A REVERSE OF JENSEN TENSORIAL INEQUALITY FOR
SEQUENCES OF SELFADJOINT OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if ¢ is differentiable convex on the open interval I, A;, ¢ € {1,...,n} are
selfadjoint operators with Sp (A4;) C [m,M] C I, 7 € {1,...,n} and w; > 0,
i€ {1,...,n} with 37" ; w; =1, then

0< > with (Ay) — Zp@)
1=1 1=1

< i:wi <Kz) (%b’/(A\i)) - i}w&) <Zn: wz'i/i'/(xi))

s
Il
-

where A; is defined as a tensorial product of A; in position ¢ = 1,...,n and

with 1 in the other positions. Let (B,Ei)) o i =1,...,n be continuous fields
te

of positive operators in B (H) with Sp (Béz)) C [k, K] C (0,00) for t € Q,

i=1,..,n,and w; > 0,4 € {1,...,n} with >7" ; w; =1, then

S B@(n))—é ([ [B9]" anw) < § (€ =0 1

i=1 i=1
and
;wi (/Q Bg/f);u (U)) < exp {ﬁ (K — k)Q] é (/Q [B,Eﬂwl e (ti)) .

1. INTRODUCTION

Let Iy,..., Ix be intervals from R and let f : I; X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hy such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

I;
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2 S.S. DRAGOMIR

is the spectral resolution of A; for i = 1,..., k; by following [2], we define
(].1) f(A1,7Ak) :/ f()\ha)\l)dEl ()\1)®®dEk ()\k)
I I

as a bounded selfadjoint operator on the tensorial product H; ® ... ® H.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [7] for functions of two
variables and have the property that

whenever f can be separated as a product f(t1,...,¢x) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) = (L) f(s) f(t) for all s,t € [0,00)
and if f is continuous on [0, 00), then [9, p. 173]
(1.3) f(A®B) > (L) f(A)® f(B) forall A, B>0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.4) tﬂA@B):/' /‘ £ (st)dE (t) @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0,00).
Recall the geometric operator mean for the positive operators A, B > 0

A#B = AY2(AY2BAY2)AL/2,
where t € [0, 1] and
A#B = AV2(A-V2BA-12)1/2 412,
By the definitions of # and ® we have
A#B = B#A and (A#B) @ (B#A)=(A®@B)#(B® A).
In 2007, S. Wada [12] obtained the following Callebaut type inequalities for ten-

sorial product

(1~5) (A#B) ® (A#B) < [(A#aB) ® (A#lfocB) + (A#lfaB) ® (A#aB)]

— N

<-(A® B+ B® A)

2
for A, B> 0and o € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,ej) = (Aej, ;) (Bej, ;)

for all j € N, where {e; }j cn is an orthonormal basis for the separable Hilbert space
H.

It is known that, see [8], we have the representation
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(1.6) AoB=U"(A®B)U
where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [9, p. 173]
(1.7) f(AoB)> (<) f(A)o f(B) forall A, B> 0.

We recall the following elementary inequalities for the Hadamard product
AV/2 6 BU2 < (AJQFB> olfor A, B>0

and Fiedler inequality
AoA ' >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that Lo Lo
AOBS(AQOI)/(BQOl)/ for A, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (A%0B%)"? for A, B >0,

It has been shown in [10] that (A2 o 1)1/2 (B%o1) Y2 and (A?0 B2)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we show among others that, if
1 is differentiable convex on the open interval I, A;, i € {1,...,n} are selfadjoint
operators with Sp (4;) C [m,M] C I, € {1,..,n} and w; > 0, ¢ € {1,...,n} with
>r  w; =1, then

O<sz’l/) (sz )
< S (8) (R - (S0 (5o )
00 = ] S K- S

1

1 [0 () = ()] (M = m),

where A, is defined as a tensorial product of A4; in position i = 1,...,n and with 1

<

IN

in the other positions. Let (Bt(i)) o i = 1,...,n be continuous fields of positive
te

operators in B (H) with Sp (Bt(i)) C [k,K] C (0,00) for t € Q, i =1,....,n, and
w; > 0,4 €{1,...,n} with >/, w; =1, then

i (/B?d\u( )) é(/ﬂ[Bt(?]w"dﬂ(ti)) i(K k) (In K —Ink)

i=1
and

n

Zw (/Q Bﬁ/j)d\u (ti)> < exp lelK (K—k)z} :1 (/Q {Bt(f)ri dys (ti)).

i=1
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2. SOME PRELIMINARY FACTS
Recall the following property of the tensorial product
(2.1) (AC)® (BD)=(A® B)(C® D)

that holds for any A, B, C, D € B(H).
If we take C' = A and D = B, then we get

A’@ B?>=(A® B)*.
By induction and using (2.1) we derive that

(2.2) A" ® B" = (A® B)" for natural n > 0.
In particular
(2.3) A"®1=(A®1)" and 1® B" = (1® B)"
for all n > 0.

We also observe that, by (2.1), the operators A® 1 and 1 ® B are commutative
and

(2.4) (A1) (1®B)=(1®B)(A®1)=A® B.
Moreover, for two natural numbers m, n we have
(2.5) A1)"(1eB)"=1eB)"(Ae1)™ =A™ @ B"™.

By induction over m, we derive
(2.6) (AR A ®..0 Ap)" = AT @ AY ® ... @ A, for natural n > 0

m

and
(2.7) AR A ®..Q Ay
=(401.1)(1RA4®.01).1”1®..0 A,)

and the m operators (41 ®1®..01),(1® 42®..Q01),.and (1®1®..® A,)
are commutative between them.

n
We define for A;, B, € B(H),i€{l,..,n}, @ B; :=B1 ®...Q® By,
i=1

A=19.04;®.91,i=2,..,n—1,
and A A
Al =4R1®...1while A, =1%..011Q A,.

Basically A, is defined as a tensorial product of A4; in position i = 1, ...,n and with
1 in the other positions.
We need the following identity for the tensorial product, see also [6]:

Lemma 1. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A;) C I,
i € {1,...,m} and with the spectral resolutions

1

Let f;, i € {1,...,m} be continuous on I; and ¢ continuous on an interval K that
contains the product of the intervals f (I)...f (Im) , then

28) w<®fz«<z> = (Hfu>dEt1>® A ().
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We also have
(2.9) o (£ () = (A))
foralli=1,....m

Proof. By Stone-Weierstrass theorem, any continuous function can be approxi-
mated by a sequence of polynomials, therefore it suffices to prove the equality
for the power function ¢ (t) = t" with n any natural number.

Then, by (1.1) and (2.6) we obtain

/1/ (1 (t1) oo fm (t)]" dE (£1) @ ... ® dE (L)

:/1 . [f1 )] o [ (t)]" dE (t1) @ ... ® dE (t,,)
=[f (A" @ .. ® [fm (Am)]" = [f1 (A1) ® ... @ fin (Am)]"

which shows that the identity (2.6) is valid for the power function.
This proves the identity (2.8)
By taking f; =1 for j =1,...,m and j # i in (2.8) we get

(p(1®...®fi(Ai)®...®1>:/I /1 o (fi () dE (t1) ® ... ® dE (L)
=1®®(p(f1(141))®®1,

which proves (2.9). O

Corollary 1. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I;
and f;, i € {1,...,m} are continuous and positive on I;, then

(2.10) In <® fi (Ai)> =Y In (£ (A))
i=1 i=1

Also

(2.11) In (£ (A7) = (£ (A:))

foralli=1,....m

Proof. Assume that

A = / bdE ()
I

are the spectral resolutions for A4;, i =1,...,m.
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We have for ¢ (u) = Inwu, u > 0, in (2.8) that
In (fl (A) ®.. fm (Am))
/ In(f1 (1) oo fon (b)) dE (1) ® ... @ dE (t1,)
I

m

Il
—

/ Mnfi (t1) + .. +Info, ()] dE (1) @ ... @ dE (tyn)

f-).
:/h /1 I fy (81) dE (1) © ... @ dE () + ..

+
—

/ I fon (b)) dE (1) © ... © dE (t1)
1 I,

=(nfi(41)1® .01+ ..4+1R..01x (In f, (4n))
and the identity (2.10) is proved.

Corollary 2. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (
and f;, i € {1,...,m} are continuous on I;, then forr >0

(2.12) Q) fi (4] = QIfi (Al
and
(2.13) £ (A = If (A

foralli=1,....m
Proof. From (2.8) we have for the function ¢ (t) = [t|" that
|f1 (Al) ®... fm (Am)r

:/1 / 1 (1) oo fo (E) 7 AE (81) @ ... @ dE (£)

/] / |f1 tl --|fm (tm)r dE(t1)®®dE(tm)

|f1 A1| & .. ®|fm( m)|ra

which proves (2.12).
The identity (2.13) follows in a similar way.

O

Al) cC I;

O

Corollary 3. Assume A;, i € {1,...,m} are positive operators and q; > 0, i €

{1,...,m}, then

(2.14) ¢<(§)Agi> /I / (Ht‘h)dE(tl)@ @ dE (t,).

We also have the additive result [6]:

Lemma 2. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (
i €{1,...,m} and with the spectral resolutions

A; = / t;dF (ti), 1€ {1, ,m} .

I;

Al) C IZ',
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Let g;, i € {1,...,m} be continuous on I; and ¢ continuous on an interval K that
contains the sum of the intervals g (I1) + ... + g (Im) , then

(215) ¥ (;gz (Az)> = /I1 ~~-/m1/) (Zgz i ) dE (1) ® ... @ dE (tm) -

Proof. Let f;, continuous, positive and such that g; (¢;) = Inf; (&), t; € I;, @ €
{1,...,m}. Then

Zgi (t:) = Zlnfi (t;)) =In (H i (ti)> .

By (2.8) we get for ¢ = ¢ o ln that

/1/1 1&(2% i)dE (t1) @ ... ® dE (tm)

:/I /I W <ln (Hfi (ti)>>dE(t1)®...®dE(tm)
1 m i=1

:/I /I (1 o In) (Hf (t,;)) dE (t1) @ ... @ dE (t,)

oon(rin) o n)

By (2.10) we also have

(@5 40) - X TR - ey
i=1
and the identity (2.15) is obtained. O

Corollary 4. Assume that A;, i € {1,...,m} and g;, 1 € {1,...,m} are as in Lemma

2 and r > 0, then

m
Z g ( z
i=1 Im

Also, if we take 1) = exp, then we get

(2.16)

S i)

i=1

dE (t1) @ ... © dE (t,) .

m

(2.17) exp(ZgZ Z)/j /I exp(Zgz i)dE (t1) ® ... ® dE (t,)
®engl i)

The case of convex combination is as follows:

Corollary 5. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A4;) C I,
i € {1,...,m} and with the spectral resolutions

A= /tidE (t:), i€ {1,..,m}.
I



8 S.S. DRAGOMIR

If p; > 0 with Z?:l p; = 1, and ¢ continuous on I, then

(2.18) ” (;piAZ) _ /I/I¢ <;piti> dE (1) @ ... ® dE (tyy) .
Follows by (2.4) for g; (¢;) = piti, i € {1,...,m}.

3. MAIN RESULTS

Our first main result is as follows:

Theorem 1. Assume 1 is differentiable convexr on the open interval I, A;, i €
{1,...,n} are selfadjoint operators with Sp (A;) C [m,M] C I, i € {1,..,n} and
w; > 0,4 €{l,..,n} with >\, w; =1, then

(3.1) 0< iwﬂﬁA\i) - <ipu&\z>
i=1 i=1
<> (&) (¥ (&) - (Z w@) (Z wm’/@))

< 5 [0 00— ()] Y wi A~ S wyA,
i=1 J=1
< 3 [0 ()~ ()] (M —m)

Proof. We use the following reverse of Jensen’s inequality, see for instance [5, p.
198]

(3.2) 0< Zwﬂ/) (wi) = (Z UM%)

n n n
<Y wit (i) — Y wid () Y wis
i=1 i=1 i=1

< % [ (M) =y (m)] ZW ; *Zwﬂj

_n j= n s
< 2w -0 )] | S v - (Z w)

i=1 i=1

1

< [0 (M) = ' (m)] (M —m)

where 1) is differentiable convex on the open interval I, [m, M| C I, z; € [m, M],
and w; > 0,4 € {1,...,n} with >, w; = 1.
Assume that we have the spectral resolutions

M
A; = / t,dE (ti), i€ {1, ,m}

m
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By (3.2) we get

(3.3) 0<Zwtw (Zm)
Szwﬂﬁ t —szw szz

<L v ) Yt - Y wt,
< W00 - ()] (M = m),

for all t; € [m, M], i€ {1,..,m}.
If we take the integral ff ffr\f over dE (t1) ®...®dE (t,) in (3.3), then we get

(3.4) OgZwi/M.../Mw(ti)dE(tl)®...®dE(tn)

M M n
—/ / ¢ witi> dE(tl)(g)---@dE(tn)

YR
< wi/ / Y () HdE (1) @ ... @ dE (t,)

P ( ><Zw”>dE t1) ® ... ® dE (tn)

|
T
=
S
N
T

IN
DN | =

n
ﬁi — Z wjtj

Jj=1

[0 (M) — ' (m)] (M—m)/ / AE (1) ® ... ® dE (t)

X
M-

g
S
g

dE (1) @ ... ® dE (t,)

m

@
Il
-

IA
N

By (1.2) we have

M M .
/ / O (t) dE (01) @ .. @ dE (t) = 9 (A7), i € {1, ...m},

by (2.18) we have

/ /w(ZpH>dE t)®...®dE(t (i:pz )
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and by (2.16)

M M n
/ / ti— Y wjt;|dE (t) @ ... ® dE (t,)
m m

v =1

M M| n
:/ / w; (ti—tj) dE (t1)®®dE(tn)
! Jj=1

= sz K\Z - ZU’JA\J
i=1 j=1
Also,
M M —
and
M M
/ / dE(t) ® ... QdE (t,) =1®..®1=1.
Further,

m m

/M.../M iwﬂ// (ti)> (anwiu) dE (1) @ ... dE (t,)

i=1
M M n o n
= / ZZwiij/ (ti) t; dE (tl) ® ... dFE (tn)
m m i=1 j=1
n o n M M
= wiwj/ / W (6) GAE (1) © .. © dE ().
=1 j=1 m m

Since, by the properties of tensorial product

M M

/ / W (8) ,dE (1) ® ... ® dE (t,)
=1®..0¢% (4)®.04;®..01
=(19.0¢"(4)®..01)(1®..04;®..01)
=(1®..04;®..01)(19...0¢" (4)®...®1)

- () (8) - (&) (77R)

for 4, j € {1,...,m}, with the notation convention from the previous section.
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Therefore
n n M M
ZZwiwj/ / w/ (tl) tjdE (t1) ®..0dE (tn)
i=1 j—1 m m

Also

/M /Mw’ t) tdE (1) ® ... @ dE (t,)

— ¢/ (A0 A = (&) (¥(A) , i€ {Lsm}.

Then by (3.4) we deduce (3.1).

Corollary 6. Assume that 0 < m < A; < M and w; > 0,14 € {1,.
Yo wi =1, then

(3.5) 0<In (i w@) —In (é A;“)

i=1

(3] (3307) -
i=1 i=1

M—-—m - - - _ 1 2
i Zz::lwz Ai_zijj SW(M—TR) .

=1

IN

The proof follows by (3.1) by taking v (t) = Int, t > 0 and using (2.10).

11

O

yey M} with

Corollary 7. Assume thatm < A; < M andw; > 0,4 € {1,...,n} with Z?zl w; =

1, then

n

(3.6) 0<Zwexp i) = ) [exp (A)]"™

i=1

S (&) (o) - (S (S wesia))

1 ~ =~
i(eXprexpm)Zwi Aiwa A
j=1

i=1

IN

< i (expM —expm) (M —m).

The proof follows by (3.1) for ¢ (t) = expt, t € R and by (2.17).
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Now, by taking A; = In B;, where 0 < k < B; < K for i € {1,...,n}, then by
(3.6) we get

(3.7) 0< Zwﬁ - é)B?“
=1 =1

S ()(0) (S (3e)

1 n — n —
< 5(}(—/{)2% lnBi—ijlnBj
i=1 j=1
1
< Z(K_k) (InK —1Ink).

The case of power function is as follows:

Corollary 8. Assume that 0 < m < A; < M and w; > 0, ¢ € {1,...,n} with
Yo w; =1, then for r € (—o0,0) U [0,00)

(3.8) 0< sz? - (Z p@)
=1 =1

g%r (M"1 m" 1)Zwl j/k\l ijAJ
i=1 j=1
1 r—1 r—1 _
§4T(M m )(M m)

The proof follows by (3.1) by taking v (t) =t", t > 0.
Now, if we take r = —1 in (3.8), then we get

((Sen) (5ea7) S5

provided that 0 <m < A; <M and w; >0, i € {1,...,n} with Y | w; = 1.
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Assume that 0 < k < B; < K and w; > 0,7 € {1,...,n} with > | w; = 1, then
by taking A; = B!, m = K=, M = k™! we get from (3.9) that

-1

< (sz ) (szB2> - y We (E)
i=1
_ ki2 n — n — KZ _ k2
< S 2 wi B =) wBi < e (K- k).

i=1 j=1

Further, from the inequality (3.2) for the logarithmic function ¢ (t) = —Int we
get

- 1
0<In (szxz> szln (z;) < 7M(M—m)2,
i=1

which is equivalent to

n

(3.11) Zw z; < exp {4 lM (M —m ]Hmpz.

=1 =1

By utilizing a similar argument to the one in the proof of Theorem 1, we get
3.12 .B; < —k)?*| X) B
(3.12) ;{;zu e | e (0| @5

provided that 0 < k < B; < K and w; >0, i € {1,...,n} with > ; w; = 1.

4. INTEGRAL INEQUALITIES
Form=2 wy =1—v,wy =v, Ay = A, Ay = B we get from (3.1) that
(4.1) 0<1-v)yYA)R1+v1ey(B)—y(1-v)AR1+v1® B)
<(1-v)[AY (A)] @1+ rv1i® By (B)]
—(1-v)A®1+v1eB) (1-v)Y (A)®@1+viey (B))
v1-v)(A®1-10B) [y (A)®1-10¢ (B)]
1/(171/)
([A¢v' (A)] @1 +1® [BY (B)] - A2y (B) -4’ (A) ® B)
Vﬂ-VHWM@-%%mﬂM®1—1®M
1

<4 [0/ ) = ! (m)] (M = m),

provided that 1 is differentiable convex on the open interval I, A, B are selfadjoint
operators with Sp (4), Sp (B) C [m,M] C I.

Let 2 be a locally compact Hausdorff space endowed with a Radon measure pu.
A field (A¢),cq, of operators in B (H) is called a continuous field of operators if the
parametrization ¢ — A; is norm continuous on B (H). If, in addition, the norm
function ¢ — || A¢|| is Lebesgue integrable on €2, we can form the Bochner integral

Joy Aedpu (t), which is the unique operator in B (H) such that ¢ ([, Audp(t)) =

IN X
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Jo© (At du (t) for every bounded linear functional ¢ on B (H). Assume also that,
fQ 1dp (t) = 1.

Proposition 1. Assume v is differentiable convex on the open interval I. Let
(At)eq and (By),cqbe continuous fields of positive operators in B (H) with Sp (Ay),
Sp (By) C [m,M] C I forteQ, then forv € [0,1],

(4.2) 1-v) (/sz(At)du (t)) ®1+vl® (/Q@z}(Bt)dﬂ (t))

_//¢((1—V)At®1+vl®Bs)dM(t)dﬂ(3)
QJQ

<v(l-v)

x K/ A (Ar) du(t)) ®1+1® (/ B (Bt)dp(t))
(o) (fmra)
o))

Y (M) = ¢ (m)] (M —m).

In particular,

an o ([eao) s ([ v@aawe)

_//1/)((1—V)At®1+V1®As)dﬂ(t)dH(3)
QJQ

<v(l-v)

<|([awpam)errie ([ aw@ao)
(L) ([vow)
() sno)

[ (M) = (m)] (M —m).
Proof. From (4.1) we get

1-v)yY(A)@1+vixy(B)—¢v(1-v)A®1+vl® B)
(1-v)(A®1-19B) [ (A)©1-1xy¢ (B)]

(1-v)

Ay (A)] @ l+1@ By (B)] - Aed (B) —¢' (A) ® B]

[ (M) = (m)] (M —m),

I IA I/\

ISy AN

IA
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which gives that

(4.4) 1-)yY(A)R1+v1®yY (Bs) — ¢ ((1-v)A; @1+ vl ® By)

v(l—v)
< [[Aw (A)] @ 1+ 1@ [Bay' (By)] — A @ ¢ (Bs) — ¢’ (Ar) ® By]
1

< L[ ) = ! ()] (M =),
forall t, s € Q and v € [0,1].

Fix s € Q. If we take the [, over du(t) in (4.4), then by the properties of
tensorial product and Bochner’s integral we get

-0 ([ vnaun)o1+vsm)
_/w (1-v) A @1 +v1®B.)du(t)
v(l—v)

< A’ (Ay)dp (¢ ) ®1+1® [Bs' (By)]

|
(Lo ([sumo)en
<7 [

]Mm

for all s € Q.
If we take the [, over du (s), then we get (4.2). O

We have the representation for X, Y € B (H),

XoY=U"(XY)U
where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.

Corollary 9. With the assumptions of Proposition 1 we have
(45) (=000 + w0 (B ) 01

—//U*w((l—I/)At®1+V1®Bs)Udu(t)du(s)
aJa
<v(l-v)

K/ A’ (Ag) dp (t) + /Bm (B) du (¢ )> o1
- (faa)e (f v o)
g/w (Ay) dp t))o( Budp (t )]

Y (M) =4 (m)] (M —m).
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In particular,

(4.6) /Qw(At)du(oo1_/9/9u*¢((1_y) A, @141 ® A Udp (£) dp (5)
<2v(1-v)

[ )1 (f ) [ )]

< W00 - )] (M = m)
forve|0,1].

Proof. If we take U* to the left in the inequality (4.2) and U to the right and use
the properties of the integral and the continuity of U* and U, we get

(4.7) 1-v)ur K/Qz/}(At)du (t)) ® 1} u
+ U {1@ (/qu(Bt)du (t))] u

—//u*w((l—u)At®1+u1®Bs)udu(t)du(s)
QJQ
<v(l-v)

e (oo s

U {1@(/3,@ (B,) du()ﬂu
(o) ([ o) |u
o |(fv o) e (/ s o)

< 5 [ 00 - (m)] (M - m)
which is equivalent to (4.5). O

Proposition 2. Let (Bgi)) o i =1,...,n be continuous fields of positive operators
te

in B(H) with Sp (Bp) C [k,K] C (0,00) fort € Q,i=1,...n, and w; > 0,
i€ {l,...,n} with !, w; =1, then,

(1.8 Zw( / Bﬁ(m)) - ([ [2)" duien)

i=1 i=1

(K —k)(In K — Ink)

»Jk\H

and

(4.9) iw (/Q B?f);/i (n)) < exp [4;}( (K — k)ﬂ

: ([ [8]" duien).

K2
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Proof. From the inequality (3.7) we have
(4.10) B ©1®.. 01+ .. +w,l®..010B"
- {Bﬁﬂ ®..® [ngq‘”"
< i(K—kz) (In K —Ink)

forallt; € Q,i=1,...,n
If we take in (4.10) the integral [ ... [, over dpu (t1)...du (t,), then we get

(4.11) // wlBﬁP®1®...®1+...+wn1®...®1®B§jj>
Xd/j tl (t)
/ / “’ '®.. ®[B<”>] dp (t) ...dp (L)
4 E)(InK —1Ink).

Using the properties of integral and tensorial product, we have

(4.12) // w1B§ 919.01+..+w,l®..010BM
Q
Xd/l, tl (t )

fwl/ /B(l)®1®...®1d,u,(t1)...d,u,(tn)+...
wn/ / 1®..©1@BMdu(t) ..du(t,)
Q Q
=, (/ B! du (t1)> ®1®..01+..
Q
Fuw,l®..®1® (/ B dp (tn)>
Q

—

_ ;w [ B0
and
/Q/Q [Bﬁl”}wl ®.® [BEZ’TU” dp (1) ..dps (tn)
- (/ [Bﬂm dp. (t1)> ®.8 (/Q [Bﬁf)}w" dy (tn)>
- ® / [BO]" due (1)

From (4.11) we derive the desired result (4.8).
The inequality (4.9) follows in a similar way from (3.12).

17
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The case of two operators is as follows:

(4.13) 0<(1—-v) (/ Ardyp (t )) ®1+rvl® </Q Bdpu (t)>
~([arrauw)e ([ srano)
1
Z

(K—k)(InK —Ink)

and

(4.14) </ﬂ Al Vdp (t)) ® </Q BYdu (t))
<(1-v) (/QAtdu(t)) 21401 ® (/QBtd,u(t)>
< exp { e (K= B) } ( / A%”du@)) ® ( / B;duu))

for (At);cq and (Bi),cq continuous fields of positive operators in B (H) with
Sp(As), Sp(By) Cm,M]CIforteQandvel0,]1].

By taking U* to the left in the inequalities (4.13), (4.14) and U to the right and
use the properties of the integral, we also derive the following inequalities for the
Hadamard product

(4.15) 0< /Q (1= ) Ay + vBy) dp () o 1 — (/Q Ay (t)) o (/ﬂ BVdu (t))

< (K —K) (K ~Ink)

and

(4.16) ( /Q Al dp (t)) o < /Q BVdu (t))

g/((l—u)At—&-th)du(t)ol

<o | e 07| ([ aano) o ([ Braneo).
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