SOME TENSORIAL AND HADAMARD PRODUCT
INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT
OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if f is continuous differentiable convex on the open interval I and A, B
are selfadjoint operators in B (H) with spectra Sp (A), Sp(B) C I, then we
have the tensorial inequality
(ff(AH®1)(A®1-1®B)> f(A)®1-—1Q f(B)
>(A®1-1®B)(1® f'(B))
and the inequality for Hadamard product
(F(A)A) o1~ f (A)oB>[f(A) - f(B)]ol
> Ao f'(B)— (f'(B)B)ol.

1. INTRODUCTION

Let Iy,..., Ix be intervals from R and let f : I; X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hy such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; :/ MNdE; (A;)
1

i

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
(11) f(Al,...,Ak) 2:/ f(Al,...,Al)dEl (A1)®...®dEk ()\k)
I Iy

as a bounded selfadjoint operator on the tensorial product H; ® ... ® H.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [4] for functions of two
variables and have the property that

f (Ala aAk) = fl(Al) .8 fk(Ak),

whenever f can be separated as a product f(t1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, c0), namely

F(st) > (<) £ (s) £ (1) for all 5, € [0,00)
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and if f is continuous on [0, 00), then [6, p. 173]
(1.2) f(A®B) > (L) f(A)® f(B) forall A, B>0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(13) QﬂA@B):/‘ /‘ £ (st)dE (t) @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0, 00).
Recall the geometric operator mean for the positive operators A, B > 0
A#tB — A1/2(A71/2BA71/2)tA1/2
where t € [0, 1] and
A#B — A1/2(A71/2BA71/2)1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B)® (B#A)=(A®B)#(B® A).
In 2007, S. Wada [8] obtained the following Callebaut type inequalities for ten-

sorial product

(1.4)  (A#B) @ (A#B) < 5 [(Af#taB) © (A#1-aB) + (A#1-aB) @ (A#aB)]

e

<-(A® B+ B®A)

2
for A, B> 0 and « € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,e;) = (Aej, e;) (Bej, €;)

for all j € N, where {e; }j cn 1s an orthonormal basis for the separable Hilbert space
H.

It is known that, see [5], we have the representation

(1.5) AoB=U"(A® B)U
where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [6, p. 173]
(1.6) f(AoB) > (<) f(A)o f(B) forall A, B> 0.

We recall the following elementary inequalities for the Hadamard product
xﬁﬁoBu2§<A;B>olbrAwBEO

and Fiedler inequality
AoA™t>1for A>0.
As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
2 1/2 2 1/2
AoB < (A*01)'7 (B*01)'" for A, B>0
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and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (420 B%)"? for A, B> 0.

It has been shown in [7] that (A% o 1)1/2 (B%o1) 2 and (A% 0 B?) "2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we show among others that, if f
is continuous differentiable convex on the open interval I and A, B are selfadjoint
operators in B (H) with spectra Sp (4), Sp(B) C I, then we have the tensorial
inequality

(f(A®1)(A®1-1®B)> f(A)®1-1® f(B)
>(A®1-1B)(1® f (B))
and the inequality for Hadamard product

(f/(A)A)o1— f'(A)o B > (f(A)— f(B))ol
> Ao f'(B)— (f'(B)B)o .

2. MAIN RESULTS

We start to the following result that is related to super/sub-multiplicative ten-
sorial inequalities in (1.2):

Theorem 1. Let h(z) = > o7 a,2™ be a power series with nonnegative coefficients
and convergent on the open disk D (0, R) C C, R > 0. Assume that 0 <r < R and
0< A, B<1, then

(2.1) h(r)h(rA® B) > h(rA) @ h(rB).

If R = oo, then the inequality (2.1) also holds for A, B > 1. In this case for R, if

either 0 < A<land B>1or A>1 and 0 < B <1, then the reverse inequality
in (2.1) holds as well.

Proof. We use the Cebysev inequality for synchronous (the same monotonicity)

sequences (¢;);cy » (bi);cn and nonnegative weights (p;),;cy

n n n n
(2.2) > pi Y picibi =D pici Y pibi,
i=0 =0 =0 =0

for any n € N.

Assume that 0 < » < R. Let t, s € (0,1) and define the sequences c; := t,
b; := s'. These sequences are decreasing and if we apply Cebysev’s inequality for
these sequences and the weights p; := a;r* > 0 we get

(2.3) Z a;rt Z a; (rts)’ > Z a; (rt)" Z a; (rs)'
=0 i=0 i=0 i=0

for any n € N.
Since the series

Z a;rt, Z a; (rts)" Z a; (rt)" and Z a; (rs)’
i=0 i=0 i=0 i=0

are convergent, then by letting n — oo in (2.3) we get

(2.4) h(r)h(rts) > h(rt) h(rs)



4 S.S. DRAGOMIR

forall 0 <r < Randt, s€|0,1].
Consider the function

hy (t) = , t€10,1].

We observe that, by (2.4), the function h,. is super-multiplicative on [0, 1] and
by making use of (1.2) we derive the desired result (1.2).
The other parts of the theorem follow in a similar way, we omit the details. O

Corollary 1. With the assumptions of Theorem 1 and if h is operator concave on
[0,R), then

(2.5) h(r)h(rAoB) > h(rA)oh(rB)

for either 0 < A, B<1 or A, B>1 in the case when R = co. In this last case for
R, if h is operator convex on [0,00) and either 0 < A<1and B>1 or A>1 and
0 < B <1 then the reverse inequality in (2.5) holds as well.

Proof. As in [6, p. 173], by using Davis-Choi-Jensen’s inequality we have

h(ryh(rAoB)=h(r)h(rU* (AR B)U) > h(r)U*h(rA® B)U
>U" (h(rA) @ h(rB))U =h (rA)oh(rB).

and the inequality (2.5) is proved. O

We also have the following double inequality for tensorial product of operators:

Theorem 2. Assume that f is continuous differentiable convex on the open interval
I and A, B are selfadjoint operators in B (H) with spectra Sp (A), Sp (B) C I, then

(2.6) (ff(Ae1)(A®1-19B)> f(A)®1-1® f(B)
>(A®1-19B)(1® f'(B)).
Proof. Using the gradient inequality for the differentiable convex f on I we have
Fr)t=s)=f@)=f(s)=f(s)(t—>s)

forall t, s e I.
Assume that

A:/ItdE(t) ande/Ide(s)

are the spectral resolutions of A and B.
These imply that

(2.7) //f (t — 5)dE (t) ® dF (s // ) dE (t) @ dF (s)
//f (t—s)dE(t)@dF (s).
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Observe that

(2.8) /1 /1 £ (t) (¢ — s)dE (£) @ dF (s)

:// (ff ()t — f (t)s)dE (t) @ dF (s)
//f t)tdE (t) @ dF (s //f t)sdE (1) @ dF (s)
B,

Ael-f (A

//f HRdIF(s)=f(4A)®1-1® f(B)

//f (t—s)dE(t) @ dF (s)
:// (tf (s) — ' (s)s) dE (£) @ dF (s)
//tf )dE (t) ® dF (s //f ) sdE (t) ® dF (s)

=Aef(B)-1e(f(B)B
and by (2.8) we derive the inequality of interest:
(2.9) (ff(AA)el-f(A)@B=f(A)®l1-1® f(B)
> A®f (B)-12 (f (B)B).

Now, by utilizing the tensorial property
XUO)YV)=XY)UeV),

for any X, U, Y,V € B(H), we have

(ffAHel=(fA)el)(Axl),

ffAeB=(f(4)®1)(1eB),
Ao f(B)=(A®1)(1e f(B))

and

and
1o (f'(B)B) =1 (Bf'(B)) = (1® B) (1 f'(B)).
Therefore
(fAAel-fAeB=(f(Hel)(Ael) - (f(A)e1)(1a B)
=(f(A)®1)(A®1-1® B)
and
Ao f(B)-1a(f(B)B)=(Aa1)(1e f(B) - (1 B) (1 f(B))
=(A®1-1®B)(1® f'(B))
and by (2.9) we derive (2.6).
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Corollary 2. With the assumptions of Theorem 2 and if A; € B (H) with spectra
Sp(A;) CI,p; >0 forjed{l, .. n} wzthz _1pj =1, then

(2.10) (ijf' (Aj)Aj) ®1- (ijf' (Aj)) ® B
j=1 j=1

(ijf(flj)) ©1-18/(B)

((iijJ) ®11®B) (1® f (B)).
j=1

In particular, we have

(2.11) (ijf' (Aj)Aj> ®1- (ijf/ (Aj)) ® (ijAj)

> (imm >) ®1—1®f(2p7 )

() o)

Proof. From Theorem 2 we have

(f(A))Aj)) @1 —f(A)®

Y

Y

f(Aj)®@1-1e f(B)
(45

B>
>(4j@l-10B)(1® f(B))

for j € {1,...,n}.
If we multiply by p; > 0, j € {1,...,n} and then sum from 1 to n, then we get

ij (f' (A ®1*ij

zzpjfmj)@l—ij(l@f(B))
j=1 j=1

Zi (4;1-1@B)(1® f' (B))
j=1

((Epa)or-ren) s,

for a selfadjoint operator B with Sp (B) C I, which gives (2.10).
Since Sp(4;) € I and p; > 0 for j € {1,..,n} with 3% p; = 1, hence

Sp (Z; 1 D54 ) C I and by taking B = Ej 1 PjA; in (2.10), we get (2.11). O
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Remark 1. With the assumptions of Corollary 2 and if

(2.12) (ij ) ®1=1® (ZpJ ) 7

then

(2.13) (ijf' (Aj)Aj> ®1-— (ijf' (Aj)) ® (ijAj)
(Zpy )®1—1®f(2p3 )ZQ

Theorem 3. Assume that f is continuous differentiable convex on the open interval
I and A, B are selfadjoint operators in B (H) with spectra Sp (A), Sp (B) C I, then

(2.14) (f'(A)A)ol—f(A)oB=>(f(A)—f(B))ol
> Ao f'(B) = (f(B)B)ol.
Proof. If we multiply the inequality (2.9) to the left with &/* and at the right with
U, we get
U (f'(A)A)e1-f(A) e BlU
U [f(A)el-1e f(B)]U
>U"[A® f'(B) - 1@ (f (B)B)U,
namely
u ((f(AAenu-u(f(A)eB)U
U (f(Ae)U-U"(1e f(B)U
>U" (Ao f/(B)U-U" (1o (f (B)B)U.
Using representation (1.5) we get
(2.15) (f'(A)A)ol—f' (A)oB> f(A)ol—10f(B)
> Ao f/(B) - 1o (f (B) B,
which gives (2.14). O

Remark 2. If {e; }jeN is an orthonormal basis for the separable Hilbert space H,
then, under the assumptions of Theorem 3, we have

(2.16) (f' (A) Aej,ej) — (f' (A) ej,e5) (Bej, e;)
(f(A)ej,e5) — (f(B)ej,ej)

(Aej,ej) (f' (B)ej,ej) — (' (B) Bej, e5)
for all j € N.
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Corollary 3. With the assumptions of Theorem 3 and if A; € B (H) with spectra
Sp(A;) C I, p; >0 forj € {1,..,n} with 337_ p; =1, then

(2.17) S pif (A A | o1— D pif' (4) | oB
j=1 j=1
> (D pif(4)—f(B)| ol
j=1
> pid; | of (B)—(f(B)B)ol.
j=1

In particular,

(2.18) Dopif (A Ay [ o1 =Y p ' (A) | o | D pi4;
Jj=1 j=1 j=1

v

S opif(A) | el—f D pid;] el
j=1 j=1

v

Dopids | oS | Dopids | = | Dopids | Dopids | o,
j=1 j=1 j=1 j=1

Proof. If we replace in (2.14) B = A;, multiply by p; and sum over j from 1 to n,
then we get (2.17).
The inequality (2.18) follows by taking B = 2?21 p;A;jin (2.17). O

3. SOME EXAMPLES

Let h(z) = Y07 yan2" be a power series with complex coefficients and conver-
gent on the open disk D (0, R) C C, R > 0. We have the following examples

(3.1) h(z):ilznzln 1z,z€D(O,1);

— 1
h(2) :Z (2n)!22":coshz, z € C;
=0

; 1

N

h(z) = Z mz%“ =sinhz, z € C;
n=0

oo

h(z)zZz":%, z2€D(0,1).
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Other important examples of functions as power series representations with non-
negative coefficients are:

(3.2) h(z) = Z %z” = exp (2) z€C,

n=0
oo
1 ., 1. (142
h(z)zz2n_122 1:2111(1_2)7 z€D(0,1);
n=1

h(z) = i Mzz”+1 =sin"! (2), 2€D(0,1);

(3.3) h(z) = i ! 2271 = tanh ™ (2), z€ D(0,1)

n:12n—1
_ T+l (4B () ,
h(z) =2 Fl(oz,ﬁ,'y,z)—ngo OO 2" a, B,y >0,

z€ D(0,1);

where I' is Gamma function.
Assume that 0 <7 <1 and 0 < A, B <1, then by (2.1) for h(z) = (1 —2)~
we get

(3.4) (1—r)'1=rAeB) '>1—-rd) 'o(1-rB)"",
for h(z) =In(1 —z)~" we obtain

1

(35) In(1—r) 'm(1—rd®@B) '>m(1l-r4) '@ -rB)"",
while for A (z) = sin™! (2) we derive
(3.6) sin™! (r)sin™! (rA® B) >sin"! (rA) @ sin™! (rB).

If r > 0 and either 0 < A, B<1or A, B> 1, then by (2.1) for h(z) = exp z we
get
(3.7 exp (r(1+ A® B)) > exp (rA) @ exp (rB).

If either 0 < A< land B>1or A>1and 0 < B <1 then the reverse
inequality in (3.7) holds as well.

By (2.1) for h(z) = cosh z or sinh z we get

(3.8) cosh (r) cosh (rA ® B) > cosh (rA) ® cosh (rB)
or
(3.9) sinh (r) sinh (rA ® B) > sinh (rA) ® sinh (rB)

for either 0 < A, B<1lor A, B> 1.

If either 0 < A< land B>1lor A>1and 0 < B < 1, then the reverse
inequality in (3.8) or (3.8) holds as well.

If we take the convex function f (t) = —Int¢, ¢ > 0, then from (2.9) for A, B >0
we get

(3.10) 1-A7'9B<(mA)®1-1® (InB)<A® B! —1.
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From (2.11) we get

(3.11) S opiA @ | Y opiAi | -1
j=1 j=1
21®ln ijAj — ijhlAj ®1
j=1 j=1
-1
> 1@ (D opdi | = | Dopd | @] (10| D p4 ;
j=1 j=1 j=1

where A; >0 and p; > 0 for j € {1,...,n} with 37, p; = 1.
Moreover, if the condition (2.12) is satisfied, then

(3.12) oAt @ | Y o4 | -1
j=1 j=1
Zl@h’l ijAj - ijhlAj ®120
j=1 j=1

From (2.14) we get
(3.13) A'oB—-1>(InB-InA)ol>1-AoB™*

for A, B > 0.
If A; > 0and p; >0 for j € {1,...,n} with Z;;l p; = 1 then by (2.18) we derive

j=1 j=1
>In ijAj — ij InA; | ol
j=1 j=1
-1
n n
Z ijAj o ijAj — 1 Z 0
j=1 7j=1

The last inequality follows by Fiedler inequality B o B~! > 1, see for instance
[6, p. 176].

If we take the convex function f (t) = tlnt, ¢ > 0, then from (2.9) for 4, B > 0
we get

(3.15) (nA)®1+1)(A®1-1®B)>(AlnA)®1—-1® (BlnB)

>
>(A®1-1@B)(1@InB+1).
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From (2.11) we get

(316) (Z ijj In Aj + ijA]‘> ®1
Jj=1 J=1

- (En:pj In (4;) + 1) ® (f:ija)
Jj=1 j=1

\Y4 V
{_\
INgR
3
o
QIL
=
QIL
v
(024]
®
|
L
(024]
| —— |
<
INgR
3
.

2
v
=

<
INGE
3
.
2
\_/
| E— |

where A; >0 and p; > 0 for j € {1,...,n} with 37, p; = 1.

From (2.14) we get
(3.17) (AnA+A)ol—(InA+1)oB>(AlnA—BlnB)o1l

>
>Ao(InB+1)—(BInB+B)ol

for A, B > 0.
From (2.18) we get

(318) (ZPJA] In (AJ)) ol — (Z V2 In (AJ)) ] (ZPJAJ)

2 (ZPJA] lIlAj — (ZPJA]) In (ZPJAJ)> ol
Jj=1 j=1 j=1

> (ijAj) oln (ijAj) — |:ln (ijAj) ijAj] ol,
j=1 j=1 j=1 j=1

where A; >0 and p; > 0 for j € {1,...,n} with 3°7_, p; = 1.
If we write the inequality (2.6) for the convex function f (¢t) =", r € (—o0,0) U
[1,00), then we get

(3.19) r(A7®1)(A®1-19B)>A"®1-1® B"
>r(A®1-19B) (1B "),
for A, B > 0.
For r = 2, we get
(3.20) 20A®1)(A®1-1®B)>A’®1-1® B?

>2(A®1-1®B)(1® B),
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while for r = —1 we get

(3.21) (A2®1)(1eB-A®l)>A'®l-1®B"
>(1l®B-A®1)(1®B?),

for A, B > 0.

From (2.11) we derive

(322) r [(zn:ij;) ®1- (iijF) ® (iﬁjflj)]
>r ((zn:ijj) R1-1® (iijj)) 1® (zn:ijj) )

where A; >0 and p; > 0 for j € {1,...,n} with 37, p; = 1.
For r = 2 we get

(3.23) 2 [(Xn:ij]?) ®1- (ipﬁb-) ® (Zn:pjflj)
:1 j=1 ) 23—1
> (ZPJA?) ®R1-1® (ijAj)
j=1 j=1

(g ) )

while for r = —1, we get

(3.24) Sopidit @ [ Y pid | - | oAt @1
j=1 j=1 j=1
) ) —1
> (ijA;1> ®1-19® (Zm&-)
j=1 j=1

> (1@ (iijj) - (iijj) ® 1) 1® (iijj) :

From (2.14) written for the convex function f (¢t) =t", r € (—00,0) U[1,00), we
get

(3.25) r(A"0o1—A"1'oB)>(A"-=B")ol>r(AoB" ' -=B"01),

for A, B > 0.
For r = 2 we get

(3.26) 2(A’01—AoB) > (A*>-B*)o1>2(AoB—-B%01),
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while for r = —1, we get
(3.27) A_QOB—A_lolz(A_l—B_l)olzB_lol—AoB_2,
for A, B > 0.

If Aj>0and p; >0 for j € {1,..,n} with 3°7_, p; = 1, then by (2.18)

n n n
(328) T ijAg o] 1 — ijA;:_l o ijAj
Jj=1 j=1 j=1
dopidj— | Y opidi] | ol
7j=1 j=1
r—1 T

n n n
>r [ D oAy | o | Dopid —(Dopi4s | o1
Jj=1 Jj=1 j=1

For r = 2, then we get

(329) 2 ZpJA? ol — ijAj (e} ijAj
j=1 j=1 j=1

Y

n n 2
j=1 j=1
2
n n n
> 2 ijAj o ZpJA7 — Zp7AJ oll,
j=1 =1 =
while for r = —1 we get
n n n
(3.30) ijAj_2 o pjA; | — ijAj_l ol
j=1 j=1 j=1
—1
n n
> ijA;l pJA] ol
j=1 j=1
1 —2
n n n
> Dopidi | ol= [ Dopids | o | Dopid;
j=1 j=1 j=1
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