TOMINAGA'S TYPE INTEGRAL INEQUALITIES FOR CONTINUOUS FIELDS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a Hilbert space and Ω a locally compact Hausdorff space endowed with a Radon measure μ with $\int_{\Omega} 1d\mu(t) = 1$. In this paper we show among others that, if $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subseteq [m, M] \subset (0, \infty)$ for each $\tau \in \Omega$, then for all $\nu \in [0, 1]$ we have the tensorial inequality

$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right) \right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right) \right)$$

$$\leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu\left(\tau\right) \right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\tau} d\mu\left(\tau\right) \right)$$

$$\leq S \left(\frac{M}{m} \right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right) \right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right) \right),$$

where $S\left(\cdot\right)$ is Specht's ratio. We also have the following inequalities for the Hadamard product

$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right) \right)$$

$$\leq \left(\int_{\Omega} \left[(1-\nu) A_{\tau} + \nu B_{\tau} \right] d\mu\left(\tau\right) \right) \circ 1$$

$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right) \right)$$

for all $\nu \in [0,1]$.

1. INTRODUCTION

As is known to all, the famous Young inequality for scalars says that if a, b > 0and $\nu \in [0, 1]$, then

(1.1)
$$a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b$$

with equality if and only if a = b. The inequality (1.1) is also called ν -weighted arithmetic-geometric mean inequality.

We recall that *Specht's ratio* is defined by

$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \\\\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0, 1) and increasing on $(1, \infty)$.

RGMIA Res. Rep. Coll. **25** (2022), Art. 89, 19 pp.

Received 21/09/22

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

 $Key\ words\ and\ phrases.$ Tensorial product, Hadamard Product, Selfadjoint operators, Convex functions.

Tominaga [10] had proved a multiplicative reverse Young inequality with the Specht's ratio [9] as follows:

(1.2)
$$(1-\nu)a + \nu b \le S\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu}$$

for a, b > 0 and $\nu \in [0, 1]$.

He also obtained the following additive reverse

(1.3)
$$(1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \le L(a,b) \ln S\left(\frac{a}{b}\right)$$

for a, b > 0 and $\nu \in [0, 1]$, where $L(\cdot, \cdot)$ is the *logarithmic mean* defined by

$$L(a,b) := \begin{cases} \frac{b-a}{\ln b - \ln a} \text{ for } b \neq a, \\ a \text{ if } b = a. \end{cases}$$

If $0 < m \leq a, b \leq M$, then also [10]

(1.4)
$$(a^{1-\nu}b^{\nu} \leq) (1-\nu) a + \nu b \leq S\left(\frac{M}{m}\right) a^{1-\nu}b^{\nu}$$

and

(1.5)
$$(0 \le) (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu} \le aL\left(1, \frac{M}{m}\right) \ln S\left(\frac{M}{m}\right)$$

for $\nu \in [0, 1]$.

Let $I_1, ..., I_k$ be intervals from \mathbb{R} and let $f: I_1 \times ... \times I_k \to \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A = (A_1, ..., A_n)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces $H_1, ..., H_k$ such that the spectrum of A_i is contained in I_i for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

$$A_{i} = \int_{I_{i}} \lambda_{i} dE_{i} \left(\lambda_{i}\right)$$

is the spectral resolution of A_i for i = 1, ..., k; by following [2], we define

(1.6)
$$f(A_1, ..., A_k) := \int_{I_1} ... \int_{I_k} f(\lambda_1, ..., \lambda_k) dE_1(\lambda_1) \otimes ... \otimes dE_k(\lambda_k)$$

as a bounded selfadjoint operator on the tensorial product $H_1 \otimes ... \otimes H_k$.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [2] extends the definition of Korányi [5] for functions of two variables and have the property that

$$f(A_1,...,A_k) = f_1(A_1) \otimes ... \otimes f_k(A_k),$$

whenever f can be separated as a product $f(t_1, ..., t_k) = f_1(t_1)...f_k(t_k)$ of k functions each depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on $[0, \infty)$, namely

$$f(st) \ge (\le) f(s) f(t)$$
 for all $s, t \in [0, \infty)$

and if f is continuous on $[0, \infty)$, then [7, p. 173]

(1.7) $f(A \otimes B) \ge (\le) f(A) \otimes f(B) \text{ for all } A, B \ge 0.$

This follows by observing that, if

$$A = \int_{[0,\infty)} t dE(t) \text{ and } B = \int_{[0,\infty)} s dF(s)$$

are the spectral resolutions of A and B, then

(1.8)
$$f(A \otimes B) = \int_{[0,\infty)} \int_{[0,\infty)} f(st) dE(t) \otimes dF(s)$$

for the continuous function f on $[0, \infty)$.

Recall the geometric operator mean for the positive operators A, B > 0

$$A \#_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$$

where $t \in [0, 1]$ and

$$A \# B := A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}.$$

By the definitions of # and \otimes we have

$$A \# B = B \# A$$
 and $(A \# B) \otimes (B \# A) = (A \otimes B) \# (B \otimes A)$.

In 2007, S. Wada [11] obtained the following *Callebaut type inequalities* for tensorial product

(1.9)
$$(A\#B) \otimes (A\#B) \leq \frac{1}{2} \left[(A\#_{\alpha}B) \otimes (A\#_{1-\alpha}B) + (A\#_{1-\alpha}B) \otimes (A\#_{\alpha}B) \right]$$
$$\leq \frac{1}{2} \left(A \otimes B + B \otimes A \right)$$

for A, B > 0 and $\alpha \in [0, 1]$.

Recall that the Hadamard product of A and B in B(H) is defined to be the operator $A \circ B \in B(H)$ satisfying

$$\langle (A \circ B) e_j, e_j \rangle = \langle A e_j, e_j \rangle \langle B e_j, e_j \rangle$$

for all $j \in \mathbb{N}$, where $\{e_j\}_{j \in \mathbb{N}}$ is an *orthonormal basis* for the separable Hilbert space H.

It is known that, see [6], we have the representation

1

(1.10)
$$A \circ B = \mathcal{U}^* (A \otimes B) \mathcal{U}$$

where $\mathcal{U}: H \to H \otimes H$ is the isometry defined by $\mathcal{U}e_j = e_j \otimes e_j$ for all $j \in \mathbb{N}$.

If f is super-multiplicative (sub-multiplicative) on $[0, \infty)$, then also [7, p. 173]

(1.11)
$$f(A \circ B) \ge (\le) f(A) \circ f(B) \text{ for all } A, B \ge 0.$$

We recall the following elementary inequalities for the Hadamard product

$$A^{1/2} \circ B^{1/2} \le \left(\frac{A+B}{2}\right) \circ 1 \text{ for } A, \ B \ge 0$$

and Fiedler inequality

$$A \circ A^{-1} \ge 1 \text{ for } A > 0.$$

As extension of Kadison's Schwarz inequality on the Hadamard product, Ando [1] showed that

$$A \circ B \le (A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$$
 for $A, B \ge 0$

and Aujla and Vasudeva [3] gave an alternative upper bound

$$A \circ B \le \left(A^2 \circ B^2\right)^{1/2}$$
 for $A, B \ge 0$.

It has been shown in [8] that $(A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$ and $(A^2 \circ B^2)^{1/2}$ are incomparable for 2-square positive definite matrices A and B.

Let Ω be a locally compact Hausdorff space endowed with a Radon measure μ . A field $(A_t)_{t\in\Omega}$ of operators in B(H) is called a continuous field of operators if the parametrization $t \longmapsto A_t$ is norm continuous on B(H). If, in addition, the norm function $t \longmapsto ||A_t||$ is Lebesgue integrable on Ω , we can form the Bochner integral $\int_{\Omega} A_t d\mu(t)$, which is the unique operator in B(H) such that $\varphi(\int_{\Omega} A_t d\mu(t)) = \int_{\Omega} \varphi(A_t) d\mu(t)$ for every bounded linear functional φ on B(H). Assume also that, $\int_{\Omega} 1 d\mu(t) = 1$.

Let $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ be continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subseteq [m, M] \subset (0, \infty)$ for each $\tau \in \Omega$. In [4] we showed among others that, for $\nu \in [0, 1]$,

(1.12)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\tau} d\mu(\tau) \right)$$
$$\leq \exp\left[\frac{(M-m)^2}{4mM} \right] \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$

and

(1.13)
$$0 \leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\tau} d\mu(\tau) \right)$$
$$- \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq \frac{1}{4} \left(M - m \right) \left(\ln M - \ln m \right)$$

for $\nu \in [0, 1]$.

We also obtained the following inequalities for the Hadamard product

(1.14)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq \int_{\Omega} \left((1-\nu) A_{\tau} + \nu B_{\tau} \right) d\mu(\tau) \circ 1$$
$$\leq \exp\left[\frac{(M-m)^2}{4mM} \right] \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$

and

$$(1.15) \quad 0 \leq \int_{\Omega} \left((1-\nu) A_{\tau} + \nu B_{\tau} \right) d\mu(\tau) \circ 1 - \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq \frac{1}{4} \left(M - m \right) \left(\ln M - \ln m \right)$$

for $\nu \in [0, 1]$.

Motivated by the above results, in this paper we show among others that, if $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subseteq [m, M] \subset (0, \infty)$ for each $\tau \in \Omega$, then for all $\nu \in [0, 1]$ we

have the tensorial inequality

$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right)\right)$$

$$\leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu\left(\tau\right)\right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\tau} d\mu\left(\tau\right)\right)$$

$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right)\right),$$

where $S\left(\cdot\right)$ is Specht's ratio. We also have the following inequalities for the Hadamard product

$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right)\right)$$
$$\leq \left(\int_{\Omega} \left[\left(1-\nu\right) A_{\tau} + \nu B_{\tau}\right] d\mu\left(\tau\right)\right) \circ 1$$
$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu\left(\tau\right)\right)$$

for all $\nu \in [0,1]$.

2. Main Results

In what follows we assume that $\int_{\Omega} 1 d\mu(t) = 1$.

Theorem 1. Let $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ be continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subseteq [m, M] \subset (0, \infty)$ for each $\tau \in \Omega$. Then for all $\nu \in [0, 1]$ we have

(2.1)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau)\right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau)\right)$$
$$\leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau)\right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\tau} d\mu(\tau)\right)$$
$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau)\right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau)\right)$$

In particular,

(2.2)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau)\right) \otimes \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau)\right)$$
$$\leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau)\right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} A_{\tau} d\mu(\tau)\right)$$
$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau)\right) \otimes \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau)\right).$$

Proof. From (1.4) we get

(2.3)
$$t^{1-\nu}s^{\nu} \le (1-\nu)t + \nu s \le S\left(\frac{M}{m}\right)t^{1-\nu}s^{\nu}$$

for all $t, s \in [m, M]$ and $\nu \in [0, 1]$.

Assume that

$$A = \int_{m}^{M} t dE(t) \text{ and } B = \int_{m}^{M} s dF(s)$$

are the spectral resolutions of A and B. Now, if we take the double integral $\int_m^M \int_m^M$ over $dE(t) \otimes dF(s)$ in (2.3), then we get

$$(2.4) \quad \int_{m}^{M} \int_{m}^{M} t^{1-\nu} s^{\nu} dE(t) \otimes dF(s) \leq \int_{m}^{M} \int_{m}^{M} \left[(1-\nu) t + \nu s \right] dE(t) \otimes dF(s)$$
$$\leq S\left(\frac{M}{m}\right) \int_{m}^{M} \int_{m}^{M} t^{1-\nu} s^{\nu} dE(t) \otimes dF(s).$$

Since

$$\int_{m}^{M} \int_{m}^{M} t^{1-\nu} s^{\nu} dE(t) \otimes dF(s) = A^{1-\nu} \otimes B^{\nu}$$

and

$$\int_{m}^{M} \int_{m}^{M} \left[(1-\nu) t + \nu s \right] dE(t) \otimes dF(s) = (1-\nu) A \otimes 1 + \nu 1 \otimes B_{s}$$

hence by (2.4) we get

(2.5)
$$A^{1-\nu} \otimes B^{\nu} \le (1-\nu) A \otimes 1 + \nu 1 \otimes B \le S\left(\frac{M}{m}\right) A^{1-\nu} \otimes B^{\nu}$$

for $\nu \in [0,1]$.

Now, from (2.5) we get

(2.6)
$$A_{\tau}^{1-\nu} \otimes B_{\gamma}^{\nu} \le (1-\nu) A_{\tau} \otimes 1 + \nu 1 \otimes B_{\gamma} \le S\left(\frac{M}{m}\right) A_{\tau}^{1-\nu} \otimes B_{\gamma}^{\nu}$$

for all $\tau, \gamma \in \Omega$.

Now, if we take the integral \int_{Ω} over $d\mu(\tau)$, then we get

(2.7)
$$\int_{\Omega} \left(A_{\tau}^{1-\nu} \otimes B_{\gamma}^{\nu} \right) d\mu(\tau) \leq \int_{\Omega} \left[(1-\nu) A_{\tau} \otimes 1 + \nu 1 \otimes B_{\gamma} \right] d\mu(\tau) \\ \leq S\left(\frac{M}{m}\right) \int_{\Omega} \left(A_{\tau}^{1-\nu} \otimes B_{\gamma}^{\nu} \right) d\mu(\tau) \,.$$

Using the properties of the Bochner's integral and the tensorial product we have

$$\int_{\Omega} \left(A_{\tau}^{1-\nu} \otimes B_{\gamma}^{\nu} \right) d\mu \left(\tau \right) = \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu \left(\tau \right) \right) \otimes B_{\gamma}^{\nu}$$

and

$$\int_{\Omega} \left[(1-\nu) A_{\tau} \otimes 1 + \nu 1 \otimes B_{\gamma} \right] d\mu (\tau)$$
$$= (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu (\tau) \right) \otimes 1 + \nu 1 \otimes B_{\gamma}$$

for all $\gamma \in \Omega$.

From (2.7) we then get

(2.8)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau)\right) \otimes B_{\gamma}^{\nu}$$
$$\leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau)\right) \otimes 1 + \nu 1 \otimes B_{\gamma}$$
$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau)\right) \otimes B_{\gamma}^{\nu}$$

for all $\gamma \in \Omega$.

If we take the integral \int_{Ω} over $d\mu\left(\gamma\right),$ then we get

(2.9)
$$\int_{\Omega} \left[\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes B_{\gamma}^{\nu} \right] d\mu(\gamma) \\ \leq \int_{\Omega} \left[(1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1 + \nu 1 \otimes B_{\gamma} \right] d\mu(\gamma) \\ \leq S\left(\frac{M}{m} \right) \int_{\Omega} \left[\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes B_{\gamma}^{\nu} \right] d\mu(\gamma).$$

Since

$$\begin{split} &\int_{\Omega} \left[\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right) \right) \otimes B_{\gamma}^{\nu} \right] d\mu\left(\gamma\right) \\ &= \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right) \right) \otimes \left(\int_{\Omega} B_{\gamma}^{\nu} d\mu\left(\gamma\right) \right) \end{split}$$

and

$$\int_{\Omega} \left[(1-\nu) \left(\int_{\Omega} A_{\tau} d\mu \left(\tau \right) \right) \otimes 1 + \nu 1 \otimes B_{\gamma} \right] d\mu \left(\gamma \right) \\ = (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu \left(\tau \right) \right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\gamma} d\mu \left(\gamma \right) \right),$$

hence by (2.9) we derive (2.1).

Corollary 1. With the assumptions of Theorem 1 we have

(2.10)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq \int_{\Omega} \left((1-\nu) A_{\tau} + \nu B_{\tau} \right) d\mu(\tau) \circ 1$$
$$\leq S \left(\frac{M}{m} \right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right) .$$

In particular,

(2.11)
$$\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq \int_{\Omega} A_{\tau} d\mu(\tau) \circ 1$$
$$\leq S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\gamma) \right).$$

Proof. If we use the identity (1.10) and apply \mathcal{U}^* to the left and \mathcal{U} to the right of inequality (2.1), we get

$$(2.12) \qquad \mathcal{U}^{*}\left[\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \otimes \left(\int_{\Omega} B_{\gamma}^{\nu} d\mu\left(\gamma\right)\right)\right] \mathcal{U} \\ \leq \mathcal{U}^{*}\left[\left(1-\nu\right) \left(\int_{\Omega} A_{\tau} d\mu\left(\tau\right)\right) \otimes 1+\nu 1 \otimes \left(\int_{\Omega} B_{\gamma} d\mu\left(\gamma\right)\right)\right] \mathcal{U} \\ \leq S\left(\frac{M}{m}\right) \mathcal{U}^{*}\left[\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \otimes \left(\int_{\Omega} B_{\gamma}^{\nu} d\mu\left(\gamma\right)\right)\right] \mathcal{U}.$$

Since

$$\mathcal{U}^{*}\left[\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \otimes \left(\int_{\Omega} B_{\gamma}^{\nu} d\mu\left(\gamma\right)\right)\right] \mathcal{U}$$
$$=\left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu\left(\tau\right)\right) \circ \left(\int_{\Omega} B_{\gamma}^{\nu} d\mu\left(\gamma\right)\right)$$

and

$$\begin{aligned} \mathcal{U}^{*}\left[\left(1-\nu\right)\left(\int_{\Omega}A_{\tau}d\mu\left(\tau\right)\right)\otimes1+\nu1\otimes\left(\int_{\Omega}B_{\gamma}d\mu\left(\gamma\right)\right)\right]\mathcal{U}\\ &=\left(1-\nu\right)\mathcal{U}^{*}\left[\left(\int_{\Omega}A_{\tau}d\mu\left(\tau\right)\right)\otimes1\right]\mathcal{U}\\ &+\nu\mathcal{U}^{*}\left[1\otimes\left(\int_{\Omega}B_{\gamma}d\mu\left(\gamma\right)\right)\right]\mathcal{U}, \end{aligned}$$

hence by (2.12), we derive (2.10).

Theorem 2. Let $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ be continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subseteq [m, M] \subset (0, \infty)$ for each $\tau \in \Omega$. Then for all $\nu \in [0, 1]$ we have

$$(2.13) 0 \leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} B_{\tau} d\mu(\tau) \right) \\ - \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right) \\ \leq L \left(1, \frac{M}{m} \right) \ln S \left(\frac{M}{m} \right) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1,$$

and

$$(2.14) \qquad 0 \leq (1-\nu) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1 + \nu 1 \otimes \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \\ - \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right) \\ \leq L \left(1, \frac{M}{m} \right) \ln S \left(\frac{M}{m} \right) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \otimes 1,$$

Proof. From (1.5) we have

(2.15)
$$0 \le (1-\nu)t + \nu s - t^{1-\nu}s^{\nu} \le tL\left(1,\frac{M}{m}\right)\ln S\left(\frac{M}{m}\right)$$

 $\text{ for all }t,\,s\in\left[m,M\right]\text{ and }\nu\in\left[0,1\right].$

Let

$$A = \int_{m}^{M} t dE(t)$$
 and $B = \int_{m}^{M} s dF(s)$

8

be the spectral resolutions of A and B. Now, if we take the double integral $\int_m^M \int_m^M$ over $dE(t) \otimes dF(s)$ in (2.15), then we get

$$0 \leq \int_{m}^{M} \int_{m}^{M} \left[(1-\nu)t + \nu s - t^{1-\nu} s^{\nu} \right] dE(t) \otimes dF(s)$$
$$\leq L\left(1, \frac{M}{m}\right) \ln S\left(\frac{M}{m}\right) \int_{m}^{M} \int_{m}^{M} t dE(t) \otimes dF(s),$$

which gives

(2.16)

$$0 \le (1-\nu) A \otimes 1 + \nu 1 \otimes B - A^{1-\nu} \otimes B^{\nu}$$
$$\le L\left(1, \frac{M}{m}\right) \ln S\left(\frac{M}{m}\right) A \otimes 1,$$

for all $\nu \in [0,1]$.

Now, from (2.16) we get

$$0 \le (1-\nu) A_{\tau} \otimes 1 + \nu 1 \otimes B_{\gamma} - A_{\tau}^{1-\nu} \otimes B_{\gamma}^{\nu}$$
$$\le L\left(1, \frac{M}{m}\right) \ln S\left(\frac{M}{m}\right) A_{\tau} \otimes 1,$$

for all $\tau, \gamma \in \Omega$.

Now if we use a similar argument to the one in the proof of Theorem 1, we deduce the desired result (2.13). $\hfill \Box$

Corollary 2. With the assumptions of Theorem 1 we have

(2.17)
$$0 \leq \int_{\Omega} \left((1-\nu) A_{\tau} + \nu B_{\tau} \right) d\mu(\tau) \circ 1$$
$$- \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq L \left(1, \frac{M}{m} \right) \ln S \left(\frac{M}{m} \right) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \circ 1.$$

In particular,

$$(2.18) \qquad 0 \leq \int_{\Omega} A_{\tau} d\mu(\tau) \circ 1 - \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right)$$
$$\leq L\left(1, \frac{M}{m}\right) \ln S\left(\frac{M}{m}\right) \left(\int_{\Omega} A_{\tau} d\mu(\tau) \right) \circ 1.$$

We also have:

Theorem 3. Let $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ be continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subseteq [m, M] \subset (0, \infty)$ for each $\tau \in \Omega$. Then for all $\nu \in [0, 1]$ we have

(2.19)
$$1 \leq (1-\nu) \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} B_{\tau}^{-\nu} d\mu(\tau) \right) \\ + \nu \left(\int_{\Omega} A_{\tau}^{\nu-1} d\mu(\tau) \right) \otimes \left(\int_{\Omega} B_{\tau}^{1-\nu} d\mu(\tau) \right) \\ \leq S\left(\frac{M}{m}\right).$$

In particular,

(2.20)
$$1 \leq (1-\nu) \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right) \otimes \left(\int_{\Omega} A_{\tau}^{-\nu} d\mu(\tau) \right) \\ + \nu \left(\int_{\Omega} A_{\tau}^{\nu-1} d\mu(\tau) \right) \otimes \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \\ \leq S \left(\frac{M}{m} \right).$$

Proof. We also have, by dividing in both sides of (2.3) that

(2.21)
$$1 \le (1-\nu)t^{\nu}s^{-\nu} + \nu t^{\nu-1}s^{1-\nu} \le S\left(\frac{M}{m}\right)$$

for all $t, s \in [m, M]$.

Let

$$A = \int_{m}^{M} t dE(t)$$
 and $B = \int_{m}^{M} s dF(s)$

be the spectral resolutions of A and B. Now, if we take the double integral $\int_m^M \int_m^M$ over $dE(t) \otimes dF(s)$ in (2.21), then we get

$$\int_{m}^{M} \int_{m}^{M} dE(t) \otimes dF(s)$$

$$\leq \int_{m}^{M} \int_{m}^{M} \left[(1-\nu) t^{\nu} s^{-\nu} + \nu t^{\nu-1} s^{1-\nu} \right] dE(t) \otimes dF(s)$$

$$\leq S\left(\frac{M}{m}\right) \int_{m}^{M} \int_{m}^{M} dE(t) \otimes dF(s)$$

which is equivalent to

(2.22)
$$1 \le (1-\nu) A^{\nu} \otimes B^{-\nu} + \nu A^{\nu-1} \otimes B^{1-\nu} \le S\left(\frac{M}{m}\right).$$

This implies that

$$1 \le (1-\nu) A_{\tau}^{\nu} \otimes B_{\gamma}^{-\nu} + \nu A_{\tau}^{\nu-1} \otimes B_{\gamma}^{1-\nu} \le S\left(\frac{M}{m}\right)$$

for all $\tau, \gamma \in \Omega$.

Now if we use a similar argument to the one in the proof of Theorem 1, we deduce the desired result (2.13). $\hfill \Box$

Corollary 3. With the assumptions of Theorem 1 we have

(2.23)
$$1 \leq (1-\nu) \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{-\nu} d\mu(\tau) \right) \\ + \nu \left(\int_{\Omega} A_{\tau}^{\nu-1} d\mu(\tau) \right) \circ \left(\int_{\Omega} B_{\tau}^{1-\nu} d\mu(\tau) \right) \\ \leq S \left(\frac{M}{m} \right).$$

In particular,

(2.24)
$$1 \leq (1-\nu) \left(\int_{\Omega} A_{\tau}^{\nu} d\mu(\tau) \right) \circ \left(\int_{\Omega} A_{\tau}^{-\nu} d\mu(\tau) \right) \\ + \nu \left(\int_{\Omega} A_{\tau}^{\nu-1} d\mu(\tau) \right) \circ \left(\int_{\Omega} A_{\tau}^{1-\nu} d\mu(\tau) \right) \\ \leq S\left(\frac{M}{m}\right).$$

For $\nu = 1/2$, we also have

(2.25)
$$1 \le \left(\int_{\Omega} A_{\tau}^{1/2} d\mu(\tau)\right) \circ \left(\int_{\Omega} A_{\tau}^{-1/2} d\mu(\tau)\right) \le S\left(\frac{M}{m}\right).$$

3. RELATED RESULTS

We can state some related results as follows:

Theorem 4. Assume that f, g are continuous and nonnegative on the interval Iand there exists $0 \leq \gamma < \Gamma$ such that

$$\gamma \leq \frac{f(t)}{g(t)} \leq \Gamma \text{ for all } t \in I,$$

then for $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subset I$ for each $\tau \in \Omega$,

$$(3.1) \qquad \left(\int_{\Omega} f^{2(1-\nu)} (A_{\tau}) g^{2\nu} (A_{\tau}) d\mu(\tau)\right) \otimes \left(\int_{\Omega} f^{2\nu} (B_{\tau}) g^{2(1-\nu)} (B_{\tau}) d\mu(\tau)\right)$$
$$\leq (1-\nu) \left(\int_{\Omega} f^{2} (A_{\tau}) d\mu(\tau)\right) \otimes \left(\int_{\Omega} g^{2} (B_{\tau}) d\mu(\tau)\right)$$
$$+ \nu \left(\int_{\Omega} g^{2} (A_{\tau}) d\mu(\tau)\right) \otimes \left(\int_{\Omega} f^{2} (B_{\tau}) d\mu(\tau)\right)$$
$$\leq S \left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \left(\int_{\Omega} f^{2(1-\nu)} (A_{\tau}) g^{2\nu} (A_{\tau}) d\mu(\tau)\right)$$
$$\otimes \left(\int_{\Omega} f^{2\nu} (B_{\tau}) g^{2(1-\nu)} (B_{\tau}) d\mu(\tau)\right)$$

and

$$(3.2) \quad 0 \leq (1-\nu) \left(\int_{\Omega} f^{2} (A_{\tau}) d\mu(\tau) \right) \otimes \left(\int_{\Omega} g^{2} (B_{\tau}) d\mu(\tau) \right) + \nu \left(\int_{\Omega} g^{2} (A_{\tau}) d\mu(\tau) \right) \otimes \left(\int_{\Omega} f^{2} (B_{\tau}) d\mu(\tau) \right) - \left(\int_{\Omega} f^{2(1-\nu)} (A_{\tau}) g^{2\nu} (A_{\tau}) d\mu(\tau) \right) \otimes \left(\int_{\Omega} f^{2\nu} (B_{\tau}) g^{2(1-\nu)} (B_{\tau}) d\mu(\tau) \right) \leq L \left(1, \left(\frac{\Gamma}{\gamma} \right)^{2} \right) \ln S \left(\left(\frac{\Gamma}{\gamma} \right)^{2} \right) \times \left(\int_{\Omega} f^{2} (A_{\tau}) d\mu(\tau) \right) \otimes \left(\int_{\Omega} g^{2} (B_{\tau}) d\mu(\tau) \right).$$

for all $\nu \in [0, 1]$.

for all $\nu \in [0,1]$.

Proof. For any $t, s \in I$ we have

$$\gamma^{2} \leq \frac{f^{2}\left(t\right)}{g^{2}\left(t\right)}, \frac{f^{2}\left(s\right)}{g^{2}\left(s\right)} \leq \Gamma^{2}.$$

If we use the inequality (1.4) for

$$a = \frac{f^{2}(t)}{g^{2}(t)}, \ b = \frac{f^{2}(s)}{g^{2}(s)},$$

then we get

(3.3)
$$\left(\frac{f^{2}(t)}{g^{2}(t)}\right)^{1-\nu} \left(\frac{f^{2}(s)}{g^{2}(s)}\right)^{\nu} \leq (1-\nu) \frac{f^{2}(t)}{g^{2}(t)} + \nu \frac{f^{2}(s)}{g^{2}(s)} \\ \leq S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \left(\frac{f^{2}(t)}{g^{2}(t)}\right)^{1-\nu} \left(\frac{f^{2}(s)}{g^{2}(s)}\right)^{\nu}$$

for any $t, s \in I$.

Now, if we multiply (3.3) by $g^{2}(t) g^{2}(s) > 0$, then we get

(3.4)
$$f^{2(1-\nu)}(t) g^{2\nu}(t) f^{2\nu}(s) g^{2(1-\nu)}(s) \leq (1-\nu) f^{2}(t) g^{2}(s) + \nu g^{2}(t) f^{2}(s) \leq S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) f^{2(1-\nu)}(t) g^{2\nu}(t) f^{2\nu}(s) g^{2(1-\nu)}(s)$$

for any $t, s \in I$.

Assume that

$$A = \int_{I} t dE(t)$$
 and $B = \int_{I} s dF(s)$

are the spectral resolutions of A and B. Further on, if we take the double integral $\int_{I} \int_{I} \text{over } dE(t) \otimes dF(s)$ in (3.4), then we get

$$(3.5) \qquad \int_{I} \int_{I} f^{2(1-\nu)}(t) g^{2\nu}(t) f^{2\nu}(s) g^{2(1-\nu)}(s) dE(t) \otimes dF(s) \leq (1-\nu) \int_{I} \int_{I} f^{2}(t) g^{2}(s) dE(t) \otimes dF(s) + \nu \int_{I} \int_{I} g^{2}(t) f^{2}(s) dE(t) \otimes dF(s) \leq S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \int_{I} \int_{I} f^{2(1-\nu)}(t) g^{2\nu}(t) f^{2\nu}(s) g^{2(1-\nu)}(s) dE(t) \otimes dF(s).$$

Since

$$\begin{split} &\int_{I} \int_{I} f^{2(1-\nu)}\left(t\right) g^{2\nu}\left(t\right) f^{2\nu}\left(s\right) g^{2(1-\nu)}\left(s\right) dE\left(t\right) \otimes dF\left(s\right) \\ &= \int_{I} f^{2(1-\nu)}\left(t\right) g^{2\nu}\left(t\right) dE\left(t\right) \otimes \int_{I} f^{2\nu}\left(s\right) g^{2(1-\nu)}\left(s\right) dF\left(s\right) \\ &= \left(f^{2(1-\nu)}\left(A\right) g^{2\nu}\left(A\right)\right) \otimes \left(f^{2\nu}\left(B\right) g^{2(1-\nu)}\left(B\right)\right), \end{split}$$

$$\int_{I} \int_{I} f^{2}(t) g^{2}(s) dE(t) \otimes dF(s) = \int_{I} f^{2}(t) dE(t) \otimes \int_{I} g^{2}(s) dF(s)$$
$$= f^{2}(A) \otimes g^{2}(B),$$

and

$$\int_{I} \int_{I} g^{2}(t) f^{2}(s) dE(t) \otimes dF(s) = \int_{I} g^{2}(t) dE(t) \otimes \int_{I} f^{2}(s) dF(s)$$
$$= g^{2}(A) \otimes f^{2}(B),$$

hence by (3.5) we get

$$(3.6) \qquad \left(f^{2(1-\nu)}(A) g^{2\nu}(A)\right) \otimes \left(f^{2\nu}(B) g^{2(1-\nu)}(B)\right) \\ \leq (1-\nu) f^{2}(A) \otimes g^{2}(B) + \nu g^{2}(A) \otimes f^{2}(B) \\ \leq S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \left(f^{2(1-\nu)}(A) g^{2\nu}(A)\right) \otimes \left(f^{2\nu}(B) g^{2(1-\nu)}(B)\right)$$

for all $\nu \in [0, 1]$.

From (1.5) we obtain

$$\begin{aligned} (0 \leq) \left(1 - \nu\right) \frac{f^2\left(t\right)}{g^2\left(t\right)} + \nu \frac{f^2\left(s\right)}{g^2\left(s\right)} - \left(\frac{f^2\left(t\right)}{g^2\left(t\right)}\right)^{1-\nu} \left(\frac{f^2\left(s\right)}{g^2\left(s\right)}\right)^{\nu} \\ \leq \frac{f^2\left(t\right)}{g^2\left(t\right)} L\left(1, \left(\frac{\Gamma}{\gamma}\right)^2\right) \ln S\left(\left(\frac{\Gamma}{\gamma}\right)^2\right) \end{aligned}$$

for any $t, s \in I$.

If we multiply by $g^{2}(t) g^{2}(s) > 0$ then we get

$$(3.7) \quad (1-\nu) f^{2}(t) g^{2}(s) + \nu g^{2}(t) f^{2}(s) - f^{2(1-\nu)}(t) g^{2\nu}(t) f^{2\nu}(s) g^{2(1-\nu)}(s)$$
$$\leq f^{2}(t) g^{2}(s) L\left(1, \left(\frac{\Gamma}{\gamma}\right)^{2}\right) \ln S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right)$$
for any $t, s \in I$.

for any $t, s \in I$. If we take the double integral $\int_I \int_I$ over $dE(t) \otimes dF(s)$ in (3.7) and use a similar argument as above, we deduce

$$(3.8) \qquad 0 \le (1-\nu) f^2(A) \otimes g^2(B) + \nu g^2(A) \otimes f^2(B) - \left(f^{2(1-\nu)}(A) g^{2\nu}(A)\right) \otimes \left(f^{2\nu}(B) g^{2(1-\nu)}(B)\right) \le L\left(1, \left(\frac{\Gamma}{\gamma}\right)^2\right) \ln S\left(\left(\frac{\Gamma}{\gamma}\right)^2\right) f^2(A) \otimes g^2(B)$$

for all $\nu \in [0,1]$.

Now, from (3.6) we have

$$(3.9) \qquad \left(f^{2(1-\nu)}(A_{\tau})g^{2\nu}(A_{\tau})\right) \otimes \left(f^{2\nu}(B_{\gamma})g^{2(1-\nu)}(B_{\gamma})\right)$$
$$\leq (1-\nu)f^{2}(A_{\tau}) \otimes g^{2}(B_{\gamma}) + \nu g^{2}(A_{\tau}) \otimes f^{2}(B_{\gamma})$$
$$\leq S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \left(f^{2(1-\nu)}(A_{\tau})g^{2\nu}(A_{\tau})\right) \otimes \left(f^{2\nu}(B_{\gamma})g^{2(1-\nu)}(B_{\gamma})\right)$$

for all $\tau, \gamma \in \Omega$.

Now, if we take the integral \int_{Ω} over $d\mu(\tau)$ and then the integral \int_{Ω} over $d\mu(\gamma)$ and perform the required calculations as in the proof of Theorem 1 we derive the desired result (3.1).

The inequality (3.2) follows in the same way by employing the inequality (3.9).

Corollary 4. With the assumption of Theorem 4, we have the following inequalities for the Hadamard product

$$(3.10) \qquad \left(\int_{\Omega} f^{2(1-\nu)} \left(A_{\tau} \right) g^{2\nu} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \circ \left(\int_{\Omega} f^{2\nu} \left(B_{\tau} \right) g^{2(1-\nu)} \left(B_{\tau} \right) d\mu \left(\tau \right) \right) \\ \leq \left(1-\nu \right) \left(\int_{\Omega} f^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \circ \left(\int_{\Omega} g^{2} \left(B_{\tau} \right) d\mu \left(\tau \right) \right) \\ + \nu \left(\int_{\Omega} g^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \circ \left(\int_{\Omega} f^{2} \left(B_{\tau} \right) d\mu \left(\tau \right) \right) \\ \leq S \left(\left(\frac{\Gamma}{\gamma} \right)^{2} \right) \left(\int_{\Omega} f^{2(1-\nu)} \left(A_{\tau} \right) g^{2\nu} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \\ \circ \left(\int_{\Omega} f^{2\nu} \left(B_{\tau} \right) g^{2(1-\nu)} \left(B_{\tau} \right) d\mu \left(\tau \right) \right)$$

and

$$(3.11) \quad 0 \leq (1-\nu) \left(\int_{\Omega} f^{2} (A_{\tau}) d\mu(\tau) \right) \circ \left(\int_{\Omega} g^{2} (B_{\tau}) d\mu(\tau) \right) + \nu \left(\int_{\Omega} g^{2} (A_{\tau}) d\mu(\tau) \right) \circ \left(\int_{\Omega} f^{2} (B_{\tau}) d\mu(\tau) \right) - \left(\int_{\Omega} f^{2(1-\nu)} (A_{\tau}) g^{2\nu} (A_{\tau}) d\mu(\tau) \right) \circ \left(\int_{\Omega} f^{2\nu} (B_{\tau}) g^{2(1-\nu)} (B_{\tau}) d\mu(\tau) \right) \leq L \left(1, \left(\frac{\Gamma}{\gamma} \right)^{2} \right) \ln S \left(\left(\frac{\Gamma}{\gamma} \right)^{2} \right) \times \left(\int_{\Omega} f^{2} (A_{\tau}) d\mu(\tau) \right) \circ \left(\int_{\Omega} g^{2} (B_{\tau}) d\mu(\tau) \right).$$

for all $\nu \in [0,1]$.

Remark 1. If we take $B_{\tau} = A_{\tau}$ for $\tau \in \Omega$ in Corollary 4, then we get

$$(3.12) \qquad \left(\int_{\Omega} f^{2(1-\nu)} \left(A_{\tau} \right) g^{2\nu} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \circ \left(\int_{\Omega} f^{2\nu} \left(A_{\tau} \right) g^{2(1-\nu)} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \\ \leq \left(\int_{\Omega} f^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \circ \left(\int_{\Omega} g^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \\ \leq S \left(\left(\frac{\Gamma}{\gamma} \right)^{2} \right) \left(\int_{\Omega} f^{2(1-\nu)} \left(A_{\tau} \right) g^{2\nu} \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \\ \circ \left(\int_{\Omega} f^{2\nu} \left(A_{\tau} \right) g^{2(1-\nu)} \left(A_{\tau} \right) d\mu \left(\tau \right) \right)$$

and

$$(3.13) \quad 0 \leq \left(\int_{\Omega} f^{2} \left(A_{\tau}\right) d\mu\left(\tau\right)\right) \circ \left(\int_{\Omega} g^{2} \left(A_{\tau}\right) d\mu\left(\tau\right)\right) \\ - \left(\int_{\Omega} f^{2(1-\nu)} \left(A_{\tau}\right) g^{2\nu} \left(A_{\tau}\right) d\mu\left(\tau\right)\right) \circ \left(\int_{\Omega} f^{2\nu} \left(A_{\tau}\right) g^{2(1-\nu)} \left(A_{\tau}\right) d\mu\left(\tau\right)\right) \\ \leq L \left(1, \left(\frac{\Gamma}{\gamma}\right)^{2}\right) \ln S \left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \\ \times \left(\int_{\Omega} f^{2} \left(A_{\tau}\right) d\mu\left(\tau\right)\right) \circ \left(\int_{\Omega} g^{2} \left(A_{\tau}\right) d\mu\left(\tau\right)\right).$$

Moreover, if we take $\nu = 1/2$ in (3.12) and (3.13), then we get

$$(3.14) \qquad \left(\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)\right) \circ \left(\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)\right) \\ \leq \left(\int_{\Omega} f^{2}(A_{\tau}) d\mu(\tau)\right) \circ \left(\int_{\Omega} g^{2}(A_{\tau}) d\mu(\tau)\right) \\ \leq S\left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \left(\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)\right) \circ \left(\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)\right) \\ \end{cases}$$

and

$$(3.15) \qquad 0 \leq \left(\int_{\Omega} f^{2}(A_{\tau}) d\mu(\tau)\right) \circ \left(\int_{\Omega} g^{2}(A_{\tau}) d\mu(\tau)\right) \\ - \left(\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)\right) \circ \left(\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)\right) \\ \leq L \left(1, \left(\frac{\Gamma}{\gamma}\right)^{2}\right) \ln S \left(\left(\frac{\Gamma}{\gamma}\right)^{2}\right) \\ \times \left(\int_{\Omega} f^{2}(A_{\tau}) d\mu(\tau)\right) \circ \left(\int_{\Omega} g^{2}(A_{\tau}) d\mu(\tau)\right).$$

4. Some Examples

Consider the functions $f(t) = t^p$ and $g(t) = t^q$ for t > 0 and $p, q \neq 0$. Then

$$\frac{f\left(t\right)}{g\left(t\right)} = t^{p-q}, \text{ for } t > 0.$$

Therefore

$$m^{p-q} \leq \frac{f(t)}{g(t)} \leq M^{p-q}$$
 for $t \in [m, M]$ and $p > q$

and

$$M^{p-q} \leq \frac{f(t)}{g(t)} \leq m^{p-q}$$
 for $t \in [m, M]$ and $p < q$.

Now, assume that $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of positive operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subset [m, M]$ for each $\tau \in \Omega$. From Theorem 2 we get for p > q that

$$(4.1) \qquad \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau) \leq (1-\nu) \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2q} d\mu(\tau) + \nu \int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2p} d\mu(\tau) \leq S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau)$$

and

$$(4.2) \qquad 0 \leq (1-\nu) \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2q} d\mu(\tau) + \nu \int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2p} d\mu(\tau) - \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau) \leq L \left(1, \left(\frac{M}{m}\right)^{2(p-q)}\right) \ln S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \times \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \otimes \int_{\Omega} B_{\tau}^{2q} d\mu(\tau).$$

In particular, for $\nu = 1/2$,

$$(4.3) \qquad \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{p+q} d\mu\left(\tau\right) \\ \leq \frac{1}{2} \left(\int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right) + \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{2p} d\mu\left(\tau\right) \right) \\ \leq S \left(\left(\frac{M}{m}\right)^{2(p-q)} \right) \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{p+q} d\mu\left(\tau\right)$$

and

$$(4.4) \qquad 0 \leq \frac{1}{2} \left(\int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right) + \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{2p} d\mu\left(\tau\right) \right) - \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{p+q} d\mu\left(\tau\right) \leq L \left(1, \left(\frac{M}{m}\right)^{2(p-q)} \right) \ln S \left(\left(\frac{M}{m}\right)^{2(p-q)} \right) \times \int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right).$$

We also have the inequalities for the Hadamard product

$$(4.5) \qquad \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau) \leq (1-\nu) \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2q} d\mu(\tau) + \nu \int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2p} d\mu(\tau) \leq S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau)$$

and

$$(4.6) \qquad 0 \leq (1-\nu) \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2q} d\mu(\tau) + \nu \int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2p} d\mu(\tau) - \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau) \leq L \left(1, \left(\frac{M}{m}\right)^{2(p-q)} \right) \ln S \left(\left(\frac{M}{m}\right)^{2(p-q)} \right) \times \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \circ \int_{\Omega} B_{\tau}^{2q} d\mu(\tau) .$$

In particular, for $\nu = 1/2$,

$$(4.7) \qquad \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{p+q} d\mu\left(\tau\right) \\ \leq \frac{1}{2} \left(\int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right) + \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{2p} d\mu\left(\tau\right) \right) \\ \leq S \left(\left(\frac{M}{m}\right)^{2(p-q)} \right) \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{p+q} d\mu\left(\tau\right)$$

and

$$(4.8) \qquad 0 \leq \frac{1}{2} \left(\int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right) + \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{2p} d\mu\left(\tau\right) \right) - \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{p+q} d\mu\left(\tau\right) \leq L \left(1, \left(\frac{M}{m}\right)^{2(p-q)} \right) \ln S \left(\left(\frac{M}{m}\right)^{2(p-q)} \right) \times \int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right).$$

Moreover, if we take $B_{\tau} = A_{\tau}, \tau \in \Omega$ in (4.5)-(4.8), then we get

$$(4.9) \qquad \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau) \leq \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \leq S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{2\nu p+2(1-\nu)q} d\mu(\tau)$$

and

$$(4.10) \qquad 0 \leq \int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \\ - \int_{\Omega} A_{\tau}^{2(1-\nu)p+2\nu q} d\mu\left(\tau\right) \circ \int_{\Omega} A_{\tau}^{2\nu p+2(1-\nu)q} d\mu\left(\tau\right) \\ \leq L\left(1, \left(\frac{M}{m}\right)^{2(p-q)}\right) \ln S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \\ \times \int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right).$$

In particular, for $\nu = 1/2$,

(4.11)
$$\int_{\Omega} A_{\tau}^{p+q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{p+q} d\mu(\tau)$$
$$\leq \int_{\Omega} A_{\tau}^{2p} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{2q} d\mu(\tau)$$
$$\leq S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \int_{\Omega} A_{\tau}^{p+q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{p+q} d\mu(\tau)$$

and

$$(4.12) \qquad 0 \leq \int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) - \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \circ \int_{\Omega} A_{\tau}^{p+q} d\mu\left(\tau\right) \\ \leq L \left(1, \left(\frac{M}{m}\right)^{2(p-q)}\right) \ln S\left(\left(\frac{M}{m}\right)^{2(p-q)}\right) \\ \times \int_{\Omega} A_{\tau}^{2p} d\mu\left(\tau\right) \circ \int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right).$$

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, *Lin. Alg. & Appl.* 26 (1979), 203-241.
- [2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
- [3] J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, *Math. Japon.* 42 (1995), 265-272.
- [4] S. S. Dragomir, Some tensorial arithmetic mean-geometric mean inequalities for sequences of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.
- [5] A. Korányi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520–554.
- [6] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995), 531-535

- [7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [8] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, *Scient. Math.* 1 (1998), No. 2, 237-241.
- [9] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
- [10] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
- [11] S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007), 433-440.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA