TENSORIAL AND HADAMARD PRODUCT INEQUALITIES FOR FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES VIA A CARTWRIGHT-FIELD RESULT

SILVESTRU SEVER DRAGOMIR 1,2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others that, if the functions f and g are continous and positive on the interval I and such that there exists the positive numbers m < M with

$$0 < m \leq \frac{f(t)}{g(t)} \leq M$$
 for all $t \in I$,

then, for the selfadjoint operators A, B with spectra $\mathrm{Sp}(A)$, $\mathrm{Sp}(A) \subset I$, we have the tensorial inequalities

$$\begin{aligned} 0 &\leq \frac{1}{M}\nu(1-\nu) \\ &\times \left[\frac{\left(f^{2}(A)g^{-1}(A)\right)\otimes g(B) + g(A)\otimes\left(f^{2}(B)g^{-1}(B)\right)}{2} - f(A)\otimes f(B)\right] \\ &\leq (1-\nu)f(A)\otimes g(B) + \nu g(A)\otimes f(B) - \left(f^{1-\nu}(A)g^{\nu}(A)\right)\otimes\left(f^{\nu}(B)g^{1-\nu}(B)\right) \\ &\leq \frac{1}{m}\nu(1-\nu) \\ &\times \left[\frac{\left(f^{2}(A)g^{-1}(A)\right)\otimes g(B) + g(A)\otimes\left(f^{2}(B)g^{-1}(B)\right)}{2} - f(A)\otimes f(B)\right]. \end{aligned}$$

Some similar inequalities for Hadamard product are also given.

1. INTRODUCTION

We have the following inequality that provides a refinement and a reverse for the celebrated Young's inequality

(1.1)
$$\frac{1}{2}\nu(1-\nu)\frac{(b-a)^2}{\max\{a,b\}} \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \le \frac{1}{2}\nu(1-\nu)\frac{(b-a)^2}{\min\{a,b\}}$$

for any a, b > 0 and $\nu \in [0, 1]$.

This result was obtained in 1978 by Cartwright and Field [4] who established a more general result for n variables and gave an application for a probability measure supported on a finite interval.

Since $\max\{a, b\} \min\{a, b\} = ab$ for a, b > 0, then by (1.1) we get

$$\frac{1}{2}\nu(1-\nu)\min\{a,b\}\frac{(b-a)^2}{ab} \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \\ \le \frac{1}{2}\nu(1-\nu)\max\{a,b\}\frac{(b-a)^2}{ab},$$

RGMIA Res. Rep. Coll. **25** (2022), Art. 80, 17 pp.

Received 26/08/22

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

 $Key\ words\ and\ phrases.$ Tensorial product, Hadamard Product, Selfadjoint operators, Convex functions.

namely

(1.2)
$$0 \leq \frac{1}{2}\nu(1-\nu)\min\{a,b\}\left(\frac{a}{b}+\frac{b}{a}-2\right) \leq (1-\nu)a+\nu b-a^{1-\nu}b^{\nu}$$
$$\leq \frac{1}{2}\nu(1-\nu)\max\{a,b\}\left(\frac{a}{b}+\frac{b}{a}-2\right),$$

for any a, b > 0 and $\nu \in [0, 1]$.

Let $I_1, ..., I_k$ be intervals from \mathbb{R} and let $f: I_1 \times ... \times I_k \to \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A = (A_1, ..., A_n)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces $H_1, ..., H_k$ such that the spectrum of A_i is contained in I_i for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

$$A_{i} = \int_{I_{i}} \lambda_{i} dE_{i} \left(\lambda_{i}\right)$$

is the spectral resolution of A_i for i = 1, ..., k; by following [2], we define

(1.3)
$$f(A_1, ..., A_k) := \int_{I_1} ... \int_{I_k} f(\lambda_1, ..., \lambda_1) dE_1(\lambda_1) \otimes ... \otimes dE_k(\lambda_k)$$

as a bounded selfadjoint operator on the tensorial product $H_1 \otimes ... \otimes H_k$.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [2] extends the definition of Korányi [5] for functions of two variables and have the property that

$$f(A_1,...,A_k) = f_1(A_1) \otimes ... \otimes f_k(A_k),$$

whenever f can be separated as a product $f(t_1, ..., t_k) = f_1(t_1)...f_k(t_k)$ of k functions each depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on $[0, \infty)$, namely

$$f(st) \ge (\le) f(s) f(t)$$
 for all $s, t \in [0, \infty)$

and if f is continuous on $[0, \infty)$, then [7, p. 173]

(1.4)
$$f(A \otimes B) \ge (\le) f(A) \otimes f(B) \text{ for all } A, \ B \ge 0.$$

This follows by observing that, if

$$A = \int_{[0,\infty)} t dE(t)$$
 and $B = \int_{[0,\infty)} s dF(s)$

are the spectral resolutions of A and B, then

(1.5)
$$f(A \otimes B) = \int_{[0,\infty)} \int_{[0,\infty)} f(st) dE(t) \otimes dF(s)$$

for the continuous function f on $[0,\infty)$.

Recall the geometric operator mean for the positive operators A, B > 0

$$A \#_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$$

where $t \in [0, 1]$ and

$$A \# B := A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$$

By the definitions of # and \otimes we have

$$A \# B = B \# A$$
 and $(A \# B) \otimes (B \# A) = (A \otimes B) \# (B \otimes A)$.

In 2007, S. Wada [9] obtained the following *Callebaut type inequalities* for tensorial product

(1.6)
$$(A\#B) \otimes (A\#B) \leq \frac{1}{2} \left[(A\#_{\alpha}B) \otimes (A\#_{1-\alpha}B) + (A\#_{1-\alpha}B) \otimes (A\#_{\alpha}B) \right]$$
$$\leq \frac{1}{2} \left(A \otimes B + B \otimes A \right)$$

for A, B > 0 and $\alpha \in [0, 1]$.

Recall that the Hadamard product of A and B in B(H) is defined to be the operator $A \circ B \in B(H)$ satisfying

$$\langle (A \circ B) e_j, e_j \rangle = \langle A e_j, e_j \rangle \langle B e_j, e_j \rangle$$

for all $j \in \mathbb{N}$, where $\{e_j\}_{j \in \mathbb{N}}$ is an *orthonormal basis* for the separable Hilbert space H.

It is known that, see [6], we have the representation

(1.7)
$$A \circ B = \mathcal{U}^* (A \otimes B) \mathcal{U}$$

where $\mathcal{U}: H \to H \otimes H$ is the isometry defined by $\mathcal{U}e_j = e_j \otimes e_j$ for all $j \in \mathbb{N}$. If f is super-multiplicative (sub-multiplicative) on $[0, \infty)$, then also [7, p. 173]

(1.8)
$$f(A \circ B) \ge (\le) f(A) \circ f(B) \text{ for all } A, B \ge 0$$

We recall the following elementary inequalities for the Hadamard product

$$A^{1/2} \circ B^{1/2} \le \left(\frac{A+B}{2}\right) \circ 1 \text{ for } A, \ B \ge 0$$

and *Fiedler inequality*

$$(1.9) A \circ A^{-1} \ge 1 \text{ for } A > 0.$$

A

As extension of Kadison's Schwarz inequality on the Hadamard product, Ando [1] showed that

$$A \circ B \le (A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$$
 for $A, B \ge 0$

and Aujla and Vasudeva [3] gave an alternative upper bound

$$A \circ B \le \left(A^2 \circ B^2\right)^{1/2}$$
 for $A, B \ge 0$.

It has been shown in [8] that $(A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$ and $(A^2 \circ B^2)^{1/2}$ are incomparable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we obtain some lower and upper bounds for the quantities

$$(1-\nu) f(A) \otimes g(B) + \nu g(A) \otimes f(B) - (f^{1-\nu}(A) g^{\nu}(A)) \otimes (f^{\nu}(B) g^{1-\nu}(B))$$

and

and

$$(1 - \nu) f(A) \circ g(B) + \nu g(A) \circ f(B) - (f^{1-\nu}(A) g^{\nu}(A)) \circ (f^{\nu}(B) g^{1-\nu}(B))$$

with $\nu \in [0, 1]$, under the assumptions that the functions f and g are continuous and positive on the interval I and such that there exists the positive numbers m < M such that

$$0 < m \le \frac{f(t)}{g(t)} \le M \text{ for all } t \in I,$$

while the selfadjoint operators A, B are with spectra Sp(A), $Sp(A) \subset I$.

2. Main Results

We have the following main result:

Theorem 1. Assume that the functions f and g are continuous and positive on the interval I and such that there exists the positive numbers m < M such that

$$0 < m \le \frac{f(t)}{g(t)} \le M \text{ for all } t \in I,$$

then for the selfadjoint operators A, B with spectra Sp(A), $Sp(A) \subset I$, we have the tensorial inequalities

$$(2.1) \quad 0 \leq \frac{1}{M}\nu(1-\nu) \\ \times \left[\frac{\left(f^{2}(A)g^{-1}(A)\right)\otimes g(B) + g(A)\otimes\left(f^{2}(B)g^{-1}(B)\right)}{2} - f(A)\otimes f(B)\right] \\ \leq (1-\nu)f(A)\otimes g(B) + \nu g(A)\otimes f(B) \\ - \left(f^{1-\nu}(A)g^{\nu}(A)\right)\otimes\left(f^{\nu}(B)g^{1-\nu}(B)\right) \\ \leq \frac{1}{m}\nu(1-\nu) \\ \times \left[\frac{\left(f^{2}(A)g^{-1}(A)\right)\otimes g(B) + g(A)\otimes\left(f^{2}(B)g^{-1}(B)\right)}{2} - f(A)\otimes f(B)\right]$$

and

$$(2.2) \quad 0 \le m\nu (1 - \nu) \\ \times \left[\frac{f(A) \otimes (f^{-1}(B) g(B)) + (f^{-1}(A) g(A)) \otimes f(B)}{2} - g(A) \otimes g(B) \right] \\ \le (1 - \nu) f(A) \otimes g(B) + \nu g(A) \otimes f(B) \\ - (f^{1 - \nu}(A) g^{\nu}(A)) \otimes (f^{\nu}(B) g^{1 - \nu}(B)) \\ \le M\nu (1 - \nu) \\ \times \left[\frac{f(A) \otimes (f^{-1}(B) g(B)) + (f^{-1}(A) g(A)) \otimes f(B)}{2} - g(A) \otimes g(B) \right]$$

for $\nu \in [0,1]$.

Proof. Now if $a, b \in [m, M] \subset (0, \infty)$, then we have from (1.1) and (1.2) the following two inequalities

(2.3)
$$0 \le \frac{1}{2M} \nu (1 - \nu) \left(a^2 - 2ab + b^2 \right) \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu} \\ \le \frac{1}{2m} \nu (1 - \nu) \left(a^2 - 2ab + b^2 \right)$$

and

(2.4)
$$0 \le \frac{1}{2} m \nu (1 - \nu) \left(\frac{a}{b} + \frac{b}{a} - 2 \right) \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu} \le \frac{1}{2} M \nu (1 - \nu) \left(\frac{a}{b} + \frac{b}{a} - 2 \right)$$

for $\nu \in [0,1]$. Since

$$a = \frac{f(t)}{g(t)}, \ b = \frac{f(s)}{g(s)} \in [m, M] \text{ for all } t, s \in I,$$

then by (2.3) and (2.4) we get

$$(2.5) \qquad 0 \leq \frac{1}{2M}\nu(1-\nu)\left(\left(\frac{f(t)}{g(t)}\right)^2 - 2\frac{f(t)}{g(t)}\frac{f(s)}{g(s)} + \left(\frac{f(s)}{g(s)}\right)^2\right) \\ \leq (1-\nu)\frac{f(t)}{g(t)} + \nu\frac{f(s)}{g(s)} - \left(\frac{f(t)}{g(t)}\right)^{1-\nu}\left(\frac{f(s)}{g(s)}\right)^{\nu} \\ \leq \frac{1}{2m}\nu(1-\nu)\left(\left(\frac{f(t)}{g(t)}\right)^2 - 2\frac{f(t)}{g(t)}\frac{f(s)}{g(s)} + \left(\frac{f(s)}{g(s)}\right)^2\right)$$

and

$$(2.6) 0 \leq \frac{1}{2} m \nu \left(1 - \nu\right) \left(\frac{f(t)}{g(t)} \frac{g(s)}{f(s)} + \frac{g(t)}{f(t)} \frac{f(s)}{g(s)} - 2\right) \\ \leq \left(1 - \nu\right) \frac{f(t)}{g(t)} + \nu \frac{f(s)}{g(s)} - \left(\frac{f(t)}{g(t)}\right)^{1 - \nu} \left(\frac{f(s)}{g(s)}\right)^{\nu} \\ \leq \frac{1}{2} M \nu \left(1 - \nu\right) \left(\frac{f(t)}{g(t)} \frac{g(s)}{f(s)} + \frac{g(t)}{f(t)} \frac{f(s)}{g(s)} - 2\right)$$

for all $t, s \in I$ and $\nu \in [0, 1]$.

If we multiply the inequalities (2.5) and (2.6) by g(t) g(s), then we get

$$(2.7) \qquad 0 \leq \frac{1}{2M}\nu(1-\nu)\left(\frac{f^{2}(t)}{g(t)}g(s) - 2f(t)f(s) + \frac{f^{2}(s)}{g(s)}g(t)\right) \\ \leq (1-\nu)f(t)g(s) + \nu g(t)f(s) - f^{1-\nu}(t)g^{\nu}(t)f^{\nu}(s)g^{1-\nu}(s) \\ \leq \frac{1}{2m}\nu(1-\nu)\left(\frac{f^{2}(t)}{g(t)}g(s) - 2f(t)f(s) + \frac{f^{2}(s)}{g(s)}g(t)\right)$$

and

$$(2.8) \qquad 0 \leq \frac{1}{2} m\nu \left(1-\nu\right) \left(f\left(t\right) \frac{g\left(s\right)}{f\left(s\right)} + \frac{g\left(t\right)}{f\left(t\right)} f\left(s\right) - 2g\left(t\right)g\left(s\right)\right) \\ \leq \left(1-\nu\right) f\left(t\right)g\left(s\right) + \nu g\left(t\right)f\left(s\right) - f^{1-\nu}\left(t\right)g^{\nu}\left(t\right)f^{\nu}\left(s\right)g^{1-\nu}\left(s\right) \\ \leq \frac{1}{2} M\nu \left(1-\nu\right) \left(f\left(t\right) \frac{g\left(s\right)}{f\left(s\right)} + \frac{g\left(t\right)}{f\left(t\right)} f\left(s\right) - 2g\left(t\right)g\left(s\right)\right) \right)$$

for all $t, s \in I$ and $\nu \in [0, 1]$.

If

$$A = \int_{I} t dE(t)$$
 and $B = \int_{I} s dF(s)$

are the spectral resolutions of A and B, then by taking the double integral $\int_{I} \int_{I}$ over $dE(t) \otimes dF(s)$ in (2.7) and (2.8) we get

$$\begin{aligned} (2.9) \quad & 0 \leq \frac{1}{2M}\nu\,(1-\nu) \\ & \qquad \times \int_{I}\int_{I}\left(\frac{f^{2}\,(t)}{g\,(t)}g\,(s) - 2f\,(t)\,f\,(s) + \frac{f^{2}\,(s)}{g\,(s)}g\,(t)\right)dE\,(t)\otimes dF\,(s) \\ & \leq \int_{I}\int_{I}\left[(1-\nu)\,f\,(t)\,g\,(s) + \nu g\,(t)\,f\,(s) - f^{1-\nu}\,(t)\,g^{\nu}\,(t)\,f^{\nu}\,(s)\,g^{1-\nu}\,(s)\right] \\ & \times dE\,(t)\otimes dF\,(s) \\ & \leq \frac{1}{2m}\nu\,(1-\nu) \\ & \qquad \times \int_{I}\int_{I}\left(\frac{f^{2}\,(t)}{g\,(t)}g\,(s) - 2f\,(t)\,f\,(s) + \frac{f^{2}\,(s)}{g\,(s)}g\,(t)\right)dE\,(t)\otimes dF\,(s) \end{aligned}$$

and

$$\begin{aligned} (2.10) \quad & 0 \leq \frac{1}{2} m \nu \left(1 - \nu\right) \\ & \times \int_{I} \int_{I} \left(f\left(t\right) \frac{g\left(s\right)}{f\left(s\right)} + \frac{g\left(t\right)}{f\left(t\right)} f\left(s\right) - 2g\left(t\right) g\left(s\right) \right) dE\left(t\right) \otimes dF\left(s\right) \\ & \leq \int_{I} \int_{I} \left[(1 - \nu) f\left(t\right) g\left(s\right) + \nu g\left(t\right) f\left(s\right) - f^{1 - \nu}\left(t\right) g^{\nu}\left(t\right) f^{\nu}\left(s\right) g^{1 - \nu}\left(s\right) \right] \\ & \times dE\left(t\right) \otimes dF\left(s\right) \\ & \leq \frac{1}{2} M \nu \left(1 - \nu\right) \\ & \times \int_{I} \int_{I} \left(f\left(t\right) \frac{g\left(s\right)}{f\left(s\right)} + \frac{g\left(t\right)}{f\left(t\right)} f\left(s\right) - 2g\left(t\right) g\left(s\right) \right) dE\left(t\right) \otimes dF\left(s\right) \end{aligned}$$

for all $\nu \in [0, 1]$. Now, by (1.3) we get

$$\begin{split} &\int_{I} \int_{I} \left(\frac{f^{2}\left(t\right)}{g\left(t\right)} g\left(s\right) - 2f\left(t\right) f\left(s\right) + \frac{f^{2}\left(s\right)}{g\left(s\right)} g\left(t\right) \right) dE\left(t\right) \otimes dF\left(s\right) \\ &= \int_{I} \int_{I} \frac{f^{2}\left(t\right)}{g\left(t\right)} g\left(s\right) dE\left(t\right) \otimes dF\left(s\right) + \int_{I} \int_{I} g\left(t\right) \frac{f^{2}\left(s\right)}{g\left(s\right)} dE\left(t\right) \otimes dF\left(s\right) \\ &- 2 \int_{I} \int_{I} f\left(t\right) f\left(s\right) dE\left(t\right) \otimes dF\left(s\right) \\ &= \left(f^{2}\left(A\right) g^{-1}\left(A\right)\right) \otimes g\left(B\right) + g\left(A\right) \otimes \left(f^{2}\left(B\right) g^{-1}\left(B\right)\right) \\ &- 2f\left(A\right) \otimes f\left(B\right), \end{split}$$

$$\begin{split} &\int_{I} \int_{I} \left[(1-\nu) f(t) g(s) + \nu g(t) f(s) - f^{1-\nu}(t) g^{\nu}(t) f^{\nu}(s) g^{1-\nu}(s) \right] \\ &\times dE(t) \otimes dF(s) \\ &= (1-\nu) \int_{I} \int_{I} f(t) g(s) dE(t) \otimes dF(s) + \nu \int_{I} \int_{I} g(t) f(s) dE(t) \otimes dF(s) \\ &- \int_{I} \int_{I} f^{1-\nu}(t) g^{\nu}(t) f^{\nu}(s) g^{1-\nu}(s) dE(t) \otimes dF(s) \\ &= (1-\nu) f(A) \otimes g(B) + \nu g(A) \otimes f(B) \\ &- \left(f^{1-\nu}(A) g^{\nu}(A) \right) \otimes \left(f^{\nu}(B) g^{1-\nu}(B) \right) \end{split}$$

and

$$\int_{I} \int_{I} \left(f\left(t\right) \frac{g\left(s\right)}{f\left(s\right)} + \frac{g\left(t\right)}{f\left(t\right)} f\left(s\right) - 2g\left(t\right) g\left(s\right) \right) dE\left(t\right) \otimes dF\left(s\right)$$

$$= \int_{I} \int_{I} f\left(t\right) \frac{g\left(s\right)}{f\left(s\right)} dE\left(t\right) \otimes dF\left(s\right) + \int_{I} \int_{I} \frac{g\left(t\right)}{f\left(t\right)} f\left(s\right) dE\left(t\right) \otimes dF\left(s\right)$$

$$- 2 \int_{I} \int_{I} g\left(t\right) g\left(s\right) dE\left(t\right) \otimes dF\left(s\right)$$

$$= f\left(A\right) \otimes \left(f^{-1}\left(B\right) g\left(B\right)\right) + \left(f^{-1}\left(A\right) g\left(A\right)\right) \otimes f\left(B\right)$$

$$- 2g\left(A\right) \otimes g\left(B\right).$$

Then by (2.9) and (2.10) we get (2.1) and (2.2).

Remark 1. We observe that for $\nu = 1/2$ we obtain the following inequalities

$$(2.11) \qquad 0 \leq \frac{1}{4M} \left[\frac{1}{2} \left[\left(f^2(A) g^{-1}(A) \right) \otimes g(B) + g(A) \otimes \left(f^2(B) g^{-1}(B) \right) \right] \right. \\ \left. - f(A) \otimes f(B) \right] \\ \leq \frac{f(A) \otimes g(B) + g(A) \otimes f(B)}{2} \\ \left. - \left(f^{1/2}(A) g^{1/2}(A) \right) \otimes \left(f^{1/2}(B) g^{1/2}(B) \right) \right. \\ \left. \leq \frac{1}{4M} \left[\frac{1}{2} \left[\left(f^2(A) g^{-1}(A) \right) \otimes g(B) + g(A) \otimes \left(f^2(B) g^{-1}(B) \right) \right] \\ \left. - f(A) \otimes f(B) \right] \right]$$

and

$$(2.12) \qquad 0 \leq \frac{1}{4}m \left[\frac{1}{2} \left[f(A) \otimes \left(f^{-1}(B) g(B) \right) + \left(f^{-1}(A) g(A) \right) \otimes f(B) \right] \right. \\ \left. -g(A) \otimes g(B) \right] \\ \leq \frac{f(A) \otimes g(B) + g(A) \otimes f(B)}{2} \\ \left. - \left(f^{1/2}(A) g^{1/2}(A) \right) \otimes \left(f^{1/2}(B) g^{1/2}(B) \right) \right. \\ \left. \leq \frac{1}{4}M \left[\frac{1}{2} \left[f(A) \otimes \left(f^{-1}(B) g(B) \right) + \left(f^{-1}(A) g(A) \right) \otimes f(B) \right] \right. \\ \left. - g(A) \otimes g(B) \right]. \end{cases}$$

Corollary 1. With the assumptions of Theorem 1 we have

$$(2.13) \quad 0 \leq \frac{1}{M}\nu(1-\nu) \\ \times \left[\frac{\left(f^{2}(A)g^{-1}(A)\right)\circ g(B) + g(A)\circ\left(f^{2}(B)g^{-1}(B)\right)}{2} - f(A)\circ f(B)\right] \\ \leq (1-\nu)f(A)\circ g(B) + \nu g(A)\circ f(B) \\ - \left(f^{1-\nu}(A)g^{\nu}(A)\right)\circ\left(f^{\nu}(B)g^{1-\nu}(B)\right) \\ \leq \frac{1}{m}\nu(1-\nu) \\ \times \left[\frac{\left(f^{2}(A)g^{-1}(A)\right)\circ g(B) + g(A)\circ\left(f^{2}(B)g^{-1}(B)\right)}{2} - f(A)\circ f(B)\right]$$

and

$$(2.14) \quad 0 \le m\nu (1 - \nu) \\ \times \left[\frac{f(A) \circ (f^{-1}(B) g(B)) + (f^{-1}(A) g(A)) \circ f(B)}{2} - g(A) \circ g(B) \right] \\ \le (1 - \nu) f(A) \circ g(B) + \nu g(A) \circ f(B) \\ - (f^{1 - \nu}(A) g^{\nu}(A)) \circ (f^{\nu}(B) g^{1 - \nu}(B)) \\ \le M\nu (1 - \nu) \\ \times \left[\frac{f(A) \circ (f^{-1}(B) g(B)) + (f^{-1}(A) g(A)) \circ f(B)}{2} - g(A) \circ g(B) \right]$$

for all $\nu \in [0,1]$.

Proof. For $X, Y \in B(H)$, we have the representation

$$X \circ Y = \mathcal{U}^* \left(X \otimes Y \right) \mathcal{U}$$

where $\mathcal{U}: H \to H \otimes H$ is the isometry defined by $\mathcal{U}e_j = e_j \otimes e_j$ for all $j \in \mathbb{N}$. If we take \mathcal{U}^* at the left and \mathcal{U} at the right in the inequality (2.1), then we get

$$\begin{split} 0 &\leq \frac{1}{M}\nu\left(1-\nu\right) \\ &\times \mathcal{U}^*\left[\frac{\left(f^2\left(A\right)g^{-1}\left(A\right)\right)\otimes g\left(B\right)+g\left(A\right)\otimes\left(f^2\left(B\right)g^{-1}\left(B\right)\right)}{2}-f\left(A\right)\otimes f\left(B\right)\right]\mathcal{U} \\ &\leq \mathcal{U}^*\left[\left(1-\nu\right)f\left(A\right)\otimes g\left(B\right)+\nu g\left(A\right)\otimes f\left(B\right) \\ &-\left(f^{1-\nu}\left(A\right)g^{\nu}\left(A\right)\right)\otimes\left(f^{\nu}\left(B\right)g^{1-\nu}\left(B\right)\right)\right]\mathcal{U} \\ &\leq \frac{1}{m}\nu\left(1-\nu\right) \\ &\times \mathcal{U}^*\left[\frac{\left(f^2\left(A\right)g^{-1}\left(A\right)\right)\otimes g\left(B\right)+g\left(A\right)\otimes\left(f^2\left(B\right)g^{-1}\left(B\right)\right)}{2}-f\left(A\right)\otimes f\left(B\right)\right]\mathcal{U}, \end{split}$$

namely

$$\begin{split} 0 &\leq \frac{1}{M} \nu \left(1 - \nu\right) \\ &\times \left[\frac{\mathcal{U}^* \left[\left(f^2 \left(A\right) g^{-1} \left(A\right)\right) \otimes g \left(B\right) \right] \mathcal{U} + \mathcal{U}^* \left[g \left(A\right) \otimes \left(f^2 \left(B\right) g^{-1} \left(B\right)\right) \right] \mathcal{U}}{2} \right. \\ &\left. - \mathcal{U}^* \left(f \left(A\right) \otimes f \left(B\right)\right) \mathcal{U} \right] \\ &\leq (1 - \nu) \mathcal{U}^* \left[f \left(A\right) \otimes g \left(B\right) \right] \mathcal{U} + \nu \mathcal{U}^* \left(g \left(A\right) \otimes f \left(B\right)\right) \mathcal{U} \\ &\left. - \mathcal{U}^* \left[\left(f^{1 - \nu} \left(A\right) g^{\nu} \left(A\right)\right) \otimes \left(f^{\nu} \left(B\right) g^{1 - \nu} \left(B\right)\right) \right] \mathcal{U} \right] \\ &\leq \frac{1}{m} \nu \left(1 - \nu\right) \\ &\times \left[\frac{\mathcal{U}^* \left[\left(f^2 \left(A\right) g^{-1} \left(A\right)\right) \otimes g \left(B\right) \right] \mathcal{U} + \mathcal{U}^* \left[g \left(A\right) \otimes \left(f^2 \left(B\right) g^{-1} \left(B\right)\right) \right] \mathcal{U} }{2} \right. \\ &\left. - \mathcal{U}^* \left(f \left(A\right) \otimes f \left(B\right)\right) \mathcal{U} \right], \end{split}$$

which is equivalent to (2.13).

Remark 2. We observe that for $\nu = 1/2$ we obtain the following inequalities

$$(2.15) \qquad 0 \leq \frac{1}{4M} \left[\frac{1}{2} \left[\left(f^2(A) g^{-1}(A) \right) \circ g(B) + g(A) \circ \left(f^2(B) g^{-1}(B) \right) \right] \right. \\ \left. - f(A) \circ f(B) \right] \\ \leq \frac{f(A) \circ g(B) + g(A) \circ f(B)}{2} \\ \left. - \left(f^{1/2}(A) g^{1/2}(A) \right) \circ \left(f^{1/2}(B) g^{1/2}(B) \right) \right. \\ \left. \leq \frac{1}{4M} \left[\frac{1}{2} \left[\left(f^2(A) g^{-1}(A) \right) \circ g(B) + g(A) \circ \left(f^2(B) g^{-1}(B) \right) \right] \\ \left. - f(A) \circ f(B) \right] \right]$$

and

$$(2.16) \qquad 0 \leq \frac{1}{4}m \left[\frac{1}{2} \left[f(A) \circ \left(f^{-1}(B) g(B) \right) + \left(f^{-1}(A) g(A) \right) \circ f(B) \right] \right. \\ \left. -g(A) \circ g(B) \right] \\ \leq \frac{f(A) \circ g(B) + g(A) \circ f(B)}{2} \\ \left. - \left(f^{1/2}(A) g^{1/2}(A) \right) \circ \left(f^{1/2}(B) g^{1/2}(B) \right) \right. \\ \left. \leq \frac{1}{4}M \left[\frac{1}{2} \left[f(A) \circ \left(f^{-1}(B) g(B) \right) + \left(f^{-1}(A) g(A) \right) \circ f(B) \right] \right. \\ \left. -g(A) \circ g(B) \right]. \end{cases}$$

Now, if we take B = A in Corollary 1, then we get

$$(2.17) \qquad 0 \leq \frac{1}{M}\nu(1-\nu)\left[\left(f^{2}(A)g^{-1}(A)\right)\circ g(A) - f(A)\circ f(A)\right] \\ \leq f(A)\circ g(A) - \left(f^{1-\nu}(A)g^{\nu}(A)\right)\circ\left(f^{\nu}(A)g^{1-\nu}(A)\right) \\ \leq \frac{1}{m}\nu(1-\nu)\left[\left(f^{2}(A)g^{-1}(A)\right)\circ g(A) - f(A)\circ f(A)\right] \end{cases}$$

and

$$(2.18) \qquad 0 \le m\nu (1-\nu) \left[f(A) \circ \left(f^{-1}(A) g(A) \right) - g(A) \circ g(A) \right] \\ \le f(A) \circ g(A) - \left(f^{1-\nu}(A) g^{\nu}(A) \right) \circ \left(f^{\nu}(A) g^{1-\nu}(A) \right) \\ \le M\nu (1-\nu) \left[f(A) \circ \left(f^{-1}(A) g(A) \right) - g(A) \circ g(A) \right]$$

for all $\nu \in [0,1]$.

In particular, for $\nu = 1/2$ we get

$$(2.19) \qquad 0 \leq \frac{1}{4M} \left[\left(f^2(A) g^{-1}(A) \right) \circ g(A) - f(A) \circ f(A) \right] \\ \leq f(A) \circ g(A) - \left(f^{1/2}(A) g^{1/2}(A) \right) \circ \left(f^{1/2}(A) g^{1/2}(A) \right) \\ \leq \frac{1}{4m} \left[\left(f^2(A) g^{-1}(A) \right) \circ g(A) - f(A) \circ f(A) \right] \end{cases}$$

and

$$(2.20) 0 \leq \frac{1}{4}m \left[f(A) \circ \left(f^{-1}(A)g(A) \right) - g(A) \circ g(A) \right] \\ \leq f(A) \circ g(A) - \left(f^{1/2}(A)g^{1/2}(A) \right) \circ \left(f^{1/2}(A)g^{1/2}(A) \right) \\ \leq \frac{1}{4}M \left[f(A) \circ \left(f^{-1}(A)g(A) \right) - g(A) \circ g(A) \right].$$

3. Inequalities for Power Series

Assume that the operators A and B satisfy the conditions

$$0 < m \leq A, B \leq M$$

for some constants m and M.

Consider the functions $f(t) = t^p$, $g(t) = t^q$ for t > 0 and $p \neq q$ are real numbers. We have $\frac{t^p}{t^q} = t^{p-q}$ and

$$m^{p-q} \le \frac{f(t)}{g(t)} \le M^{p-q}$$
 for $p > q$

and

$$M^{p-q} \le \frac{f(t)}{g(t)} \le m^{p-q}$$
 for $p < q$

for all $t \in [m, M]$.

For p > q we get by Theorem 1 that

$$(3.1) \qquad 0 \leq \frac{1}{M^{p-q}}\nu\left(1-\nu\right)\left[\frac{A^{2p-q}\otimes B^q + A^q\otimes B^{2p-q}}{2} - A^p\otimes B^q\right]$$
$$\leq (1-\nu)A^p\otimes B^q + \nu A^q\otimes B^p - A^{(1-\nu)p+\nu q}\otimes B^{\nu q+(1-\nu)p}$$
$$\leq \frac{1}{m^{p-q}}\nu\left(1-\nu\right)\left[\frac{A^{2p-q}\otimes B^q + A^q\otimes B^{2p-q}}{2} - A^p\otimes B^q\right]$$

and

$$(3.2) \qquad 0 \le m^{p-q}\nu\left(1-\nu\right) \left[\frac{A^p \otimes B^{q-p} + A^{q-p} \otimes B^p}{2} - A^p \otimes B^q\right]$$
$$\le (1-\nu)A^p \otimes B^q + \nu A^q \otimes B^p - A^{(1-\nu)p+\nu q} \otimes B^{\nu q+(1-\nu)p}$$
$$\le M^{p-q}\nu\left(1-\nu\right) \left[\frac{A^p \otimes B^{q-p} + A^{q-p} \otimes B^p}{2} - A^p \otimes B^q\right],$$

for all $\nu \in [0,1]$.

We also have the following result for power series

Theorem 2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with nonnegative coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}$, R > 0. Assume that $0 \leq A$, $B \leq 1$, p > q and $0 \leq \alpha, \beta < R$, then

$$(3.3) \quad 0 \leq \nu (1 - \nu) \\ \times \left[\frac{f(\alpha A^{2p-q}) \otimes f(\beta B^q) + f(\alpha A^q) \otimes f(\beta B^{2p-q})}{2} - f(\alpha A^p) \otimes f(\beta B^q) \right] \\ \leq (1 - \nu) f(\alpha A^p) \otimes f(\beta B^q) + \nu f(\alpha A^q) \otimes f(\beta B^p) \\ - f(\alpha A^{(1-\nu)p+\nu q}) \otimes f(\beta B^{\nu q+(1-\nu)p}).$$

If $R = \infty$, then

$$(3.4) \quad 0 \leq \nu (1-\nu) \\ \times \left[\frac{f(\alpha A^{2p-q}) \otimes f(\beta B^{q}) + f(\alpha A^{q}) \otimes f(\beta B^{2p-q})}{2} - f(\alpha A^{p}) \otimes f(\beta B^{q}) \right] \\ \leq (1-\nu) f(\alpha A^{p}) \otimes f(\beta B^{q}) + \nu f(\alpha A^{q}) \otimes f(\beta B^{p}) \\ - f(\alpha A^{(1-\nu)p+\nu q}) \otimes f(\beta B^{\nu q+(1-\nu)p}) \\ \leq \nu (1-\nu) \\ \times \left[\frac{f(\alpha A^{p}) \otimes f(\beta B^{q-p}) + f(\alpha A^{q-p}) \otimes f(\beta B^{p})}{2} - f(\alpha A^{p}) \otimes f(\beta B^{q}) \right].$$

Proof. From (3.1) and (3.2) we have for $0 \le A, B \le 1$ that

$$(3.5) \qquad 0 \le \nu \left(1-\nu\right) \left[\frac{A^{2p-q} \otimes B^q + A^q \otimes B^{2p-q}}{2} - A^p \otimes B^q\right]$$
$$\le \left(1-\nu\right) A^p \otimes B^q + \nu A^q \otimes B^p - A^{(1-\nu)p+\nu q} \otimes B^{\nu q+(1-\nu)p}$$
$$\le \nu \left(1-\nu\right) \left[\frac{A^p \otimes B^{q-p} + A^{q-p} \otimes B^p}{2} - A^p \otimes B^q\right],$$

for p > q and $\nu \in [0, 1]$. Since $0 \le A, B \le 1$, then $0 \le A^i, B^j \le 1$ for $i, j = 0, 1, \dots$ and by (3.5) we get

$$(3.6) \qquad 0 \leq \nu \left(1-\nu\right) \left[\frac{A^{i(2p-q)} \otimes B^{jq} + A^{iq} \otimes B^{j(2p-q)}}{2} - A^{ip} \otimes B^{jq}\right]$$
$$\leq \left(1-\nu\right) A^{ip} \otimes B^{jq} + \nu A^{iq} \otimes B^{jp} - A^{i[(1-\nu)p+\nu q]} \otimes B^{j[\nu q+(1-\nu)p]}$$
$$\leq \nu \left(1-\nu\right) \left[\frac{A^{ip} \otimes B^{j(q-p)} + A^{i(q-p)} \otimes B^{jp}}{2} - A^{ip} \otimes B^{jq}\right],$$

for i, j = 0, 1, ...If we multiply this inequality by $a_i \alpha^i$ and $a_j \beta^j$, then we get

$$\begin{split} 0 &\leq \nu \left(1-\nu\right) \\ &\times \left[\frac{a_i \alpha^i A^{i(2p-q)} \otimes a_j \beta^j B^{jq} + a_i \alpha^i A^{iq} \otimes a_j \beta^j B^{j(2p-q)}}{2} - a_i \alpha^i A^{ip} \otimes a_j \beta^j B^{jq}\right] \\ &\leq \left(1-\nu\right) a_i \alpha^i A^{ip} \otimes a_j \beta^j B^{jq} + \nu a_i \alpha^i A^{iq} \otimes a_j \beta^j B^{jp} \\ &- a_i \alpha^i A^{i[(1-\nu)p+\nu q]} \otimes a_j \beta^j B^{j[\nu q+(1-\nu)p]} \\ &\leq \nu \left(1-\nu\right) \\ &\times \left[\frac{a_i \alpha^i A^{ip} \otimes a_j \beta^j B^{j(q-p)} + a_i \alpha^i A^{i(q-p)} \otimes a_j \beta^j B^{jp}}{2} - a_i \alpha^i A^{ip} \otimes a_j \beta^j B^{jq}\right], \end{split}$$

for $i,j=0,1,\ldots$

If we sum over i from 0 to n and over j from 0 to m, then we get

$$(3.7) \qquad 0 \leq \nu \left(1-\nu\right) \\ \times \left[\frac{\left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{i(2p-q)}\right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{jq}\right)}{2} + \frac{\left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{iq}\right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{j(2p-q)}\right)}{2} - \left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{ip}\right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{jq}\right)\right]$$

12

$$\leq (1-\nu) \left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{ip} \right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{jq} \right)$$
$$+ \nu \left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{iq} \right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{jp} \right)$$
$$- \left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{i[(1-\nu)p+\nu q]} \right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{j[\nu q+(1-\nu)p]} \right)$$
$$\leq \nu (1-\nu)$$
$$\times \left[\frac{\left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{ip} \right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{j(q-p)} \right)}{2} \right]$$
$$+ \frac{\left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{i(q-p)} \right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{jp} \right)}{2}$$
$$- \left(\sum_{i=0}^{n} a_{i} \alpha^{i} A^{ip} \right) \otimes \left(\sum_{j=0}^{m} a_{j} \beta^{j} B^{jq} \right) \right],$$

for p > q and $\nu \in [0, 1]$.

If $0 \leq A$, $B \leq 1$ and $0 \leq \alpha, \beta < R$, then $0 \leq \alpha A^{2p-q}$, βB^q , αA^q , βB^{2p-q} , αA^p , βB^p , $\alpha A^{[(1-\nu)p+\nu q]}$, $\beta B^{[\nu q+(1-\nu)p]} < R$, which shows that the series

$$\begin{split} &\sum_{i=0}^{\infty} a_i \alpha^i A^{i(2p-q)}, \ \sum_{j=0}^{\infty} a_j \beta^j B^{jq}, \ \sum_{i=0}^{\infty} a_i \alpha^i A^{iq}, \ \sum_{j=0}^{\infty} a_j \beta^j B^{j(2p-q)} \\ &\sum_{i=0}^{\infty} a_i \alpha^i A^{ip}, \ \sum_{j=0}^{\infty} a_j \beta^j B^{jq}, \ \sum_{i=0}^{\infty} a_i \alpha^i A^{i[(1-\nu)p+\nu q]} \text{ and} \\ &\sum_{j=0}^{\infty} a_j \beta^j B^{j[\nu q+(1-\nu)p]} \end{split}$$

are convergent. By taking $m, n \to \infty$ in the first two inequalities in (3.7) we deduce (3.3).

If $R = \infty$, then the series $\sum_{j=0}^{\infty} a_j \beta^j B^{j(q-p)}$ and $\sum_{i=0}^{\infty} a_i \alpha^i A^{i(q-p)}$ are also convergent, and by taking $m, n \to \infty$ in all inequalities in (3.7), we derive (3.4). \Box

Corollary 2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with nonnegative coefficients and convergent on the open disk $D(0,R) \subset \mathbb{C}$, R > 0. Assume that $0 \leq A$, $B \leq 1$, p > q and $0 \leq \alpha, \beta < R$, then

$$(3.8) \quad 0 \le \nu (1 - \nu) \\ \times \left[\frac{f(\alpha A^{2p-q}) \circ f(\beta B^q) + f(\alpha A^q) \circ f(\beta B^{2p-q})}{2} - f(\alpha A^p) \circ f(\beta B^q) \right] \\ \le (1 - \nu) f(\alpha A^p) \circ f(\beta B^q) + \nu f(\alpha A^q) \circ f(\beta B^p) \\ - f(\alpha A^{(1-\nu)p+\nu q}) \circ f(\beta B^{\nu q+(1-\nu)p}).$$

$$\begin{split} If \ R &= \infty, \ then \\ (3.9) \quad 0 \leq \nu \left(1 - \nu\right) \\ & \times \left[\frac{f\left(\alpha A^{2p-q}\right) \circ f\left(\beta B^{q}\right) + f\left(\alpha A^{q}\right) \circ f\left(\beta B^{2p-q}\right)}{2} - f\left(\alpha A^{p}\right) \circ f\left(\beta B^{q}\right)\right] \\ & \leq (1 - \nu) \ f\left(\alpha A^{p}\right) \circ f\left(\beta B^{q}\right) + \nu f\left(\alpha A^{q}\right) \circ f\left(\beta B^{p}\right) \\ & - f\left(\alpha A^{(1-\nu)p+\nu q}\right) \circ f\left(\beta B^{\nu q+(1-\nu)p}\right) \\ & \leq \nu \left(1 - \nu\right) \\ & \times \left[\frac{f\left(\alpha A^{p}\right) \circ f\left(\beta B^{q-p}\right) + f\left(\alpha A^{q-p}\right) \circ f\left(\beta B^{p}\right)}{2} - f\left(\alpha A^{p}\right) \circ f\left(\beta B^{q}\right)\right] \end{split}$$

for $\nu \in [0,1]$.

Remark 3. Assume that $0 \le A \le 1$, p > q and $0 \le \alpha, \beta < R$, then by taking B = A in (3.8), then we get

$$(3.10) \quad 0 \le \nu (1 - \nu) \\ \times \left[\frac{f(\alpha A^{2p-q}) \circ f(\beta A^q) + f(\alpha A^q) \circ f(\beta A^{2p-q})}{2} - f(\alpha A^p) \circ f(\beta A^q) \right] \\ \le (1 - \nu) f(\alpha A^p) \circ f(\beta A^q) + \nu f(\alpha A^q) \circ f(\beta A^p) \\ - f(\alpha A^{(1-\nu)p+\nu q}) \circ f(\beta A^{\nu q+(1-\nu)p}),$$

and for $\alpha = \beta = 1$ we derive

(3.11)
$$0 \le \nu (1-\nu) \left[f(A^{2p-q}) - f(A^p) \right] \circ f(A^q) \\ \le f(A^p) \circ f(A^q) - f(A^{(1-\nu)p+\nu q}) \circ f(A^{\nu q+(1-\nu)p}).$$

If
$$R = \infty$$
, then
(3.12) $0 \le u(1-u)$

$$(3.12) \quad 0 \leq \nu (1 - \nu) \\ \times \left[\frac{f(\alpha A^{2p-q}) \circ f(\beta A^q) + f(\alpha A^q) \circ f(\beta A^{2p-q})}{2} - f(\alpha A^p) \circ f(\beta A^q) \right] \\ \leq (1 - \nu) f(\alpha A^p) \circ f(\beta A^q) + \nu f(\alpha A^q) \circ f(\beta A^p) \\ - f(\alpha A^{(1-\nu)p+\nu q}) \circ f(\beta A^{\nu q+(1-\nu)p}) \\ \leq \nu (1 - \nu) \\ \times \left[\frac{f(\alpha A^p) \circ f(\beta A^{q-p}) + f(\alpha A^{q-p}) \circ f(\beta A^p)}{2} - f(\alpha A^p) \circ f(\beta A^q) \right]$$

and for $\alpha = \beta = 1$ we derive

$$(3.13) \qquad 0 \le \nu \left(1 - \nu\right) \left[f\left(A^{2p-q}\right) - f\left(A^{p}\right) \right] \circ f\left(A^{q}\right) \\ \le f\left(A^{p}\right) \circ f\left(A^{q}\right) - f\left(A^{(1-\nu)p+\nu q}\right) \circ f\left(A^{\nu q+(1-\nu)p}\right) \\ \le \nu \left(1 - \nu\right) \left[f\left(A^{q-p}\right) - f\left(A^{q}\right) \right] \circ f\left(A^{p}\right) \end{aligned}$$

for $\nu \in [0,1]$.

14

Let $h(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}$, R > 0. We have the following examples

(3.14)
$$h(z) = \sum_{n=1}^{\infty} \frac{1}{n} z^n = \ln \frac{1}{1-z}, \ z \in D(0,1);$$
$$h(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n} = \cosh z, \ z \in \mathbb{C};$$
$$h(z) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1} = \sinh z, \ z \in \mathbb{C};$$
$$h(z) = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \ z \in D(0,1).$$

Other important examples of functions as power series representations with nonnegative coefficients are:

(3.15)
$$h(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n = \exp(z) \qquad z \in \mathbb{C},$$
$$h(z) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1} = \frac{1}{2} \ln\left(\frac{1+z}{1-z}\right), \qquad z \in D(0,1);$$
$$h(z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{1}{2})}{\sqrt{\pi}(2n+1)n!} z^{2n+1} = \sin^{-1}(z), \qquad z \in D(0,1);$$

and

$$(3.16) heta(z) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1} = \tanh^{-1}(z), z \in D(0,1)$$
$$h(z) =_2 F_1(\alpha,\beta,\gamma,z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha)\Gamma(n+\beta)\Gamma(\gamma)}{n!\Gamma(\alpha)\Gamma(\beta)\Gamma(n+\gamma)} z^n, \alpha, \beta, \gamma > 0,$$
$$z \in D(0,1);$$

where Γ is *Gamma function*. Assume that $0 \leq A, B \leq 1, p > q$ and $0 \leq \alpha, \beta < 1$, then by writing the inequality (3.3) for the function $f(z) = (1-z)^{-1}$, we get

$$(3.17) \quad 0 \leq \nu (1-\nu) \\ \times \left[\frac{\left(1-\alpha A^{2p-q}\right)^{-1} \otimes \left(1-\beta B^{q}\right)^{-1} + \left(1-\alpha A^{q}\right)^{-1} \otimes \left(1-\beta B^{2p-q}\right)^{-1}}{2} - \left(1-\alpha A^{p}\right)^{-1} \otimes f \left(1-\beta B^{q}\right)^{-1} \right] \\ \leq (1-\nu) \left(1-\alpha A^{p}\right)^{-1} \otimes \left(1-\beta B^{q}\right)^{-1} + \nu \left(1-\alpha A^{q}\right)^{-1} \otimes \left(1-\beta B^{p}\right)^{-1} \\ - \left(1-\alpha A^{(1-\nu)p+\nu q}\right)^{-1} \otimes \left(1-\beta B^{\nu q+(1-\nu)p}\right)^{-1}.$$

From (3.11) we also have the inequalities for the Hadamard product

$$(3.18) \ 0 \le \nu \left(1 - \nu\right) \left[\left(1 - A^{2p-q}\right)^{-1} - \left(1 - A^{p}\right)^{-1} \right] \circ \left(1 - A^{q}\right)^{-1} \\ \le \left(1 - A^{p}\right)^{-1} \circ \left(1 - A^{q}\right)^{-1} - \left(1 - A^{(1-\nu)p+\nu q}\right)^{-1} \circ \left(1 - A^{\nu q + (1-\nu)p}\right)^{-1},$$

for $\nu \in [0,1]$, $0 \le A < 1$, p > q.

Assume that $0 \le A$, $B \le 1$, p > q and $0 \le \alpha, \beta$, then by writing the inequality (3.4) for the function $f(z) = \exp z$, we get

$$(3.19) \qquad 0 \leq \nu (1 - \nu) \\ \times \left[\frac{\exp \left(\alpha A^{2p-q} \right) \otimes \exp \left(\beta B^{q} \right) + \exp \left(\alpha A^{q} \right) \otimes \exp \left(\beta B^{2p-q} \right)}{2} \right. \\ \left. - \exp \left(\alpha A^{p} \right) \otimes \exp \left(\beta B^{q} \right) \right] \\ \leq (1 - \nu) \exp \left(\alpha A^{p} \right) \otimes \exp \left(\beta B^{q} \right) + \nu f \left(\alpha A^{q} \right) \otimes f \left(\beta B^{p} \right) \\ \left. - \exp \left(\alpha A^{(1-\nu)p+\nu q} \right) \otimes \exp \left(\beta B^{\nu q+(1-\nu)p} \right) \right] \\ \leq \nu (1 - \nu) \\ \times \left[\frac{\exp \left(\alpha A^{p} \right) \otimes \exp \left(\beta B^{q-p} \right) + \exp \left(\alpha A^{q-p} \right) \otimes \exp \left(\beta B^{p} \right) \right] \\ \left. - \exp \left(\alpha A^{p} \right) \otimes \exp \left(\beta B^{q} \right) \right].$$

Finally, from (3.13) we derive

$$(3.20) \qquad 0 \le \nu (1-\nu) \left[\exp \left(A^{2p-q} \right) - \exp \left(A^p \right) \right] \circ \exp \left(A^q \right) \\ \le \exp \left(A^p \right) \circ \exp \left(A^q \right) - \exp \left(A^{(1-\nu)p+\nu q} \right) \circ \exp \left(A^{\nu q+(1-\nu)p} \right) \\\\ \le \nu \left(1-\nu \right) \left[\exp \left(A^{q-p} \right) - \exp \left(A^q \right) \right] \circ \exp \left(A^p \right)$$

for $\nu \in [0,1]$, $0 \le A \le 1$, p > q.

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, *Lin. Alg. & Appl.* 26 (1979), 203-241.
- [2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
- [3] J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265-272.
- [4] D. I. Cartwright, M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
- [5] A. Korányi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520–554.
- [6] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995), 531-535
- [7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [8] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, *Scient. Math.* 1 (1998), No. 2, 237-241.
- [9] S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007), 433-440.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL:* http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa