TOMINAGA’S TYPE INTEGRAL INEQUALITIES FOR
CONTINUOUS FIELDS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let H be a Hilbert space and €2 a locally compact Hausdorff space
endowed with a Radon measure p with fQ 1dp (t) = 1. In this paper we show
among others that, if(A;) cq and (Br), cq are continuous fields of positive
operators in B (H) such that Sp(A-), Sp(B-) C [m,M] C (0,00) for each
7 € Q, then for all v € [0,1] we have the tensorial inequality

() (e
<(1-v) (/QA,du(TO Ql+vl® (/QBTdu(T))
<s (%) (/Q Aldy (T)) ® (/Q BYdu (T)) ,

where S (-) is Specht’s ratio. We also have the following inequalities for the
Hadamard product

(fan) e ([, prancr)

< (/ﬂ[(uu)ATJruBT]du(f)) o1

s () () ()

for all v € [0,1].

1. INTRODUCTION

As is known to all, the famous Young inequality for scalars says that if a,b > 0
and v € [0,1], then
(1.1) a7y < (1—v)a+uvb
with equality if and only if @ = b. The inequality (1.1) is also called v-weighted

arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by

— P ifhoe (0,1) U (1,00)
eln(hﬁ>

S (h):=
1if h=1.

It is well known that lim,_, S (h) = 1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and i 1ncreasmg on (1, 00) .
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Tominaga [10] had proved a multiplicative reverse Young inequality with the
Specht’s ratio [9] as follows:

(1.2) (1-v)a+vb<S (%) a"vb

for a, b> 0 and v € [0, 1].
He also obtained the following additive reverse

(1.3) (1—-v)a+vb—a b < L(a,b)lnS(%)
for a, b > 0 and v € [0, 1], where L (-,) is the logarithmic mean defined by
In lg:ilna for 7& @,
L{(a,b) :=
aifb=a.
If 0 <m < a, b< M, then also [10]
1-vpv M 1-vpv
(1.4) (a' b <) (1u)a+ub§5(>a b
m
and
M M
(1.5) 0<)(1—-v)a+vb—a""b” <al (1,) lnS()
m m
for v € [0,1].

Let I, ..., I;; be intervals from R and let f : I; x ... Xx I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A1, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hy, ..., Hx such that
the spectrum of A; is contained in I; for ¢ = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

Ai:/ MNdE; (A;)
I;

i

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
(16) f(Al,,Ak) :/ f(Al,,Ak)dEl ()\1)®®dEk (/\k)
Iy Iy,

as a bounded selfadjoint operator on the tensorial product H; ® ... ® H.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [5] for functions of two
variables and have the property that

.f (Ala aAk) = fl(Al) ®..® fk(Ak),

whenever f can be separated as a product f(¢1,...,t,) = f1(t1)...fx(tr) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) > (<) f(s)f(t) for all s,¢ € [0,00)
and if f is continuous on [0,0), then [7, p. 173]
(1.7) f(A®B) > (L) f(A)® f(B) forall A, B>0.
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This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.8) tﬂA@B):/' /‘ £ (st)dE () @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0, 00) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB — Al/Z(A—1/2BA—1/2)tA1/2
where t € [0, 1] and
A#B = Al/Q(A_1/2BA_1/2>1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B)® (B#A)=(AQB)# (B® A).
In 2007, S. Wada [11] obtained the following Callebaut type inequalities for ten-

sorial product

(1.9)  (A#B) ® (A#B) < 5 [(A#aB) ® (A#1-aB) + (A#1-0B) ® (A#.B)]

— N =

<-(A® B+ B®A)

2
for A, B>0and a €10,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,e;) = (Aej, €;) (Bej, ¢5)

for all j € N, where {e; }j cn is an orthonormal basis for the separable Hilbert space
H.
It is known that, see [6], we have the representation

(1.10) AoB=U*(A® B)U

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [7, p. 173]

(1.11) F(AoB)> (<) f(A)o f(B) forall A, B> 0.

We recall the following elementary inequalities for the Hadamard product
Al/2 o g1/2 < (A—;B> olfor A, B>0

and Fiedler inequality
Ao A=t >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that

AoB < (A201)*(B2o1)"? for A, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

AoB< (A20B2)1/2 for A, B> 0.
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It has been shown in [8] that (A% o 1)1/2 (B%o 1)1/2 and (A% o B?) "2 are incom-
parable for 2-square positive definite matrices A and B.

Let Q be a locally compact Hausdorff space endowed with a Radon measure .
A field (Ay),cq, of operators in B (H) is called a continuous field of operators if the
parametrization ¢t — A; is norm continuous on B (H). If, in addition, the norm
function ¢t — || A¢|| is Lebesgue integrable on 2, we can form the Bochner integral
Joy Avdp (t), which is the unique operator in B (H) such that ¢ ([, Audp(t)) =
Joo (At) du (t) for every bounded linear functional ¢ on B (H). Assume also that,

fQ 1du (t) = 1.

Let (A ), Q and (B;) cqbe continuous fields of positive operators in B (H) such
that Sp (A-), Sp(B;) C [m, M] C (0,00) for each 7 € Q. In [4] we showed among
others that, for v € [0, 1],

(1.12) (/ Al vau (r ) (/ BYdu (t )

<(1-v) (/QATdM(T)> @1+v1® (/QBTdu(T))

< exp [W] (/Q Alvdp (r)) ® </Q Bldp (T))
and

(1.13) 0<(1—-v) (/ Ardp (T)) ®1l+vl® (/Q B.du (T))
< A1 Ydu (T )® (/QBZd,u(T)>
l
<M

m) (In M — lnm)

for v € [0,1].
We also obtained the following inequalities for the Hadamard product

(1.14) </Q Alvau (T)) o (/Q BYdp (T))

g/ﬁ((l—u)ATwBT)du(T)ol

) () (e
(1.15) 0 < /Q((l —v)A; +vB;)du(t)ol — (/Q Al vau (T)> o (/Q BYdu (T)>

(M —m)(InM —Inm)

< exp [ 4mM

for v € [0,1].

Motivated by the above results, in this paper we show among others that,
if(A;) . cq and (B;r),cq are continuous fields of positive operators in B (H) such
that Sp( +), Sp(B:) C [m, M] C (0,00) for each T € £, then for all v € [0,1] we
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have the tensorial inequality

([wir)o (o)
<(1-v) </ Afdu(7)> ®1+vl® (/ Brdﬂ(7)>
Q Q
<5 (30) ([ arranm) o ([ Brancn)
m Q Q
where S (+) is Specht’s ratio. We also have the following inequalities for the Hadamard
product
([ avaum)e ([ Bran)
Q Q
< (/ [(1-v)A; +VBT]dM(T)> ol
Q

s (1) () )

2. MAIN RESULTS

for all v € [0,1].

In what follows we assume that [, 1du (t) = 1.

Theorem 1. Let (A;), .o and (B:), cqbe continuous fields of positive operators in
B (H) such that Sp (A;), Sp(B;) C [m,M] C (0,00) for each 7 € Q. Then for all
v € [0,1] we have

21 ( [ ) e ([ b))
(1-v) (/Adu )®1+u1®( Bdu())
s (2) () ([

In particular,

s (o) ()
<(1-v) (/ ATd,u(T)) ®1+vl® (/ Ardu(r)>
<5 () ([ o) o ([ ).

Proof. From (1.4) we get
M
(2.3) s <1 —-v)t+vs< S (m) thvs”

for all t, s € [m, M] and v € [0,1].
Assume that

M M
A:/ tdE (t) and B:/ sdF (s)

3
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are the spectral resolutions of A and B. Now, if we take the double integral fm fgf
over dE (t) ® dF (s) in (2.3), then we get

(2.4) / / tHs"dE (t) @ dF (s // [(1 = v)t+ vs]dE (t) @ dF (s)
<S8 <m> / /M t7Vs"dE (t) @ dF (s) .

M M
/ / t'7"s"dE (t) @ dF (s) = A*™V @ BY

m m

Since

and

M M
/ / (1= v)t+vs]dE(t) @ dF (s) = (1 —v) A® 1+ vl B,

1 m

hence by (2.4) we get
(2.5) Al—”®B”<(1—u)A®1+u1®B<S(M>A1—V®B”
m

for v € [0,1].
Now, from (2.5) we get

M
1—v v 1—v v
(2.6) AL ®BVg(l—u)AT®1+u1®ngs<m>AT ® BY

for all 7, v € Q.
Now, if we take the integral [, over dyu (7), then we get

(2.7) /Q (A7 e BY) dp (1) < /Q (1-v)A; ®14+v1® By du(r)

<s (M> /Q (AL @ BY) dyu (7).

m

Using the properties of the Bochner’s integral and the tensorial product we have

/(A1 Y@ BY)dp(r (/ Al Vdp (T )@B;

and
/Q[(l — V) A, ® 14 vl @ B, du(r)
=(1-v) (/ Apo,(T)> ®1+vl1® B,
for all v € Q. !
From (2.7) we then get
(2.8) (/ﬂ Al vau (r)) ® BY

<(1-v) (/QATd/L(T)>®1+V1®B,Y

<S8 (%) (/Q Alvdu (7)> ® BY

for all v € Q.
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If we take the integral [, over du (7), then we get

(29) L[ i) o m] aue
g/ﬁ [(1 —v) </QATdu(T)> ®1+u1®B,Y} du ()
<S (%) /Q [(/Q AVdp (T)) ® Bs] dpu () -

Sin
/Q K/Q Avdy (T)) ®B§] dp ()
— (/Q Alvdy (7‘)> ® </Q BYdu (’Y))
and
/[1 (/A du (1 )®1+u1®Bﬂy}du(7)
=(1— </Adu )@Hul@(/QBydu(v)),
hence by (2.9) we der O
Corollary 1. With the assumptions of Theorem 1 we have

o (o) (L)

g/ﬂ(( V) Ay +vB,) dp (1) o

_ () ([ ([ )

(2.11) (/Q Avdp (7)) o (/Q AVdy (r))
S/QATdu(T)ol
<S (Z\ﬂf) (/Q AVdp (T)) o (/Q Bydp (7)) :

Proof. If we use the identity (1.10) and apply U* to the left and U to the right of
inequality (2.1), we get

(2.12) u* K/Q AV (T)) ® (/Q BYdp (7))} u
<u {(1 _ ) (/QATdu(T)> @1+l </QBvdu(7)>} U
<o (e ([ o) (o)
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Since
ef( o) (e
(L))

and

u [(1 ) (/Q Afdu(T)) ®1+v1® (/Q B, du (7))] u
- [(/QATdu(T)) ®1} u
o [1 ® ( /Q B, du (y)ﬂ u

hence by (2.12), we derive (2.10). =

Theorom 2. Let (Ar) o and (Br) o contimuous eldsof postne perors in

B(H) such that Sp (As) - Sp (By) € o M)  (0,00) for each 7 € 2. Then for all

v € [0,1] we have

(2.13) 0

IN

=) ([ Adu@) o1+ ([ b))
() (o)
(2 () )

(2.14) 0<( )(/QA dp (7 )>®1+ 1®</ ATd,u(T)>
() (o)
(2o (2) ()

Proof. From (1.5) we have

M M
(2.15) 0<(1—v)t+tvs—t""s" <tL <1) 1n5<>
m m

for all ¢, s € [m, M] and v € [0,1].

Let
M M
A= / tdE (t) and B = / sdF (s)
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be the spectral resolutions of A and B. Now, if we take the double integral fm fgf
over dE (t) ® dF (s) in (2.15), then we get

og/M/M [(1— )t +vs— V5" dE (1) @ dF (s)

§L< >lnS( >/ / tdE (t) @ dF (s),
which gives
(2.16) 0<(1-v)A®1+vi®B—- A" ® B

<L <1,M> lnS(M> A®1,
m m
for all v € [0,1].

Now, from (2.16) we get
0<(1-v)A, ®1+v1®B,— A" ® B!

< (12 ms (2) 4,01,
m m
for all 7,7y € Q.

Now if we use a similar argument to the one in the proof of Theorem 1, we
deduce the desired result (2.13). O

Corollary 2. With the assumptions of Theorem 1 we have

(2.17) Og/g((l—u)AT—i—uBT)d,u(T)ol

([ i) o ([ Branen)
(s (1) ([ ) .
In particular,

(2.18) /QATdu ol — </ Avdu (7')) o </ AVdy (7)>
L) es () (f o) o
We also have:

Theorem 3. Let (A;). .o and (B:), cqbe continuous fields of positive operators in
B (H) such that Sp (A,), Sp(B;) C [m,M] C (0,00) for each T € Q. Then for all
v € [0,1] we have

(2.19) 1<(1-v) (/Q Avdp (r)) ® (/Q B=dy (T)>
v (/ﬂ AV=tdy (T)) ® (/Q By Vdp (T))
()

IN
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In particular,

(220) v -0 ([ aauo) o ([ i)
() ([
5(%)

Proof. We also have, by dividing in both sides of (2.3) that

M
(2.21) I<A—-v)t's ™+t stV < 8 ()
m
for all ¢, s € [m, M].
Let

A/MtdE(t) andB/Mde(s)

m m

be the spectral resolutions of A and B. Now, if we take the double integral fri\:[ f:f
over dFE (t) ® dF (s) in (2.21), then we get

/ / ) @ dF (5)

(M ) [ [ s

which is equivalent to

(2.22) 1<(1-v)A"®@B " +vA" 'e B < S MY
m

This implies that

M
1<(1-v)Ae@BY+vAY '@ BV < S <)
m

for all 7, v € Q.
Now if we use a similar argument to the one in the proof of Theorem 1, we
deduce the desired result (2.13). O

Corollary 3. With the assumptions of Theorem 1 we have

(2.23) 1< (1-v) ( /Q Avdy (T)) o < /Q B=vdy (T))
+y< /Q APy, (T)) 0 ( /Q deﬂ(f)>
o(h)
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In particular,

(2.24) 1< (1-v) ( / A dp (T)> 0 ( / A-vdy (7))
o) ()
o)

For v =1/2, we also have

(2.25) 1< </Q A2qy, (T)) o </Q A2y, (T)) <SS @f)

3. RELATED RESULTS
We can state some related results as follows:

Theorem 4. Assume that f, g are continuous and nonnegative on the interval I
and there exists 0 < v < I' such that

t
’ygmgrforalltel,
g9(t)
then for (A;).cq and (B;).cq continuous fields of positive operators in B (H) such
that Sp (A;), Sp (B7) C I for each T € Q,

(4

A
(3.1) ( 5200 0 g (40 d <T>) ® ( [ 72 g0 (B <T>)
ca-n([rurawm)e ([ #eiuwm)

Q

eo([f ot eram) o (/f2 i)
(( ) )(/ P (4,) g (A (7))

© ( [ 72 0 8 d <r>)
and

(32) 0<(1-v) (/f <T>)®(/92<BT>du<T>)
wo ([ o) e ([ 7 )
([ e @ ayam) e ( / P (B 0 (B du (7))
() >w<<z>2>
<(frasme)e(f o Emem)

for allv €10,1].
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Proof. For any t, s € I we have

7? <

If we use the inequality (1.4) for

then we get

PPONT (PO 0 2
e (Fm) (7o) <0-2%@+

for any ¢, s € 1.
Now, if we multiply (3.3) by g2 (¢) g (s) > 0, then we get

(3-4) PR (@) g% () 12 () g2 (s)
< (L =v) 2 () g* (s) +vg* (t) £ (5)

§S<(S> >f2“ (1) g (1) £ (5) g (s)

for any t, s € I.
Assume that

A:/ItdE(t) andB:/Ide(s)

are the spectral resolutions of A and B.
Further on, if we take the double integral [, [, over dE (t) ®dF (s) in (3.4), then
we get

/ / 2077 (1) g7 (1) £2 (5) g°4) (s) dE () @ dF (s)

1—1///f2 t) @ dF (s)
—|—1/// t) ®dF (s)

(())// PO (0) g (1) £ (5) g2 () dE (1) ® dF (s) .

//f2<l ) (8) g7 () £ (5) 60 (s) dE (1) © dF (5)
20-) (1) g ( 2 (5) g2 (s s
/f /If 620" (s) dF (5)
= (7207 () g (4 ))@(f” (B) g2~ (B)),

Since
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| [rPos@anedrs - [ FoEos ¢

=2 (A) e g*(B),
// t)@dF (s) = / /f2 )dF (s
=g’ (A )®f2(

hence by (3.5) we get
(3.6)  (FPO @ @) e (£ (B) ) (B))
< (I*V)fQ( )®9 (B) +vg* (A) @ f* (B)

§S<(5)> (720 () () © (5 (B) 20 ()

for all v € [0,1].
From (1.5) we obtain

PO P (PO (LY
OO T ) - (92 (ﬂ) (92(3)>

g () )ns(())

for any t, s € I.
If we multiply by g2 (t) g? (s) > 0 then we get

(B7) (1=2) @) () +vg’ ()72 (5) = 07 (g% (1) 1 (58207 (5)

<P )L (1, (5)) s ((5))

for any ¢, s € 1.

13

If we take the double integral [, [, over dE (t)®dF (s) in (3.7) and use a similar

argument as above, we deduce
(3-8) 0<(1-v)f*(A)@g*(B) +vg*(A) ® f*(B)
= (0 () g () @ (12 (B) 217 (B))

<L (1, (£>2> In S ((5)2) #(A)®g¢*(B)

for all v € [0,1].
Now, from (3.6) we have

(39) (O (A (An) @ (£ (B) 20 (By))
< (1 - V)f2 (AT) ®92 (B’Y) —|—V92 (AT) ®f2 (B’Y)

=0 ((5)) (7207 (A1) % (40)) @ (12 (B,) 20 (B,))

for all 7, v € Q.
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Now, if we take the integral [, over dyu (7) and then the integral [, over dpu ()
and perform the required calculations as in the proof of Theorem 1 we derive the
desired result (3.1).

The inequality (3.2) follows in the same way by employing the inequality (3.9).
(Il

Corollary 4. With the assumption of Theorem 4, we have the following inequalities
for the Hadamard product

(3.10) ( |20 g G du) ) o ([ 12 800 () dun)
(1-v) (/ﬂ ) (/g( )du(T))
+”(/Q ) (/ P )
<s (( ))(/f( ) ( Ar)d(r >)

o ([ 78020 (B <r>>
and

(311) 0< (1) (/ 7 (4 <T))o(/g2<BT>du<7>)
wo (ot ) ([r@me)
([ £ g an an <r>) . ( [ 7 (B0 0 (B ()
)
([ ranam)e ([ #Eram).

for all v € [0,1].

Remark 1. If we take B, — A, for 7 € Q in Corollary 4, then we get
12 ([ a0 Woanm) e ([ #4020 (A au)
< ([ Panam)e( [ 7 <T>)
() ()
o ([ 7140207 () <T>)
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and

19 0= ([ 40 )(/ (A)dm)
- ngt @) o ([0 g0 (o)
()
([ anam)o( [ #unam).

Moreover, if we take v =1/2 in (3.12) and (3.13), then we get

a1t ([ rag@am)e ([ 1))

< (/Q 2 (A, du (T)> ° (/992 (Ar)dp (T))

<s ((2)2) ([ransananm)e( [ sunsnm)
and

315 o< ([ Fanmm)e( [ ¢ udm)
~([rens@nam)e ([ s amm)
o)

([ anam)e ([ # ).

4. SOME EXAMPLES

Consider the functions f (t) = t? and g (t) = t? for t > 0 and p,q # 0. Then

=tP79, for t > 0.

g(t)
Therefore
mP~1 < i;g; < MP~9for t € m,M] and p > ¢
and
t
MP~1 <L m <mP?fort € [m,M] and p < q.

g
Now, assume that (A.) . a
7))

d (Br),cq are continuous fields of positive operators
in B (H) such that Sp (A p

(Br) C [m, M] for each 7 € Q. From Theorem 2 we
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get for p > ¢ that
@y [ A [ g )
Q Q
<(-v) [ dn(r)s [ Bdu(r)
Q Q
V/ A2dy, (T)®/ B*dyu (1)
Q Q
M 2P
<S () /Af(lf")p“”qd,u(f)@/Bg”””(l*”)qdu(ﬂ
m Q Q
and

(4.2) (1-v) / A?Pdy (1 / B2dyu (1

v / A2y (1) ® / B*dy (T)

/A2(1 V)p+2quu /B2Vp+2(1 ”)qd,u( )
Q
2(p—q) 2(p—q)
SL(L () )“«M) )
m m
X / A%Pdu (1) ® / B*dyu (1) .
Q Q
In particular, for v = 1/2,
(4.3) /Aerqdu /Bp“]d,u
</ A%Pdy (1 /qudu /Azqdu /Bdeu >
M 2=
<SS <) /Aﬁ*qd,u(r)(i@/ BPTady (1)
m Q Q

| aare [ B+ [ a2 [ B <r))
Q Q

1
o<3(f,
- [ Arrianeys | Brrdue)
L( 2(11 Q)> s ((Ai)?(p—q))
< [ Aaurye [ B,
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We also have the inequalities for the Hadamard product

@) [ 4o [ prri-ig )

<0-v) [ au)o [ B
I//Qqudu (T)O/Qngdﬂ ()

2(p—q)
<9 <M) /A3(1*V)p+2uqdﬂ(7)o/B72_up+2(1*l')qd#(7_)
m Q Q

and
(4.6) 0<(1—v / APy (1 / B2y (1

/ Ay (T / B*dy (1

—/Ai(l_")”?”qdﬂ(q-)o/Bﬁ”p“(l‘”)qdu (1)
Q Q
2(p—q) 2(p—q)
SL(L () >lns(<M) )
m m
« / A2y () o / B2dp (7).
Q Q
In particular, for v = 1/2,
(4.7 /A’”qd,u /Bp“]d,u
< ; (/ A2 dp (7 /qudu /qudu(T)O/ B?”W(T))
Q Q
M 2P
<s () [ azeanryo [ Bridn )
m 9) Q

( Azpdu / B*dyu () + / A%y (1 / B2 dy (1 )

[ aroan(ryo | Brrvau(e)

o s (97)

< [ Adu(ryo | Brau(r).

h \l\')\}—l

17
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Moreover, if we take B, = A, 7 € Q in (4.5)-(4.8), then we get

(49) i A2(1 u)p+2uqdu /A2up+2(1 ”)qd,u( )

< [ adu(r)o [ A
Q Q

2(p—q)
<S (M) / A72_(17u)p+2uqd'u (T) o/ A72_up+2(17u)qdu (7_)
Q Q

m

and

(4.10) 0< / A%Pdy (1 / A2y (1

—/QAz(l_”)p””qdu(T)o/ﬂAi”erz(l_”)qdu(T)

2(p—q) 2(p—q)
<1, (M> In S (M)
m m
/Ade,u /Aqup

In particular, for v = 1/2,

(4.11) /§2A£+qdu (T)O/QAngqd,u (1)

< [ adu(ryo [ Adu(n
Q Q
M 2(p—q)
<s((m) ) [arranee [ e
Q Q

m

and

@) o< [ Ao [ a2 - [ arauyo [ Azt (o)

2(p—q) 2(p—q)
<1, (M) InS <M>
m m
/Adeu /Aqu,u
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