REFINEMENTS AND REVERSES OF TENSORIAL
ARITHMETIC MEAN-GEOMETRIC MEAN INEQUALITIES FOR
SELFADJOINT OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if the operators A; € B (H) satisfy the condition Sp (A4;) C [k, K] C
(0,00), i€ {1,...,m} and ¢; >0, i € {1,...,m} with >7", ¢; = 1, then
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where A; is defined as a tensorial product of A; in position s = 1,...,n and
with 1 in the other positions.

Let (At),cq and (Bt),cqbe a continuous field of positive operators in B (H)
such that Sp(A:), Sp(B:) C [m,M] C (0,00) for each t € Q. Then for
v € [0,1] we also have the integral inequalities for Hadamard product
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1. INTRODUCTION

Let Iy,..., Ix be intervals from R and let f : I; x ... Xx I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., 4,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hi such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is

in the domain of f. If
A= [ xaE )
I;

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define

(11) f(Al,,Ak) :/I , f(Al,,)\l)dEl (A1)®®dEk (Ak)
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2 S.S. DRAGOMIR

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [7] for functions of two
variables and have the property that

[ (A1, Ag) = fi(AD) @ . @ fr(Ak),

whenever f can be separated as a product f(t1,...,tx) = f1(t1)...fx(tr) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, c0), namely

F5t) > (<) £ (5) F (1) for all 5,1 € [0,00)
and if f is continuous on [0, 00), then [9, p. 173]

(1.2) F(A®B) > (L) f(A)® f(B) forall A, B >0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.3) f(A® B) :/ / f(st)dE (t) @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0,00) .
Recall the geometric operator mean for the positive operators A, B > 0

A4B = AV2(AY2BAY/2)AY2,
where t € [0, 1] and
A#B = AV2(A~V2BA-V/2)1/2 412,
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A)=(A®B)#(B® A).
In 2007, S. Wada [12] obtained the following Callebaut type inequalities for ten-

sorial product

(1.4)  (A#B) ® (A#B) < - [(A#aB) ® (A#1_aB) + (A#1_oB) ® (A#.B)]

=N

<-(A®B+B®A)

2
for A, B> 0 and « € [0,1].

In 2007, S. Wada [12] obtained the following Callebaut type inequalities for ten-
sorial product

(15)  (A#B) ® (A#B) < 5 [(A#aB) ® (A#1-aB) + (A#1-aB) ® (A#aD)]

=N

<-(A®B+B®A)

2
for A, B> 0and a € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,e;) = (Aej, ;) (Bej, e;)
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for all j € N, where {e;},\ is an orthonormal basis for the separable Hilbert space
H.
It is known that, see [8], we have the representation

(1.6) AoB=U"(A® B)U

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [9, p. 173]

(1.7) f(AoB)> (L) f(A)of(B) forall A, B>0.

We recall the following elementary inequalities for the Hadamard product

A2 6 B2 < (A—;—B

>olf0rA,B>0

and Fiedler inequality
Ao A~ >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
9 1/2 /19 1/2
AOBS(A ol) (B 01) for A, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (420 B%)"? for A, B> 0.

It has been shown in [10] that (A% o 1)1/2 (B%o 1)1/2 and (A% o 32)1/2 are incom-
parable for 2-square positive definite matrices A and B

Motivated by the above results, in this paper we show among others that, if the
operators A; € B (H) satisfy the condition Sp (4;) C [k, K] C (0,00), 7 € {1,...,m}
and ¢; > 0,7 € {1,...,m} with /" ¢; = 1, then

m 2
o [SoaA - (z q@-)
=1

\ /\

m m 2
®Aq1 < ik Z%Af - <Z qlA\z> ;
i=1 i=1

where A, is defined as a tensorial product of A; in position i = 1,...,n and with 1
in the other positions.

Let (At),cq and (Bi),cqbe a continuous field of positive operators in B (H) such
that Sp (A:), Sp (Bt) C [m, M] C (0,00) for each ¢ € Q. Then for v € [0, 1] we also

have the integral inequalities for Hadamard product

o g [([ 255 aw0) o1 (o) o ([ )
(/ 1—VAt+VBt]dM()) o1
(/ Agw;t)) ([ Branco)
(5w ([ ) ()

=1

IN

IN



4 S.S. DRAGOMIR

2. SOME PRELIMINARY FACTS
Recall the following property of the tensorial product
(2.1) (AC)® (BD)=(A® B) (C ® D)

that holds for any A, B, C;, D € B(H).
If we take C = A and D = B, then we get

A’@ B? = (A® B)®.

By induction and using (2.1) we derive that

(2.2) A" ®@ B" = (A® B)" for natural n > 0.
In particular
(2.3) A"®1=(A®1)" and 1® B" = (1® B)"
for all n > 0.
We also observe that, by (2.1), the operators A® 1 and 1 ® B are commutative
and
(2.4) (A1) (1®B)=(1®B)(A®1)=A® B.
Moreover, for two natural numbers m, n we have
(2.5) (A1)"(1eB)"=(1®B)"(A®1)" =A" @ B".

By induction over m, we derive
(2.6) (A1 ®A®..0A,)" =A7 ® AY ® ...® A}, for natural n > 0
and
(2.7) AiRA®...0A,
=A4101®.01)104:®..01)..(101®..0 Ay)

and the m operators (41 ®1®...01), (18 42 ®..®1),..and (181 ® ...

are commutative between them.

We define for A;, B;€ B(H),i€{l,..,n}, ® B; :=B1® ... ® By,
i=1

~

Ai :1®®A1®®1, ’L':27...7Tl71,

and
Al =4,R1®...1while A, =1 ..01RQ A4,.

Basically A, is defined as a tensorial product of A; in position i = 1, ...,n and with

1 in the other positions.

Theorem 1. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I;

i €{1,...,m} and with the spectral resolutions

A= / t;dE (tl‘), 1€ {1, ,m}
I,

i

Let f;, i € {1,...,m} be continuous on I; and ¢ continuous on an interval K that

contains the product of the intervals f (1) ...f (In) , then

(2.8) © <®f (Ai)> :/1 /I © (Hf (ti)> dE (1) ® ... ® dE (t,) .
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We also have
(2.9) o (£ () = (A))
foralli=1,....m

Proof. By Stone-Weierstrass theorem, any continuous function can be approxi-
mated by a sequence of polynomials, therefore it suffices to prove the equality
for the power function ¢ (t) = t" with n any natural number.

Then, by (1.1) and (2.6) we obtain

/1/ (1 (t1) oo fm (t)]" dE (£1) @ ... ® dE (L)

:/1 . [f1 )] o [ (t)]" dE (t1) @ ... ® dE (t,,)
=[f (A" @ .. ® [fm (Am)]" = [f1 (A1) ® ... @ fin (Am)]"

which shows that the identity (2.6) is valid for the power function.
This proves the identity (2.8)
By taking f; =1 for j =1,...,m and j # i in (2.8) we get

(p(1®...®fi(Ai)®...®1>:/I /1 o (fi () dE (t1) ® ... ® dE (L)
=1®®(p(f1(141))®®1,

which proves (2.9). O

Corollary 1. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I;
and f;, i € {1,...,m} are continuous and positive on I;, then

(2.10) In <® fi (Ai)> =Y In (£ (A))
i=1 i=1

Also

(2.11) In (£ (A7) = (£ (A:))

foralli=1,....m

Proof. Assume that

A = / bdE ()
I

are the spectral resolutions for A4;, i =1,...,m.
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We have for ¢ (u) = Inwu, u > 0, in (2.8) that
In (fl (A) ®...Q® fT)'L (A’m))

//1 I (f1 (1) oo o (£0)) AE (£1) ® .. @ dE (£12)

/I nf1 (t1) + ... +1In fr, ()] dE (t1) @ ... ® dE (t,,)

m

I,
//1 In fi (t1) dE (1) ® ... ® dE (tm) +
“,

/ In fr, (tm) dE (1) @ ... ® dE (t)
I

=(Infi(41)®1®..01+..4+1® .01 (In f, (4,))
and the identity (2.10) is proved. O

Corollary 2. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I;
and fi, 1 € {1,...,m} are continuous on I;, then for r >0

(2.12) ®fi (A)| = ®|f1 (A"
and
(2.13) ‘(f/(A\)) T g (A

foralli=1,....m
Proof. From (2.8) we have for the function ¢ (t) = [t|" that
11 (A1) @ . @ fn (A"

/1 /'fl (1) oo fon (tm)[" dE (t1) @ ... @ dE (tyn)

/1 /|f1 )| o | (E)|" dE (1) @ ... @ dE ()

|f1 A1| X .. ®|fm( m)|r=

which proves (2.12).
The identity (2.13) follows in a similar way. O

Corollary 3. Assume A;, i € {1,...,m} are positive operators and q; > 0, i €
{1,...,m}, then

(2.14) © <(§_§1)Aq> - /I /I © (th> dE (t1) ® ... ® dE () .

i=1

We also have the additive result:

Theorem 2. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A;) C I;,
i € {1,....,m} and with the spectral resolutions

A; = / t;dF (ti), 1€ {1, ,m} .

I;
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Let g;, i € {1,...,m} be continuous on I; and ¢ continuous on an interval K that
contains the sum of the intervals g (I1) + ... + g (Im) , then

(215) ¥ (;gz (Az)> = /I1 ~~-/m1/) (Zgz i ) dE (1) ® ... @ dE (tm) -

Proof. Let f;, continuous, positive and such that g; (¢;) = Inf; (&), t; € I;, @ €
{1,...,m}. Then

Zgi (t:) = Zlnfi (t;)) =In (H i (ti)> .

By (2.8) we get for ¢ = ¢ o ln that

/Il.../lmy(Zgl i>dE (1) © .. ® dE (t)
_ /1 /Im . (m <]:[ fi (ti)>> dE (t1) @ ... @ dE (b))
/11 /m (¢ o 1n) (ﬁﬂ 7,> (t1) ® ...  dE (t)

nffin) -+ (1)

By (2.10) we also have

(@5 40) - X TR - ey
i=1
and the identity (2.15) is obtained. O

Corollary 4. Assume that A;, i € {1,....,m} and ¢;, i € {1,....,m} are as in
Theorem 2 and r > 0, then

m
Z g ( z
i=1 Im

Also, if we take 1) = exp, then we get

(2.17) exp(Zgi( z) /1 /exp(X:gZ i)dE (t1) ® ... ® dE (t,)
- @

(2.16)

S i)

i=1

dE (t1) @ ... © dE (t,) .

The case of convex combination is as follows:

Corollary 5. Assume A;, ¢ € {1,...,m} are selfadjoint operators with Sp (A4;) C I,
i € {1,...,m} and with the spectral resolutions

A= /tidE (t:), i€ {1,.,m}.
I
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If p; > 0 with Z?:l p; = 1, and ¢ continuous on I, then

Follows by (2.4) for g; (t;) = piti, i € {1,...,m}.

3. MAIN RESULTS

We have the following refinements and reverses for the tensorial arithmetic mean-
geometric mean inequality:

Theorem 3. Assume that A; > 0, ¢ € {1,....,m} and ¢; > 0, i € {1,....,m} with
Yo qi =1, then

2
3.1 0 i A; - A;
( ) (’ITL — 1) ie{rlr,l.l.r.lﬂn} {q } m; <; ! )
< Z giA; — ®Agi
i=1 i=1
< max {¢}|m :&\z — Al/2
s o) [ 35K (3

Proof. We recall the following classical result due to H. Kober, see [11]:

IN

(32 0< min {a} Y (V& - vE)°

2(m —1) ie{1. 5=
SZ(]iiﬁi*HﬂlSi { {Qz}z (Vi — Va3)%,
i=1 i=1 i,j=1

where z;, ¢; >0, i € {1,...,m} with }/"  ¢; = 1.
Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I C [0, 0),
i € {1,...,m} and with the spectral resolutions

A; = /tldE (tl‘), xS {1, ,m}
I

From (3.2) have

(3:3) 0= Tm=1) {qz} Z (Vti = /t5)?

1) e{l 5=

Sz;qiti—Htf‘ S% enax Aai} Z (Vti = \/1)°

i=1 i,j=1

forallt; e I,ie {1,...,m}.
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If we take the integral [, ... [; over dE (t1) ® ... ® dE (t,) in (3.3), then we get

1
(3.4) 0< ST 6{1 {qz}
/ /Z\F VE)2AE (1) @ ... ® dE (t,)

< iqi/.../tidE(tl)®...®dE(tm)
/ /th’dE 1) ® ... @ dE (t)

<o max {q)

2 ie{1,...,m}
//Z\F VE)2AE (1) ® ... ® dE () .
1,7=1

Observe that

i i_ ( 1/2 1/2+t)
mZt— Zt1/2> :

then

//Z\F VE)2AE (1) @ ... ® dE (t,)

1,7=1

Qm/l.../litidE(tl)&..@dE (tm)

_ - 1/2 ’
2/1/1 (Z;tz ) dE () @ ... @ dE (tn,)

m mo o — 2
=2 ng\i— (ZA;ﬂ) ,
i=1 i=1

where for the last term we employed equality (2.15) for ¢ (u) = u? and g; (¢;) = t1/2
ie{l,..,m}.
Also

Zqi/.../tidE (1) ® ... ®dE () = Y _ 1A,

=1 JI I i=1
and

/.../Ht?"’dE (t1) ® ... dE (ty,) = ®A§“
I Iy i=1

and by (3.4) we derive (3.1). O
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Corollary 6. Assume that A, B> 0 and v € [0,1], then
(3.5) 0 < min{r,1— v} (A®1+1®Bf2A1/2®B1/2)
<(1-v)A®1+vi®B-A""® B
<max{r,1 —v} (A®1+1®B—2A1/2®Bl/2>.
It follows by (3.1) for m=2,¢1 =v, g2 =1—v, A; = A and Ay = B.

Corollary 7. Assume that A, B > 0 and v € [0,1], then we have the following
inequalities for the Hadamard product

A+ B
o

(3.6) 0 < 2min{v,1—v} ( 1—AY20 Bl/2>

<(1-v)Aol+vlioB—A'""0oB"

A+ B
SQmaX{z/,l—V}< —; ol—Al/QoBl/2>.

Proof. We have the representation
XoY=U"(XY)U

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.
If we take at the left of (3.5) U* and at the right I/, then we get

(3.7 0 <min{v,1 —v}U* (A®1+1®B_2A1/2®B1/2)u
<ur [(1—V)A®1+V1®B—A1*V®BV}M
<max{v,l —v}iU* <A®1+1®B_2A1/2®Bl/2)u7

which is equivalent to (3.6). O

We also have:

Theorem 4. Assume that A; > 0,4 € {1,....,m} and ¢; > 0, i € {1,...,m} with
St a4 =1, then

1 m - m — 2
(3.8) 0< ; > qiAi - (Z in}m)
=1

T 1 -minjeqr, . my {a —

< i(h:&z - éA?
m m N\ 2
! 7 Z%A\i - (Z in§/2>

miM;e{1,...,m} {% P
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Proof. We recall the following classical result due to P. H. Diananda, see [5]:

1 m
59 0< . 445 (VT — \/T5)°
2 (1 — MINe{1,...,m} {ql}) i,jzzl ’ \/7
< qu - x;h
i=1 i=1

7 Z 0:4; (VT — \/T5)%,

ij=1

where z;, ¢; >0, i € {1,...,m} with >/"  ¢; = 1.

From (3.9) we get

(3.10) 0< ! Zm: qiq;(Vt — \/1;)?

-2 (1 — minie{l}...,m} {%})

m m
<D ati— ][
i=1 i=1

1
< -
T 2mingeqr,my {0}

ij=1

Z Qin(\/E_ \/5‘)2,

4,j=1

forallt; e I,ie{l,...,m}.
If we take the integral [, ... [, over dE (t1) ® ... ® dE (t,,) in (3.10), then we get

1
2 (1 — Hliﬂie{l,.“,m} {%})

(3.11) 0<

m

X /I/IZ 405 (VT — VE)2E (1) © ... dE (t)

7,7=1

m

s;qi/l.../I'Z GdE (8) ® ... ® dE (t)

7,7=1

—/.../Ht?idE(tl)®...®dE(tm)
I
1

< -
T 2minieqr, . my 14}

m

7,7=1
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Observe that

Z aiq;(VEt — /1) = Z g4 (t B 2251/2 1/2 L )

3,j=1 i,j=1
m m
1/2,1/2
= Z qiqsti — 2 Z qigit;’ tj/ + Z 9iq5t;
ij=1 ij=1 ij=1

n n 2
1/2
=2 Zq:’ti - (ZQiti/ ) .
i=1 i=1

which gives that

/ /Zqzqg\f VE)AE (1) @ ... @ dE (tm)

i,j=1

:2;qz£/ltldE(t1)®®dE (tm)

_2/1.../1 (Zqit;/2> dE (t1) ® ... @ dE (t,)

m m
T (z A“) |
=1

where for the last term we employed equality (2.15) for v (u) = u? and g; (¢;) =
12 .

git;’ ", i€ {1,...,m}.
By employing the inequality (3.11) we deduce the desired result (3.8). O

For m =2, ¢y = v and ¢ = 1 — v observe that
1 B 1
I —min{r,1 -v} max{y,1—v}

=min{v,1 - v},

which shows that the case m = 2 in Theorem 4 gives the same particular case as
of Theorem 2.

Theorem 5. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A;) C
[k, K] C (0,00), i € {1,....,m} and ¢; >0, i € {1,....,m} with ", q¢; = 1, then

2
1 m o m P
(3.12) 0< o | D_aiAT - (Z inZ)
i=1 =1

\ A

m m m m 2
Z ® Al < % > aiA? - <Z%’A\i>

Proof. In 1978, Cartwright and Field [4] obtained the following refinement and
reverse for the difference between the arithmetic mean and geometric mean

m m m

(3.13) 0<7qu z— %)% < 7, Hx;“SQ—qu
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where z; € [a,b] C (0,00), ¢; > 0,7 € {1,....,m} with >/" ¢ = 1 and z, :=
Z;n:ll qiT;.
Observe that

m

m m
Z%(wi —-z,)? = qul’? -2z, Zqz‘xi +(Zy)°
=1 =1

=1
m m 2
St (zq) |
=1 =1

Now, if t; € [k, K] C (0,00), 7 € {1,...,m} then by (3.13) we get

2
1 m m
(3.14) 0< 50 > ity - <Z qiti>
i=1 =1

m

ST < L S - (z %@-) ,
=1 =1 =1

i=1

Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C [k, K] C (0, c0),
i € {1,...,m} and with the spectral resolutions

K
k

If we take the integral ka ka over dE (t1) ® ... ® dE (t,,) in (3.10), then we get

2
1 K K m m
(315)  0< m/k /k > at? - (qu) dE (1) @ ... ® dE (tm,)
i=1 i=1

giqi/kK.../thidE(tl)®...®dE(tm)
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Observe that

K K m m 2
/ / > at? - (Zqim) dE (1) ® ... @ dE ()
k ko li=1 i=1

m K K
:ZQi/ / 2dE (1) @ ... ® dE (tn)
i=1 vk k

K K m 2
_/ / <Zqiti> dE (t1)®...®dE(tm)
k ko \i=1
m m 2
= Z%‘Af - ( %&)
i=1 i=1

and by (3.15) we obtain (3.12). O

Corollary 8. Assume thatm < A, B < M for some constants m, M andv € [0,1],
then

1
(3.16) 0< 77 (A?@1+1® B* - 240 B)
<(1-v)AR1+vi®@B—- A" B
1
<-—(A’®1+19B*-24@ B)
2m
and
2 2
(3.17) O<A14(A—£B01—AOB)
<[(1-v)A+vBlol—A'""0oB"
2 2
<1<A+B01AOB>.
-m 2

4. INTEGRAL INEQUALITIES

Let Q be a locally compact Hausdorff space endowed with a Radon measure p.
A field (Ay),cq, of operators in B (H) is called a continuous field of operators if the
parametrization ¢t — A; is norm continuous on B (H). If, in addition, the norm
function t — || A¢|| is Lebesgue integrable on 2, we can form the Bochner integral
Joy Aedp (t), which is the unique operator in B (H) such that ¢ ([, Aidp(t)) =
Jo @ (A¢) dp (t) for every bounded linear functional ¢ on B (H) . Assume also that,

Joldu(t) = 1.
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Proposition 1. Let (At),cq and (By),cqbe continuous fields of positive operators
in B(H), then for v € [0,1],

(4.1) 0 < min {r,1— v} K/Q wn (t)> ®1+1® </Q Bdu (t))

) (/Q A2 dp (t)) ® (/Q B dy (t))]

<(l1-v) (/QAtdu(t)>®1+z/1®/QBtdu(t)

- </Q AV dp (t)> ® (/Q Bydu (t)>
< max {v,1— v} K/QAtd,u(t)> 1+l </QBtd/¢(t))
—2 (/Q A 2au (t)) ® (/Q B dy (t))] .

Proof. From (3.5) we have

(4.2) 0<min{v,1-v} (42 1+10 B, -24, @ BY/?)
<(1-v)A®14+vi®B,— A" @B
< max{v,1 - v} (At ®1+1® B, —24}"* ®B§/2)

for all ¢, s € Q.
Fix s € Q. If we take the [, over du (t) in (4.2), then we get

(4.3) ogmin{y,1—y}/ (At®1+1®BS—2A2/2®B;/2)du(t)
Q
g/ [(1-v)A®1+v1® B, — A; ™" @ BY] du(t)
Q
Smax{y,l—y}/ (At®1—|—1®BS—214;/2®le/2)du(t)
Q

for all s € €.
Since, by the properties of tensorial product and Bochner’s integral

/ (At ®1+1® B, — 2472 ®B;/2) dp (1)
Q

— </QAth(t)> ®14+1®B, -2 (/QA;/Qdu(t)> @ BY2dp (t)

and

/Q[(1—u)At®1+u1®BS—A}*V®Bg]du(t)

=(1-v) (/QAtdu(t))®1—|—V1®Bs

_ (/Q Al dp (t)) ® Bldp(t).
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By (4.3) we get

(4.4) 0 <min{v,1—-v}

x [(/ﬂ Avdp (t)) ®14+1® B, —2 </Q A2dy, (t)) ® BY2dy (t)}
<(1-1) (/QAtdu(t)> %1+ vl B,
- ([ aivann) o pan

<max{r,1 —v}

x [(/QAtdu(t)) ®1+1®BS—2</QA§/2dM(t)> ®B;/2d/¢(t)}

for all s € Q.

Further, by taking the integral fQ over du (s), and conducting a similar argu-
ment, we derive the desired result (4.1). O

Corollary 9. With the assumptions of Proposition 1, we have the following in-
equalities for the Hadamard product

(4.5) ongin{y,l—y}[(/Q At+Btdu(t)>ol

2

~([arame)o ([ saww)

<([-natvBla)o

- ( :Atl"’du <t>> o ( /Q BYdy <t>)

< 2max {r,1 - v} [(/ﬂ At+Btdu(t)) ol

2
- (/Q Ai”dﬂt)) o< QBtl/zdu(t)ﬂ.

We observe that, if we take By = Ay, for ¢t € Q in (4.5), then we get the simpler
inequalities

(4.6) 0 <2min{r,1—v}

y K [ A (t)) 01— (/Q AV2qy, (t)) o (/Q AV2qy, (t))]
<([aamo)or- ([ arauw)o( [ awanw)

<2max{v,1—v}

« [(/QAtd,u(t)) 01— (/QAi/Qdu(t)> 0 </§2Ai/2du(t))].
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Proposition 2. Let (At),cq and (Bt),cq be continuous fields of positive operators in
B (H) with Sp (A;), Sp(Bt) [m, M] C (0,00) for each t € Q, then for v € [0,1],

3o e ()
( Ay (¢ )@( Budp (¢ ﬂ
<=0 ([ aduv) o140 [ B
[atvauw)e ([ Brano)
(/QA%du(t)) ®1+1e (/QBEW))2
()]

We also have the Hadamard product inequalities

(4.8) ogﬁ K/ AQ%Bd ())01 </QAtdu(t)>o(/QBtdu(t)ﬂ
(/Q [(1_y)At+th]du(t)> ol
([arauo)e ([ i)
(5o (o) ()]

In particular, we also have

(4.9) 0< ﬁ K/ﬂ AZdp (t)) 0l— (/Q Agdp (t)) o </Q Agdp (t))}
</Q Audp (t)> ol — </Q Al vdp (t)> o (/Q Avdp, (t))
< ﬁ K/ﬂAfth)) ol — </QAtd,U(t)> o (/QAtdu(t)ﬂ .
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