �
Z
I

Z
J

g (t) f (s) dE (t)
 dF (s)

= (1� �) f (A)
 g (B) + �g (A)
 f (B) :

Therefore, by (2.6) we obtain the desired result (2.1). �

Corollary 1. With the assumptions of Theorem 1,

ur (
1;�1; 
2;�2)
�
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
(2.7)

� (1� �) f (A) � g (B) + �g (A) � f (B)
� UR (
1;�1; 
2;�2)

�
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
for � 2 [0; 1]:
In particular,

u1=2 (
1;�1; 
2;�2)
h
f1=2 (A) g1=2 (A)

i
�
h
f1=2 (B) g1=2 (B)

i
(2.8)

� 1

2
[f (A) � g (B) + g (A) � f (B)]

� U1=2 (
1;�1; 
2;�2)
h
f1=2 (A) g1=2 (A)

i
�
h
f1=2 (B) g1=2 (B)

i
:

Proof. We have the representation

X � Y = U� (X 
 Y )U

where U : H ! H 
H is the isometry de�ned by Uej = ej 
 ej for all j 2 N.
If we take U� at the left and U at the right in (2.1), then we get

ur (
1;�1; 
2;�2)U�
��
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

��
U

� U� [(1� �) f (A)
 g (B) + �g (A)
 f (B)]U
� UR (
1;�1; 
2;�2)U�

��
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

��
U ,
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namely

ur (
1;�1; 
2;�2)U�
��
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

��
U

� (1� �)U� [f (A)
 g (B)]U + �U� [g (A)
 f (B)]U
� UR (
1;�1; 
2;�2)U�

��
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

��
U ,

which is equivalent to

ur (
1;�1; 
2;�2)U�
��
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

��
U

� (1� �)U� [f (A) � g (B)]U + �U� [g (A) � f (B)]U
� UR (
1;�1; 
2;�2)U�

��
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

��
U

and the inequality (2.7) is obtained. �

Corollary 2. Assume that f; g are continuous on I and

0 < 
 � f (t)

g (t)
� � for t 2 I:

If A and B are selfadjoint operators with Sp (A) ; Sp (B) � I, then�
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
(2.9)

� (1� �) f (A)
 g (B) + �g (A)
 f (B)

�
"
(
 + �)

2

4
�

#R �
f1�� (A) g� (A)

�


�
f� (B) g1�� (B)

�
:

In particular, h
f1=2 (A) g1=2 (A)

i


h
f1=2 (B) g1=2 (B)

i
(2.10)

� 1

2
[f (A)
 g (B) + g (A)
 f (B)]

� 
 + �

2
p

�

h
f1=2 (A) g1=2 (A)

i


h
f1=2 (B) g1=2 (B)

i
:

We also have for B = A that�
f1�� (A) g� (A)

�


�
f� (A) g1�� (A)

�
(2.11)

� (1� �) f (A)
 g (A) + �g (A)
 f (A)

�
"
(
 + �)

2

4
�

#R �
f1�� (A) g� (A)

�


�
f� (A) g1�� (A)

�
:

In particular, h
f1=2 (A) g1=2 (A)

i


h
f1=2 (A) g1=2 (A)

i
(2.12)

� 1

2
[f (A)
 g (A) + g (A)
 f (A)]

� 
 + �

2
p

�

h
f1=2 (A) g1=2 (A)

i


h
f1=2 (A) g1=2 (A)

i
:

The proof follows by taking 
1 = 
2 = 
 and �1 = �2 = � in Theorem 1.
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Remark 1. With the assumptions of Corollary 2 we have the following inequalities
for the Hadamard product�

f1�� (A) g� (A)
�
�
�
f� (B) g1�� (B)

�
(2.13)

� (1� �) f (A) � g (B) + �g (A) � f (B)

�
"
(
 + �)

2

4
�

#R �
f1�� (A) g� (A)

�
�
�
f� (B) g1�� (B)

�
:

In particular, h
f1=2 (A) g1=2 (A)

i
�
h
f1=2 (B) g1=2 (B)

i
(2.14)

� 1

2
[f (A) � g (B) + g (A) � f (B)]

� 
 + �

2
p

�

h
f1=2 (A) g1=2 (A)

i


h
f1=2 (B) g1=2 (B)

i
:

We also have for B = A that�
f1�� (A) g� (A)

�
�
�
f� (A) g1�� (A)

�
(2.15)

� f (A) � g (A)

�
"
(
 + �)

2

4
�

#R �
f1�� (A) g� (A)

�
�
�
f� (A) g1�� (A)

�
:

In particular, h
f1=2 (A) g1=2 (A)

i
�
h
f1=2 (A) g1=2 (A)

i
(2.16)

� f (A) � g (A)

� 
 + �

2
p

�

h
f1=2 (A) g1=2 (A)

i
�
h
f1=2 (A) g1=2 (A)

i
:

We also have:

Theorem 2. With the assumptions of Theorem 1, we have

ur (
1;�1; 
2;�2) � (1� �)
�
f� (A) g�� (A)

�


�
f�� (B) g� (B)

�
(2.17)

+ �
�
g1�� (A) f�1+� (A)

�


�
g�1+� (B) f1�� (B)

�
� UR (
1;�1; 
2;�2) ;

for all � 2 [0; 1] :
In particular,

u1=2 (
1;�1; 
2;�2)(2.18)

� 1

2

h
f1=2 (A) g�1=2 (A)

i


h
f�1=2 (B) g1=2 (B)

i
+
1

2

h
g1=2 (A) f�1=2 (A)

i


h
g�1=2 (B) f1=2 (B)

i
� U1=2 (
1;�1; 
2;�2) :
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Proof. From (2.5) we also have

ur (
1;�1; 
2;�2) �
(1� �) f (t) g (s) + �g (t) f (s)
f1�� (t) g� (t) f� (s) g1�� (s)

� UR (
1;�1; 
2;�2) ;

namely

ur (
1;�1; 
2;�2) � (1� �) f� (t) g�� (t) f�� (s) g� (s)(2.19)

+ �g1�� (t) f�1+� (t) g�1+� (s) f1�� (s)

� UR (
1;�1; 
2;�2) ;

for t 2 I and s 2 J:
By taking the integral

R
I

R
J
over dE (t)
 dF (s) in (2.19), we derive the desired

inequality (2.17). �

Corollary 3. With the assumptions of Theorem 1, we have

ur (
1;�1; 
2;�2) � (1� �)
�
f� (A) g�� (A)

�
�
�
f�� (B) g� (B)

�
(2.20)

+ �
�
g1�� (A) f�1+� (A)

�
�
�
g�1+� (B) f1�� (B)

�
� UR (
1;�1; 
2;�2) ;

for all � 2 [0; 1] :
In particular,

u1=2 (
1;�1; 
2;�2) �
1

2

h
f1=2 (A) g�1=2 (A)

i
�
h
f�1=2 (B) g1=2 (B)

i
(2.21)

+
1

2

h
g1=2 (A) f�1=2 (A)

i
�
h
g�1=2 (B) f1=2 (B)

i
� U1=2 (
1;�1; 
2;�2) :

If we assume that f and g satisfy the conditions of Corollary 2 and A has the
spectrum Sp (A) � I, then by (2.21) we get the following inequality of interest

(2.22) 1 �
h
f1=2 (A) g�1=2 (A)

i
�
h
f�1=2 (A) g1=2 (A)

i
� 
 + �

2
p

�
:

3. Inequalities for Sums

We can state the following result:

Proposition 1. With the assumptions of Theorem 1 and if Ai and Bi are self-
adjoint operators with Sp (Ai) � I and Sp (Bi) � J; pi � 0; i 2 f1; :::; ng with
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i=1 pi = 1; then

ur (
1;�1; 
2;�2)

"
nX
i=1

pif
1�� (Ai) g

� (Ai)

#


"

nX
i=1

pif
� (Bi) g

1�� (Bi)

#
(3.1)

� (1� �)
 

nX
i=1

pif (Ai)

!


 

nX
i=1

pig (Bi)

!

+ �

 
nX
i=1

pig (Ai)

!


 

nX
i=1

pif (Bi)

!

� UR (
1;�1; 
2;�2)
"

nX
i=1

pif
1�� (Ai) g

� (Ai)

#


"

nX
i=1

pif
� (Bi) g

1�� (Bi)

#
for � 2 [0; 1]; where r = min f1� �; �g and R = max f1� �; �g :
In particular, for � = 1=2; we get

u1=2 (
1;�1; 
2;�2)(3.2)

�
"

nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#


"

nX
i=1

pif
1=2 (Bi) g

1=2 (Bi)

#

� 1

2

( 
nX
i=1

pif (Ai)

!


 

nX
i=1

pig (Bi)

!

+

 
nX
i=1

pig (Ai)

!


 

nX
i=1

pif (Bi)

!)
� U1=2 (
1;�1; 
2;�2)

��
"

nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#


"

nX
i=1

pif
1=2 (Bi) g

1=2 (Bi)

#
:

Proof. From (2.1) we get

ur (
1;�1; 
2;�2)
�
f1�� (Ai) g

� (Ai)
�


�
f� (Bj) g

1�� (Bj)
�

(3.3)

� (1� �) f (Ai)
 g (Bj) + �g (Ai)
 f (Bj)
� UR (
1;�1; 
2;�2)

�
f1�� (Ai) g

� (Ai)
�


�
f� (Bj) g

1�� (Bj)
�

for i; j 2 f1; :::; ng :
If we multiply (3.3) by pipj � 0 and sum, then we get

ur (
1;�1; 
2;�2)
nX

i;j=1

pipj
�
f1�� (Ai) g

� (Ai)
�


�
f� (Bj) g

1�� (Bj)
�

(3.4)

� (1� �)
nX

i;j=1

pipjf (Ai)
 g (Bj) + �
nX

i;j=1

pipjg (Ai)
 f (Bj)

� UR (
1;�1; 
2;�2)
nX

i;j=1

pipj
�
f1�� (Ai) g

� (Ai)
�


�
f� (Bj) g

1�� (Bj)
�
;

which is equivalent to (3.1). �
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Remark 2. Assume that f; g are continuous on I and

0 < 
 � f (t)

g (t)
� � for t 2 I:

For Bi = Ai; i 2 f1; :::; ng we get from (3.1) that

"
nX
i=1

pif
1�� (Ai) g

� (Ai)

#


"

nX
i=1

pif
� (Ai) g

1�� (Ai)

#
(3.5)

� (1� �)
 

nX
i=1

pif (Ai)

!


 

nX
i=1

pig (Ai)

!

+ �

 
nX
i=1

pig (Ai)

!


 

nX
i=1

pif (Ai)

!

�
"
(
 + �)

2

4
�

#R " nX
i=1

pif
1�� (Ai) g

� (Ai)

#


"

nX
i=1

pif
� (Ai) g

1�� (Ai)

#
:

In particular, for � = 1=2

"
nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#


"

nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#
(3.6)

� 1

2

" 
nX
i=1

pif (Ai)

!


 

nX
i=1

pig (Ai)

!

+

 
nX
i=1

pig (Ai)

!


 

nX
i=1

pif (Ai)

!#

� 
 + �

2
p

�

"
nX
i=1

pif
1�� (Ai) g

� (Ai)

#


"

nX
i=1

pif
� (Ai) g

1�� (Ai)

#
:

From (3.7) we get the following inequality for the Hadamard product

"
nX
i=1

pif
1�� (Ai) g

� (Ai)

#
�
"

nX
i=1

pif
� (Ai) g

1�� (Ai)

#
(3.7)

�
 

nX
i=1

pif (Ai)

!
�
 

nX
i=1

pig (Ai)

!

�
"
(
 + �)

2

4
�

#R " nX
i=1

pif
1�� (Ai) g

� (Ai)

#
�
"

nX
i=1

pif
� (Ai) g

1�� (Ai)

#
:
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In particular, we have"
nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#
�
"

nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#
(3.8)

�
 

nX
i=1

pif (Ai)

!
�
 

nX
i=1

pig (Ai)

!

� 
 + �

2
p

�

"
nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#
�
"

nX
i=1

pif
1=2 (Ai) g

1=2 (Ai)

#
:

4. Examples

Assume that the operators A and B satisfy the conditions

0 < m � A; B �M

for some constants m and M:
Consider the functions f (t) = tp; g (t) = tq for t > 0 and p 6= q are real numbers.

We have tp

tq = t
p�q and

mp�q � f (t)

g (t)
�Mp�q for p > q

and

Mp�q � f (t)

g (t)
� mp�q for p < q

for all t 2 [m;M ] :
For p > q we get by Corollary 2

A(1��)p+�q 
B�p+(1��)q(4.1)

� (1� �)Ap 
Bq + �Aq 
Bp

�
"
(mp�q +Mp�q)

2

4mp�qMp�q

#R
A(1��)p+�q 
B�p+(1��)q

where � 2 [0; 1] and R = max f1� �; �g :
In particular,

A
p+q
2 
B

p+q
2 � 1

2
[Ap 
Bq +Aq 
Bp](4.2)

� mp�q +Mp�q

2m
p�q
2 M

p�q
2

A
p+q
2 
B

p+q
2 :

We also have for B = A that

A(1��)p+�q 
A�p+(1��)q(4.3)

� (1� �)Ap 
Aq + �Aq 
Ap

�
"
(mp�q +Mp�q)

2

4mp�qMp�q

#R
A(1��)p+�q 
A�p+(1��)q:
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In particular,

A
p+q
2 
A

p+q
2 � 1

2
[Ap 
Aq +Aq 
Ap](4.4)

� mp�q +Mp�q

2m
p�q
2 M

p�q
2

A
p+q
2 
A

p+q
2 :

For p > q we get by Remark 1 the following inequalities for Hadamard product

A(1��)p+�q �B�p+(1��)q(4.5)

� (1� �)Ap �Bq + �Aq �Bp

�
"
(mp�q +Mp�q)

2

4mp�qMp�q

#R
A(1��)p+�q �B�p+(1��)q:

In particular,

A
p+q
2 �B

p+q
2 � 1

2
[Ap �Bq +Aq �Bp](4.6)

� mp�q +Mp�q

2m
p�q
2 M

p�q
2

A
p+q
2 
B

p+q
2 :

We also have for B = A that

A(1��)p+�q �A�p+(1��)q � Ap �Aq(4.7)

�
"
(mp�q +Mp�q)

2

4mp�qMp�q

#R
A(1��)p+�q �A�p+(1��)q:

In particular,

(4.8) A
p+q
2 �A

p+q
2 � Ap �Aq � mp�q +Mp�q

2m
p�q
2 M

p�q
2

A
p+q
2 �A

p+q
2 :

Similar inequalities may be stated if one consider the functions f (t) = exp (�t) ;
g (t) = exp (�t) with � 6= � and t 2 R.
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