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1. INTRODUCTION

In pure and also applied mathematics, inequalities are a very important method for 

constructing qualitative and quantitative properties. Inequalities are historically viewed as a 

classical field of research. Applications of inequalities play significant roles in mathematics, 

physics, fractals, special functions, number theory and many other areas of research. The value of 

mathematical inequalities was very well established in past and inequalities like Jensen, Hardy, 

Cauchy-Schwarz, Hermite-Hadamard, Steffensen-Gruss, Radon, Popoviciu, Bergstrom and many 

other had an essential role in classical calculus. These inspired other researchers and in this way 

numerous novel results concerning inequalities have already been launched in the literature. Two 

classical book concerning such inequalities are the well-known book of E.F. Bechenbach and R. 

Bellman [1] and the book of D. S. Mitrinovic,  J. E. Pecaric,   and A. M. Fink [2].  

The classical Bergstrom’s inequality was given in [3] and the Radon’s inequality appeared 

first time in [4].  

Last decades mathematicians have paid attention to the Bergstron’s and Radon’s 

inequalities due to its originality, symmetry and quality among mathematical inequalities. New 

generalizations, refinements, modifications and significant developments of Bergstrom’s and 

Radon’s inequalities have been presented in [5-13], see also the references therein for the interested 

reader.  

  The aim of this paper is to give new Radon type inequalities for seminorms 𝑞𝑝 on Loynes 

spaces,  for arbitrary seminorms of a family of seminorms which defines the topology of a linear 

space 𝑋 and, as a consequence, also they are true on an arbitrary Hilbert space  ℋ  with the classical 

norm ||. ||, using as a starting point Theorem 2.6., Theorem 2.7 and Theorem 2.8 form [13]. Several 

consequences and applications will be presented as well. 

The organization of this paper is as follows: In Section 2 a short explanation of the concept 

and some associated work in this dirrection arepresented. In Section 3 the main outcomes are given 

in Theorem 3.1,  Theorem 3.5, Theorem 3.7, Theorem 3.8 and Theorem 3.10 with the associated 

1 Politehnica University of Timisoara, Department of Mathematics, 300006, Timisoara, Romania. E-mail: 

RGMIA Res. Rep. Coll. 25 (2022), Art. 87, 10 pp.        Received 16/09/22



consequences and observations.  Section 4 contains some conclusions and more dirrections for  

future research. 

 

 

2. MATERIALS AND METHODS 

 

 

2.1. MATERIALS 

 

The concept of pseudo-Hilbert space was developed in time after publishing the  papers of 

R. M. Loynes [14-15], these spaces being called pseudo-Hilbert spaces in [16] and Loynes spaces 

in [17] and [18]. By analogy the fundamental concepts properties and techniques of work in these 

spaces  remain valid as in Hilbert spaces. In the following some known notions used in next 

sections will be presented, see [1-2],[17],[19].   

Let  Z be an admissible space in the Loynes sense.  A topological linear space ℋ  is pre-

Loynes Z space if the following conditions are satisfied: (L1) ℋ is endowed with an Z- valued 

inner product (gramian), i.e. there is an application   (ℎ, 𝑘) ∈ ℋ× ℋ → [h, k] ∈ 𝒁 with the 

properties: [ℎ, ℎ] ≥ 0; [ℎ, ℎ] = 0 implies ℎ = 0; [ℎ1 + ℎ2, ℎ] = [ℎ1, ℎ] + [ℎ2, ℎ];  [𝜆ℎ, 𝑘] =
𝜆[ℎ, 𝑘];  [ℎ, 𝑘]∗ = [𝑘, ℎ];        

for all ℎ, 𝑘, ℎ1, ℎ2 ∈ℋ and 𝜆 ∈ ℂ and  

(L2) The topology of ℋ is the weakest locally convex topology on ℋ for which the 

application ℎ ∈ ℋ→ [h, h] ∈ Z is continuous. If in addition, ℋ is a complete space with this 

topology, then ℋ is called Loynes  Z-space. Every 𝐶∗- algebra with natural topology and  

involution  is an example of admissible space. If 𝒁 is the above example of admissible space, then 

with inner product defined by [𝑧1, 𝑧2] = 𝑧2
∗𝑧1 we get  a Loynes Z-space. 

The following results given in [19] introduce a seminorm on an arbitrary Loynes Z-space 

starting from a continuous and monotonous seminorm on Z and define a topology on ℋ by using 

the corresponding topology on Z. 

Lemma 2.1. If 𝑝 is a continuous and monotous seminorm on Z then 𝑞𝑝(ℎ) = (𝑝([ℎ, ℎ]))
1

2 

is a continuous seminorm on ℋ. 

Proposition 2.1. If ℋ is a pre-Loynes  Z-space and Ƥ is a set of monotonous (increasing) 

seminorms defining the topology of Z then the topology of ℋ is defined by the sufficient and 

directed set of seminorms 𝑄Ƥ = {𝑞𝑝|𝑝 ∈ Ƥ}. 

      Let Z be an admissible space in the Loynes sense and ℋ ,ℌ be two Loynes Z-spaces.  The 

operator 𝑇 ∈ 𝐿(ℋ ,ℌ) is called gramian bounded if there is a constant 𝜇 > 0 so that in the sense 

of order of  Z: [𝑇ℎ, 𝑇ℎ] ≤ 𝜇[ℎ, ℎ], ℎ ∈ℋ. The class of such operators is denoted by 𝐵(ℋ ,ℌ). 

The introduced norm was ||𝑇|| = inf {√𝜇, 𝜇 > 0, [𝑇ℎ, 𝑇ℎ] ≤ 𝜇[ℎ, ℎ], ℎ ∈ ℋ} and 𝐵∗(ℋ ,ℌ)= 

= 𝐵(ℋ ,ℌ)∩ 𝐿∗(ℋ ,ℌ) is a Banach space. Moreover, if  ℋ =ℌ then  𝐵∗(ℋ) is a 𝐶∗- algebra. 

Hilbert spaces  are particular cases of Loynes spaces. 
 

 



2.2. METHODS 

      Some generalizations of Radon’s inequality  used in this paper will  be stated below.   First inequality 

is proven in [11] and is cited in [13], see inequality (1.4). The second and the third inequalities from 

below have been established in [13] in Theorem 2.8 and Theorem 3.11 and will be the starting point for 

the results from this paper.  

Theorem 2.1. ([11]) If  𝑛 ∈ 𝐍, 𝑥𝑘 ≥ 0,  𝑦𝑘 > 0 where 𝑘 ∈ {1,2, … , 𝑛} and 𝑝 ≥ 𝑟 ≥ 0, 

𝑥1
𝑝+1

𝑦1
𝑟 +

𝑥2
𝑝+1

𝑦2
𝑟 + ⋯ +

𝑥𝑛
𝑝+1

𝑦𝑛
𝑟

≥ 𝑛𝑟−𝑝
(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)𝑝+1

( 𝑦1 +  𝑦2 + ⋯ +  𝑦𝑛)𝑟

 with equality if and only if 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 and  𝑦1 =  𝑦2 = ⋯ =  𝑦𝑛. 

Theorem 2.2. ([13]) If  𝑛 ∈ 𝐍, 𝑥𝑘 ≥ 0,  𝑦𝑘 > 0 where 𝑘 ∈ {1,2, … , 𝑛} and 𝑝 ≥ 0, 𝑟 ≥ 1,  and   𝑝 + 𝑟 −

2 ≥ 0,  then 

𝑥1
𝑝+𝑟

𝑦1
𝑝 +

𝑥2
𝑝+𝑟

𝑦2
𝑝 + ⋯ +

𝑥𝑛
𝑝+𝑟

𝑦𝑛
𝑝 −

(𝑥1𝑦1
𝑟−1 + 𝑥2𝑦2

𝑟−1 + ⋯ + 𝑥𝑛𝑦𝑛
𝑟−1)𝑝+𝑟

(𝑦1
𝑟 + 𝑦2

𝑟 + ⋯ + 𝑦𝑛
𝑟)𝑝+𝑟−1

≥ 

≥ max
1≤𝑖<𝑗≤𝑛

{
𝑥𝑖

𝑝+𝑟

𝑦
𝑖
𝑝 +

𝑥𝑗
𝑝+𝑟

𝑦
𝑗
𝑝 −

(𝑥𝑖𝑦𝑖
𝑟−1+𝑥𝑗𝑦𝑗

𝑟−1)𝑝+𝑟

(𝑦𝑖
𝑟+𝑦𝑗

𝑟)𝑝+𝑟−1 } ≥ (p + r − 1) max
1≤𝑖<𝑗≤𝑛

{
(𝑦𝑖𝑦𝑗)𝑟−2(𝑥𝑖𝑦𝑖

𝑟−1+𝑥𝑗𝑦𝑗
𝑟−1)𝑝+𝑟−2(𝑥𝑖𝑦𝑗−𝑥𝑗𝑦𝑖)2

(𝑦𝑖
𝑟+𝑦𝑗

𝑟)𝑝+𝑟−1 }. 

Theorem 2.3. ([13]) If  𝑛 ∈ 𝐍, 𝑥𝑘 ≥ 0,  𝑦𝑘 > 0, 𝑘 ∈ {1,2, … , 𝑛} and 𝑝 ≥ 𝑟 ≥ 0 then 

𝑥1
𝑝+1

𝑦1
𝑟 +

𝑥2
𝑝+1

𝑦2
𝑟 + ⋯ +

𝑥𝑛
𝑝+1

𝑦𝑛
𝑟

− 𝑛𝑟−𝑝
(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)𝑝+1

( 𝑦1 +  𝑦2 + ⋯ +  𝑦𝑛)𝑟
≥ max

1≤𝑖<𝑗≤𝑛
{
𝑥𝑖

𝑝+1

𝑦𝑖
𝑟 +

𝑥𝑗
𝑝+1

𝑦𝑗
𝑟 − 2𝑟−𝑝

(𝑥𝑖 + 𝑥𝑗)𝑝+1

( 𝑦𝑖 +  𝑦𝑗)𝑟
} ≥ 0. 

      Two consequences of these inequalities established in [13] are stated below because we need them 

in next section. 

Application 2.4. ([13])  If 𝑎, 𝑏, 𝑐 > 0, prove that 

𝑎5

𝑏2 +
𝑏5

𝑐2 +
𝑐5

𝑎2 −
(𝑎𝑏2+𝑏𝑐2+𝑐𝑎2)

5

(𝑎3+𝑏3++𝑐3)4 ≥ 𝑚𝑎𝑥 (
𝑎5

𝑏2 +
𝑏5

𝑐2 −
(𝑎𝑏2+𝑏𝑐2)

5

(𝑏3+𝑐3)4 ;
𝑏5

𝑐2 +
𝑐5

𝑎2 −
(𝑏𝑐2+𝑐𝑎2)

5

(𝑐3+𝑎3)4 ;
𝑐5

𝑎2 +
𝑎5

𝑏2 −
(𝑐𝑎2+𝑎𝑏2)

5

(𝑎3+𝑏3)4 ). 

Application 2.5. ([13])  If 𝑎, 𝑏, 𝑐 > 0, then the inequality 



𝑎5

𝑏2 +
𝑏5

𝑐2 +
𝑐5

𝑎2 −
1

9
(𝑎 + 𝑏 + 𝑐)3 ≥ 𝑚𝑎𝑥 (

𝑎5

𝑏2 +
𝑏5

𝑐2 −
1

4

(𝑎+𝑏)5

(𝑏+𝑐)4 ;
𝑏5

𝑐2 +
𝑐5

𝑎2 −
1

4

(𝑏+𝑐)5

(𝑐+𝑎)4 ;
𝑐5

𝑎2 +
𝑎5

𝑏2 −
1

4

(𝑐+𝑎)5

(𝑎+𝑏)4). 

3. RESULTS

Using as a starting point Theorem 2.6., Theorem 2.7 and Theorem 2.8 from [13] some new 

inequalities for the seminorms 𝑞𝑝1
 will be presented. Then it can be seen that these inequalities

remain true for arbitrary seminorms of a family of seminorms which defines the topology of a 

linear space 𝑋 and as a consequence also they are true on an arbitrary Hilbert space  ℋ  with the 

classical norm ||. ||. In addition, several consequences and applications are provided in this section. 

Theorem 3.1.  For 𝑛 ∈ 𝐍, 𝑛 ≥ 2, 𝑎𝑘 > 0, ℎ𝑘 ∈ℋ   so that 𝑞𝑝1
(ℎ𝑘) > 0, 𝑘 ∈ {1,2, … , 𝑛},

𝑝 ≥ 0, 𝑟 ≥ 1 the following inequality holds: 

∑
𝑞𝑝1

𝑝+𝑟
(ℎ𝑘)

𝑎𝑘
𝑝

𝑛
𝑘=1 −

𝑞𝑝1
𝑝+𝑟

(∑ 𝑎𝑘
𝑟−1ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝+𝑟−1 ≥ max

1≤𝑖<𝑗≤𝑛
{

𝑞𝑝1
𝑝+𝑟

(ℎ𝑖)

𝑎
𝑖
𝑝 +

𝑞𝑝1
𝑝+𝑟

(ℎ𝑗)

𝑎
𝑗
𝑝 −

𝑞𝑝1
𝑝+𝑟

(𝑎𝑖
𝑟−1ℎ𝑖+𝑎𝑗

𝑟−1ℎ𝑗)

(𝑎𝑖
𝑟+𝑎𝑗

𝑟)𝑝+𝑟−1 } ,   (1) 

where  𝑞𝑝1
(ℎ) = [𝑝([ℎ, ℎ])]

1

2. 

Proof:  It will be considered 𝑥𝑖 = ∑
𝑞𝑝1

𝑝+𝑟
(ℎ𝑘)

𝑎𝑘
𝑝 −

𝑞𝑝1
𝑝+𝑟

(∑ 𝑎𝑘
𝑟−1ℎ𝑘

𝑖
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑖

𝑘=1 )
𝑝+𝑟−1

𝑖
𝑘=1 , 𝑖 ≤ 𝑛 and it will be 

proven that (𝑥𝑛)𝑛 is an increasing sequence. Therefore the expression 𝑥𝑛+1 − 𝑥𝑛 will be

examinated below.  

𝑥𝑛+1 − 𝑥𝑛 = ∑
𝑞𝑝1

𝑝+𝑟(ℎ𝑘)

𝑎𝑘
𝑝

𝑛+1

𝑘=1

−
𝑞𝑝1

𝑝+𝑟
(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛+1
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛+1

𝑘=1 )𝑝+𝑟−1
− ∑

𝑞𝑝1

𝑝+𝑟(ℎ𝑘)

𝑎𝑘
𝑝

𝑛

𝑘=1

+
𝑞𝑝1

𝑝+𝑟
(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )𝑝+𝑟−1
= 

=
𝑞𝑝1

𝑝+𝑟(ℎ𝑛+1)

𝑎𝑛+1
𝑝 +

𝑞𝑝1

𝑝+𝑟
(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝+𝑟−1 −

𝑞𝑝1

𝑝+𝑟
(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛+1
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛+1

𝑘=1 )
𝑝+𝑟−1 .

By using one of the basic properties of seminorms 𝑞𝑝1
 we have,

𝑞𝑝1

𝑝+𝑟
(∑ 𝑎𝑘

𝑟−1ℎ𝑘

𝑛+1

𝑘=1

) ≤ (𝑞𝑝1
(∑ 𝑎𝑘

𝑟−1ℎ𝑘

𝑛

𝑘=1

) + 𝑞𝑝1
(𝑎𝑛+1

𝑟−1ℎ𝑛+1)

𝑝+𝑟

and from Radon’s inequality applied for n=2, see [5], it will be obtained 

𝑞𝑝1

𝑝+𝑟
(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛+1
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛+1

𝑘=1 )𝑝+𝑟−1
≤

(𝑞𝑝1
(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛
𝑘=1 ) + 𝑞𝑝1

(𝑎𝑛+1
𝑟−1ℎ𝑛+1))

𝑝+𝑟

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 + 𝑎𝑛+1
𝑟 )𝑝+𝑟−1

≤ 



≤
(𝑞𝑝1(∑ 𝑎𝑘

𝑟−1ℎ𝑘
𝑛
𝑘=1 ))

𝑝+𝑟

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝+𝑟−1 +

𝑞𝑝1

𝑝+𝑟
(𝑎𝑛+1

𝑟−1 ℎ𝑛+1)

(𝑎𝑛+1
𝑟 )𝑝+𝑟−1  . 

 From here we see that the expression 𝑥𝑛+1 − 𝑥𝑛 ≥ 0 if
𝑞𝑝1

𝑝+𝑟
(𝑎𝑛+1

𝑟−1 ℎ𝑛+1)

(𝑎𝑛+1
𝑟 )𝑝+𝑟−1 ≤

𝑞𝑝1

𝑝+𝑟(ℎ𝑛+1)

𝑎𝑛+1
𝑝   which is 

obvious because (𝑎𝑛+1
𝑟−1 )𝑝+𝑟𝑎𝑛+1

𝑝
= 𝑎𝑛+1

𝑟(𝑝+𝑟−1)
. 

Since (𝑥𝑛)𝑛 is an increasing sequence we get, 𝑥𝑛+1 ≥ 𝑥𝑛 ≥ ⋯ ≥ 𝑥1.  But

𝑥1 =
𝑞𝑝1

𝑝+𝑟
(ℎ1)

𝑎1
𝑝 −

𝑞𝑝1

𝑝+𝑟
(𝑎1

𝑟−1ℎ1)

(𝑎1
𝑟 )

𝑝+𝑟−1 = 𝑞𝑝1

𝑝+𝑟(ℎ1) (
1

𝑎1
𝑝 −

1

𝑎1
𝑟(𝑝+𝑟−1)−(𝑟−1)(𝑝+𝑟)) = 0.

  In addition, it can be seen that 𝑥𝑛 ≥ 𝑥2 =
𝑞𝑝1

𝑝+𝑟(ℎ1)

𝑎1
𝑝 +

𝑞𝑝1

𝑝+𝑟(ℎ2)

𝑎2
𝑝 −

𝑞𝑝1

𝑝+𝑟
(𝑎1

𝑟−1ℎ1+𝑎2
𝑟−1ℎ2)

(𝑎1
𝑟 +𝑎2

𝑟 )
𝑝+𝑟−1  for all 

𝑛 ∈ 𝐍, n ≥ 2. 

 By symmetry of 𝑥𝑛 relatively to the variables 𝑎𝑖 and ℎ𝑖 , 𝑖, 𝑗 ∈ {1,2, … , 𝑛} we have, 

𝑥𝑛 ≥
𝑞𝑝1

𝑝+𝑟(ℎ𝑖)

𝑎𝑖
𝑝 +

𝑞𝑝1

𝑝+𝑟
(ℎ𝑗)

𝑎𝑗
𝑝 −

𝑞𝑝1

𝑝+𝑟
(𝑎𝑖

𝑟−1ℎ𝑖+𝑎𝑗
𝑟−1ℎ𝑗)

(𝑎𝑖
𝑟+𝑎𝑗

𝑟)
𝑝+𝑟−1  for all 

𝑛 ∈ 𝐍, n ≥ 2, 𝑖, 𝑗 ∈ {1,2, … , 𝑛}. 

Corollary 3.2.  Under previous conditions, the above inequality remains true for every 

arbitrary seminorm 𝑝1, 𝑝1 ∶ 𝑋 → 𝑅+ of a family of seminorms which defines the topology of the 

linear space 𝑋 considered instead of seminorm 𝑞𝑝1
 on ℋ. Thus we have,

∑
𝑝1

𝑝+𝑟
(ℎ𝑘)

𝑎𝑘
𝑝

𝑛
𝑘=1 −

𝑝1
𝑝+𝑟

(∑ 𝑎𝑘
𝑟−1ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝+𝑟−1 ≥ max

1≤𝑖<𝑗≤𝑛
{

𝑝1
𝑝+𝑟

(ℎ𝑖)

𝑎
𝑖
𝑝 +

𝑝1
𝑝+𝑟

(ℎ𝑗)

𝑎
𝑗
𝑝 −

𝑝1
𝑝+𝑟

(𝑎𝑖
𝑟−1ℎ𝑖+𝑎𝑗

𝑟−1ℎ𝑗)

(𝑎𝑖
𝑟+𝑎𝑗

𝑟)𝑝+𝑟−1 } . 

Remark 3.3. If 𝑎𝑘 > 0, ℎ𝑘 ∈ℋ   so that 𝑞𝑝1
(ℎ𝑘) > 0, 𝑘 ∈ {1,2, … , 𝑛}, 𝑝 ≥ 0,

𝑛 ∈ 𝐍, m ∈ 𝐍, m ≥ p ≥ 0,  then we have, 

𝑛𝑝−𝑚 𝑞𝑝1
𝑚+1(∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝 ≤ ∑

𝑞𝑝1

𝑚+1(ℎ𝑘)

𝑎𝑘
𝑝

𝑛
𝑘=1 ,          (2) 

where  the seminorm 𝑞𝑝1
  is given by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2. 

Proof: It is used inequality (1.4) from [13] applied for 

𝑥𝑘 = 𝑞𝑝1
(ℎ𝑘), 𝑘 ∈ {1,2, … , 𝑛},  and the generalized triangle inequality for the seminorm 𝑞𝑝1

,

𝑞𝑝1
(∑ ℎ𝑘

𝑛
𝑘=1 ) ≤ ∑ 𝑞𝑝1

(ℎ𝑘)𝑛
𝑘=1 , obtaining: 

∑
𝑞𝑝1

𝑚+1(ℎ𝑘)

𝑎
𝑘
𝑝

𝑛
𝑘=1 ≥ 𝑛𝑝−𝑚

(∑ 𝑞𝑝1
(ℎ𝑘)𝑛

𝑘=1 )
𝑚+1

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑝 ≥ 𝑛𝑝−𝑚 𝑞𝑝1
𝑚+1(∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑝 . 

Remark 3.4.  If 𝑛 ∈ 𝐍, 𝑛 ≥ 2,   ℎ𝑘 ∈ℋ   so that 𝑞𝑝1
(ℎ𝑘) > 0, 𝑘 ∈ {1,2, … , 𝑛}, 𝑝 ≥ 0, 𝑟 ≥

1 then we have the inequality: 

∑ 𝑞𝑝1

𝑝+𝑟(ℎ𝑘)𝑛
𝑘=1 −

𝑞𝑝1
𝑝+𝑟

(∑ ℎ𝑘
𝑛
𝑘=1 )

𝑛𝑝+𝑟−1 ≥ max
1≤𝑖<𝑗≤𝑛

{𝑞𝑝1

𝑝+𝑟(ℎ𝑖) + 𝑞𝑝1

𝑝+𝑟(ℎ𝑗) −
𝑞𝑝1

𝑝+𝑟
(ℎ𝑖+ℎ𝑗)

2𝑝+𝑟−1 } ,          (3) 

where  𝑞𝑝1
  is given by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2.



Proof: We put in Theorem 3.1 𝑎𝑘 = 1, 𝑘 ∈ {1,2, … , 𝑛} and the inequality (3) will be

obtained. 

Theorem 3.5.  If  ℋ  is a Hilbert space, 𝑥𝑘 ∈ ℋ,  𝑘 ∈ {1,2, … , 𝑛}, under previous conditions

from Theorem 3.1 the following inequality takes place: 

∑
||𝑥𝑘||𝑝+𝑟

𝑎𝑘
𝑝

𝑛
𝑘=1 −

|| ∑ 𝑎𝑘
𝑟−1𝑥𝑘

𝑛
𝑘=1 ||𝑝+𝑟

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝+𝑟−1 ≥ max

1≤𝑖<𝑗≤𝑛
{

||𝑥𝑖||𝑝+𝑟

𝑎
𝑖
𝑝 +

||𝑥𝑗||𝑝+𝑟

𝑎
𝑗
𝑝 −

||𝑎𝑖
𝑟−1𝑥𝑖+𝑎𝑗

𝑟−1𝑥𝑗||𝑝+𝑟

(𝑎𝑖
𝑟+𝑎𝑗

𝑟)𝑝+𝑟−1 } .   (4) 

Proof: Like in the proof of Theorem 3.1,  we take 𝑑𝑖 = ∑
||𝑥𝑘||𝑝+𝑟

𝑎𝑘
𝑝 −

|| ∑ 𝑎𝑘
𝑟−1𝑥𝑘

𝑖
𝑘=1 ||𝑝+𝑟

(∑ 𝑎𝑘
𝑟𝑖

𝑘=1 )
𝑝+𝑟−1

𝑖
𝑘=1 , 𝑖 ≤ 𝑛 

and it is  the same method. 

Application 3.6. For 𝑛 ∈ 𝐍, 𝑛 ≥ 2, 𝑎𝑘 > 0  , 𝑘 ∈ {1,2, … , 𝑛}, 𝑝 ≥ 0, 𝑟 ≥ 1,

 next inequality holds: 

∑
1

𝑎𝑘
𝑝

𝑛
𝑘=1 −

(∑ 𝑎𝑘
𝑟−1𝑛

𝑘=1 )𝑝+𝑟

(∑ 𝑎𝑘
𝑟𝑛

𝑘=1 )
𝑝+𝑟−1 ≥ max

1≤𝑖<𝑗≤𝑛
{

1

𝑎
𝑖
𝑝 +

1

𝑎
𝑗
𝑝 −

(𝑎𝑖
𝑟−1+𝑎𝑗

𝑟−1)𝑝+𝑟

(𝑎𝑖
𝑟+𝑎𝑗

𝑟)𝑝+𝑟−1 } .   (5) 

Proof: In inequality (4) it will be considered 𝑥𝑘 = 1, 𝑘 ∈ {1,2, … , 𝑛}, ℋ being the set of real

number with ussualy norm ||. ||, or in Theorem 2.8 from [13] it will be considered in inequality 

(2.12)  𝑥𝑘 = 1, 𝑘 ∈ {1,2, … , 𝑛}.

Theorem 3.7. Let 𝑚, 𝑛 ∈ 𝐍, 𝑛 > 𝑚 be two positive integer numbers and 𝑎𝑘 > 0,  ℎ𝑘 ∈ℋ

so that 𝑞𝑝1
(ℎ𝑘) > 0, 𝑘 ∈ {1,2, … , 𝑛}, 𝑝 ≥  𝑟 ≥ 0.  The following inequality takes place:

∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛
𝑘=𝑚+1 + 𝑚𝑟−𝑝 𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑚
𝑘=1 )

(∑ 𝑎𝑘
𝑚
𝑘=1 )

𝑟 ≥ 𝑛𝑟−𝑝 𝑞𝑝1
𝑝+1

(∑ ℎ𝑘
𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑛
𝑘=1 )𝑟

, (6) 

where  the seminorm 𝑞𝑝1
is defined by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2. 

Proof:  The left term of inequality (6) will be denoted by 𝑁 and can be written as below, 

𝑁 = ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛

𝑘=𝑚+1

+ 𝑚𝑟−𝑝
𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑚
𝑘=1 )

(∑ 𝑎𝑘
𝑚
𝑘=1 )𝑟

= ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛

𝑘=𝑚+1

+ 𝑚
[

1
𝑚

𝑞𝑝1
(∑ ℎ𝑘

𝑚
𝑘=1 )]𝑝+1

(
1
𝑚

∑ 𝑎𝑘
𝑚
𝑘=1 )

𝑟 ≥ 

≥ 𝑛𝑟−𝑝
(∑ 𝑞𝑝1(ℎ𝑘)𝑛

𝑘=𝑚+1 +
𝑚

𝑚
𝑞𝑝1(∑ ℎ𝑘

𝑚
𝑘=1 ))

𝑝+1

(∑ 𝑎𝑘
𝑛
𝑘=𝑚+1 +

𝑚

𝑚
∑ 𝑎𝑘

𝑚
𝑘=1 )

𝑟   by using the inequality (1.4) from [13] given for 

𝑥𝑘 = 𝑞𝑝1
(ℎ𝑘), 𝑘 ∈ {𝑚 + 1, … , 𝑛},   and  𝑥𝑘 =

1

𝑚
𝑞𝑝1

(∑ ℎ𝑘
𝑚
𝑘=1 ), 𝑘 ∈ {1,2, … , 𝑚}.  From definition of

seminorms it is known that  ∑ 𝑞𝑝1
(ℎ𝑘)𝑛

𝑘=𝑚+1 + 𝑞𝑝1
(∑ ℎ𝑘

𝑚
𝑘=1 ) ≥ 𝑞𝑝1

(∑ ℎ𝑘
𝑛
𝑘=1 ) and then we get, 

𝑁 = ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛
𝑘=𝑚+1 + 𝑚𝑟−𝑝

𝑞𝑝1
𝑝+1

(∑ ℎ𝑘
𝑚
𝑘=1 )

(∑ 𝑎𝑘
𝑚
𝑘=1 )

𝑟 ≥ 𝑛𝑟−𝑝 (𝑞𝑝1
(∑ ℎ𝑘

𝑛
𝑘=1 ))

𝑝+1

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑟 . 

Theorem 3.8.  If  𝑛 ∈ 𝐍, 𝑛 ≥ 2, 𝑎𝑘 > 0,  ℎ𝑘 ∈ℋ   so that 𝑞𝑝1
(ℎ𝑘) > 0, 𝑘 ∈ {1,2, … , 𝑛},

𝑝 ≥  𝑟 ≥ 0 then the following inequality holds, 

∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛
𝑘=1 − 𝑛𝑟−𝑝 𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑟 ≥ max
1≤𝑖<𝑗≤𝑛

{
𝑞𝑝1

𝑝+1
(ℎ𝑖)

𝑎𝑖
𝑟 +

𝑞𝑝1
𝑝+1

(ℎ𝑗)

𝑎𝑗
𝑟 − 2𝑟−𝑝 𝑞𝑝1

𝑝+1
(ℎ𝑖+ℎ𝑗)

(𝑎𝑖+𝑎𝑗)𝑟 } ≥ 0 ,   (7) 



where  the seminorm 𝑞𝑝1
  is defined by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2. 

Proof:  It is necessary to consider the sequence 𝑏𝑖 = ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟 − 𝑖𝑟−𝑝 𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑖
𝑘=1 )

(∑ 𝑎𝑘
𝑖
𝑘=1 )

𝑟
𝑖
𝑘=1 , 𝑖 ≤ 𝑛 

and we will prove that (𝑏𝑛)𝑛 is  increasing.

  For that in inequality (7) it will be added in each member the sum, ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑚
𝑘=1 , 

obtaining: 

∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛
𝑘=𝑚+1 + 𝑚𝑟−𝑝 𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑚
𝑘=1 )

(∑ 𝑎𝑘
𝑚
𝑘=1 )

𝑟 + ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑚
𝑘=1 ≥ 𝑛𝑟−𝑝 𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑟 + ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑚
𝑘=1 , 

or 

∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛
𝑘=1 − 𝑛𝑟−𝑝

𝑞𝑝1
𝑝+1

(∑ ℎ𝑘
𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑟 ≥ ∑
𝑞𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑚
𝑘=1 − 𝑚𝑟−𝑝

𝑞𝑝1
𝑝+1

(∑ ℎ𝑘
𝑚
𝑘=1 )

(∑ 𝑎𝑘
𝑚
𝑘=1 )

𝑟 , 

that is 𝑏𝑛 ≥ 𝑏𝑚. Therefore (𝑏𝑛)𝑛 is  increasing and

𝑏𝑛 ≥ 𝑏𝑛−1 ≥ ⋯ ≥ 𝑏2 ≥ 𝑏1 =
𝑞𝑝1

𝑝+1(ℎ1)

𝑎1
𝑟 −

𝑞𝑝1
𝑝+1(ℎ1)

𝑎1
𝑟 = 0. By the same reason as in Theorem 

3.1 we get from symmetry of 𝑏𝑛 relatively to the variables 𝑎𝑖 and ℎ𝑖  , 𝑖, 𝑗 ∈ {1,2, … , 𝑛}
the inequality (7). 

Corollary 3.9. For every arbitrary seminorm 𝑝1, 𝑝1: 𝑋 → 𝑅+ of a family of seminorms 

which defines the topology of the linear space 𝑋, under conditions of Theorem 3.8, the following 

inequality is true: 

∑
𝑝1

𝑝+1
(ℎ𝑘)

𝑎𝑘
𝑟

𝑛
𝑘=1 − 𝑛𝑟−𝑝 𝑝1

𝑝+1
(∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑟 ≥ max
1≤𝑖<𝑗≤𝑛

{
𝑝1

𝑝+1
(ℎ𝑖)

𝑎𝑖
𝑟 +

𝑝1
𝑝+1

(ℎ𝑗)

𝑎𝑗
𝑟 − 2𝑟−𝑝 𝑝1

𝑝+1
(ℎ𝑖+ℎ𝑗)

(𝑎𝑖+𝑎𝑗)𝑟 } ≥ 0.  (8) 

Proof: The proof will be as in Theorem 3.8. 

Theorem 3.10.  If  ℋ  is a Hilbert space space, 𝑥𝑘 ∈ ℋ,  𝑘 ∈ {1,2, … , 𝑛}, under previous

conditions from Theorem 3.8 the following inequality takes place: 

∑
||𝑥𝑘||𝑝+1

𝑎𝑘
𝑟

𝑛
𝑘=1 − 𝑛𝑟−𝑝 || ∑ 𝑥𝑘

𝑛
𝑘=1 ||𝑝+1

(∑ 𝑎𝑘
𝑛
𝑘=1 )

𝑟 ≥ max
1≤𝑖<𝑗≤𝑛

{
||𝑥𝑖||𝑝+1

𝑎𝑖
𝑟 +

||𝑥𝑗||𝑝+1

𝑎𝑗
𝑟 − 2𝑟−𝑝 ||𝑥𝑖+𝑥𝑗||𝑝+1

(𝑎𝑖+𝑎𝑗)𝑟 } .   (9) 

Proof: The proof will be as in Theorem 3.8. 

Remark 3.11. If  𝑛 ∈ 𝐍, 𝑛 ≥ 2,  ℎ𝑘 ∈ℋ , 𝑞𝑝1
(ℎ𝑘) > 0 , 𝑘 ∈ {1,2, … , 𝑛}, 𝑝 ≥  𝑟 ≥ 0 then

the following inequality holds, 

∑ 𝑞𝑝1

𝑝−𝑟+1
(ℎ𝑘)𝑛

𝑘=1 − 𝑛𝑟−𝑝
𝑞𝑝1

𝑝+1
(∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑞𝑝1
(ℎ𝑘)𝑛

𝑘=1 )
𝑟 ≥ max

1≤𝑖<𝑗≤𝑛
{𝑞𝑝1

𝑝−𝑟+1(ℎ𝑖) + 𝑞𝑝1

𝑝−𝑟+1
(ℎ𝑗) − 2𝑟−𝑝

𝑞𝑝1
𝑝+1

(ℎ𝑖+ℎ𝑗)

(𝑞𝑝1
(ℎ𝑖)+𝑞𝑝1(ℎ𝑗))

𝑟} ≥ 0,  (10) 

where  𝑞𝑝1
  is defined by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2. 

Proof: It results from Theorem 3.8 when  𝑎𝑘 = 𝑞𝑝1
(ℎ𝑘) > 0, 𝑘 ∈ {1,2, … , 𝑛}.



Remark 3.12. If  𝑛 ∈ 𝐍, 𝑛 ≥ 2,  ℎ𝑘 ∈ℋ , 𝑞𝑝1
(ℎ𝑘) > 0 , 𝑘 ∈ {1,2, … , 𝑛}, 𝑟 ∈ [0,1] then

next inequality is true: 

∑ 𝑞𝑝1
2−𝑟(ℎ𝑘)𝑛

𝑘=1 − 𝑛𝑟−1 𝑞𝑝1
2 (∑ ℎ𝑘

𝑛
𝑘=1 )

(∑ 𝑞𝑝1
(ℎ𝑘)𝑛

𝑘=1 )
𝑟 ≥ max

1≤𝑖<𝑗≤𝑛
{𝑞𝑝1

2−𝑟(ℎ𝑖) + 𝑞𝑝1
2−𝑟(ℎ𝑗) − 2𝑟−1 𝑞𝑝1

2 (ℎ𝑖+ℎ𝑗)

(𝑞𝑝1
(ℎ𝑖)+𝑞𝑝1(ℎ𝑗))

𝑟} ≥ 0,    (11) 

when  the seminorm 𝑞𝑝1
  is defined by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2. 

Proof: It results from Remark 3.11 when  𝑝 = 1. 

Remark 3.13. If  𝑛 ∈ 𝐍, 𝑛 ≥ 2,  ℎ𝑘 ∈ℋ ,   𝑞𝑝1
(ℎ𝑘) > 0 , 𝑘 ∈ {1,2, … , 𝑛},

 𝑝 ≥  𝑟 ≥ 0 then next inequality is true: 

∑ 𝑞𝑝1

𝑝+1
(ℎ𝑘)𝑛

𝑘=1 −
1

𝑛𝑝 𝑞𝑝1

𝑝+1(∑ ℎ𝑘
𝑛
𝑘=1 ) ≥ max

1≤𝑖<𝑗≤𝑛
{𝑞𝑝1

𝑃+1(ℎ𝑖) + 𝑞𝑝1

𝑝+1
(ℎ𝑗) −

1

2𝑝 𝑞𝑝1

𝑝+1
(ℎ𝑖 + ℎ𝑗)} ≥ 0,    (12) 

where  𝑞𝑝1
  is defined by  𝑞𝑝1

(ℎ) = [𝑝([ℎ, ℎ])]
1

2. 

Proof: It results from Theorem 3.8 if we put   𝑎𝑘 = 1, 𝑘 ∈ {1,2, … , 𝑛} .

An analogue of Application 3.1 from [13] is given below. 

Application 3.14. If  ℎ𝑘 ∈ℋ , 𝑞𝑝1
(ℎ𝑘) > 0 , 𝑘 ∈ 1,3̅̅ ̅̅ ,  then it holds,

𝑞𝑝1
5 (ℎ1)

𝑞𝑝1
2 (ℎ2)

+
𝑞𝑝1

5 (ℎ2)

𝑞𝑝1
2 (ℎ3)

+
𝑞𝑝1

5 (ℎ3)

𝑞𝑝1
2 (ℎ1)

−
𝑞𝑝1

5 (ℎ1𝑞𝑝1
2 (ℎ2) + ℎ2𝑞𝑝1

2 (ℎ3) + ℎ3𝑞𝑝1
2 (ℎ1))

(𝑞𝑝1
3 (ℎ2) + 𝑞𝑝1

3 (ℎ3) + 𝑞𝑝1
3 (ℎ1))4

≥ 

≥ 𝑚𝑎𝑥 {
𝑞𝑝1

5 (ℎ1)

𝑞𝑝1
2 (ℎ2)

+
𝑞𝑝1

5 (ℎ2)

𝑞𝑝1
2 (ℎ3)

−
𝑞𝑝1

5 (ℎ1𝑞𝑝1
2 (ℎ2)+ℎ2𝑞𝑝1

2 (ℎ3))

(𝑞𝑝1
3 (ℎ2)+𝑞𝑝1

3 (ℎ3))
4 ;

𝑞𝑝1
5 (ℎ2)

𝑞𝑝1
2 (ℎ3)

+
𝑞𝑝1

5 (ℎ3)

𝑞𝑝1
2 (ℎ1)

−
𝑞𝑝1

5 (ℎ2𝑞𝑝1
2 (ℎ3)+ℎ3𝑞𝑝1

2 (ℎ1))

(𝑞𝑝1
3 (ℎ3)+𝑞𝑝1

3 (ℎ1))
4 ;

𝑞𝑝1
5 (ℎ3)

𝑞𝑝1
2 (ℎ1)

+
𝑞𝑝1

5 (ℎ1)

𝑞𝑝1
2 (ℎ2)

−

𝑞𝑝1
5 (ℎ3𝑞𝑝1

2 (ℎ1)+ℎ1𝑞𝑝1
2 (ℎ2))

(𝑞𝑝1
3 (ℎ1)+𝑞𝑝1

3 (ℎ2))
4 }.   (13) 

Proof: It results from Theorem 3.1 when  𝑛 = 3, 𝑟 = 3, 𝑝 = 2 and  𝑎𝑘 = 𝑞𝑝1
(ℎ𝑘) , 𝑘 ∈ 1,3̅̅ ̅̅ .

Another analogue of Application 3.2 from [13] is given below. 

Application 3.15. If  ℎ𝑘 ∈ℋ , 𝑞𝑝1
(ℎ𝑘) > 0 , 𝑘 ∈ 1,3̅̅ ̅̅ ,  then we have,

𝑞𝑝1
5 (ℎ1)

𝑞𝑝1
2 (ℎ2)

+
𝑞𝑝1

5 (ℎ2)

𝑞𝑝1
2 (ℎ3)

+
𝑞𝑝1

5 (ℎ3)

𝑞𝑝1
2 (ℎ1)

−
1

9

𝑞𝑝1
5 (ℎ1 + ℎ2 + ℎ3)

(𝑞𝑝1
(ℎ2) + 𝑞𝑝1

(ℎ3) + 𝑞𝑝1
(ℎ1))2

≥

≥ 𝑚𝑎𝑥 {
𝑞𝑝1

5 (ℎ1)

𝑞𝑝1
2 (ℎ2)

+
𝑞𝑝1

5 (ℎ2)

𝑞𝑝1
2 (ℎ3)

−
1

4

𝑞𝑝1
5 (ℎ1+ℎ2)

(𝑞𝑝1
(ℎ2)+𝑞𝑝1

(ℎ3))
4 ;

𝑞𝑝1
5 (ℎ2)

𝑞𝑝1
2 (ℎ3)

+
𝑞𝑝1

5 (ℎ3)

𝑞𝑝1
2 (ℎ1)

−
1

4

𝑞𝑝1
5 (ℎ2+ℎ3)

(𝑞𝑝1
(ℎ3)+𝑞𝑝1

(ℎ1))
4 ;

𝑞𝑝1
5 (ℎ3)

𝑞𝑝1
2 (ℎ1)

+
𝑞𝑝1

5 (ℎ1)

𝑞𝑝1
2 (ℎ2)

−

1

4

𝑞𝑝1
5 (ℎ3+ℎ1)

(𝑞𝑝1
(ℎ1)+𝑞𝑝1

(ℎ2))
4}.  (14) 

Proof: It results from Theorem 3.8 when  𝑛 = 3, 𝑟 = 2, 𝑝 = 4 and  𝑎𝑘 =
𝑞𝑝1

(ℎ𝑘) , 𝑘 ∈ 1,3̅̅ ̅̅ .



4. DISCUSSION AND CONCLUSIONS

The main findings of this study are designed to prove new generalizations of Radon and 

Bergstrom’s inequalities for seminorms and norms on pseudo-Hilbert, Hilbert and any normed 

spaces utilizing the method from the newly discovered refinements of Radon’s inequalities given 

in the literature in recent years. The correlation between the results presented here  and analogue 

results from literature is also considered. Furthermore, several consequences and applications were 

presented to illustrate the outcome of the research.  
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