TWO NEW REVERSES OF JENSEN TENSORIAL INEQUALITY
FOR SEQUENCES OF SELFADJOINT OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if ¢ is differentiable convex on the open interval I, A;, ¢ € {1,...,n} are
selfadjoint operators with Sp (A4;) C [m,M] C I, 7 € {1,...,n} and w; > 0,
i€ {1,...,n} with 37" ; w; =1, then

0< fjwi@) - fjw@)
1=1 1=1

WL (M) — 4, (m) no N (e
ngJr Mlz_:lwiA¢> <ZwlAlm>

< 3 [0 (D) =4/ (m)] (M = m),

where A; is defined as a tensorial product of A; in position 4 = 1,...,n and
with 1 in the other positions. Let (At),cq and (Bt),cqbe continuous fields
of positive operators in B (H) with Sp (A¢), Sp(B¢) C [m,M] C I for t € Q,

then for v € [0, 1] we have the inequalities for the Hadamard product

/Q [(1—v)exp At +vexp Bi|du(t)ol

- (/Q exp (1 —v) Ay) dp (t)) o (/Q exp (vBt) du (t))

< w (M— /Q (1= v) (Ae) + vBe] du (1) o 1)

X (/Q[(lfu)(At)JrVBt}d,u(t)olfm)

1
<

1 (exp M —expm) (M —m).

1. INTRODUCTION

Let Iy,..., Ix be intervals from R and let f : I; X ... Xx I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (Aq, ..., Ay)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hy such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; = / NdE; (A7)
I;
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is the spectral resolution of A; for i = 1,..., k; by following [2], we define
(].1) f(A1,7Ak) :/ f()\ha)\l)dEl ()\1)®®dEk ()\k)
I I

as a bounded selfadjoint operator on the tensorial product H; ® ... ® H.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [7] for functions of two
variables and have the property that

whenever f can be separated as a product f(t1,...,¢x) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) = (L) f(s) f(t) for all s,t € [0,00)
and if f is continuous on [0, 00), then [9, p. 173]
(1.3) f(A®B) > (L) f(A)® f(B) forall A, B>0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.4) tﬂA@B):/' /‘ £ (st)dE (t) @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0,00).
Recall the geometric operator mean for the positive operators A, B > 0

A#B = AY2(AY2BAY2)AL/2,
where t € [0, 1] and
A#B = AV2(A-V2BA-12)1/2 412,
By the definitions of # and ® we have
A#B = B#A and (A#B) @ (B#A)=(A®@B)#(B® A).
In 2007, S. Wada [12] obtained the following Callebaut type inequalities for ten-

sorial product

(1~5) (A#B) ® (A#B) < [(A#aB) ® (A#lfocB) + (A#lfaB) ® (A#aB)]

— N

<-(A® B+ B® A)

2
for A, B> 0and o € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,ej) = (Aej, ;) (Bej, ;)

for all j € N, where {e; }j cn is an orthonormal basis for the separable Hilbert space
H.

It is known that, see [8], we have the representation
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(1.6) AoB=U"(A®B)U
where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [9, p. 173]
(1.7) f(AoB)> (<) f(A)o f(B) forall A, B> 0.

We recall the following elementary inequalities for the Hadamard product
A2 6 BU2 < (AJQFB> olfor A, B>0

and Fiedler inequality
Ao A1 >1for A>0.
As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
2 1/2 (n2 1/2
AOBS(A ol) (B 01) for A, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

AoB< (A20B2)1/2 for A, B> 0.

It has been shown in [10] that (A2 o 1)1/2 (B%o 1)1/2 and (A% o Bz)l/2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we show among others that, if
1 is differentiable convex on the open interval I, A;, i € {1,...,n} are selfadjoint
operators with Sp (4;) C [m,M] C I, € {1,..,n} and w; > 0, ¢ € {1,...,n} with
", w; =1, thenthen

o< 3 wih) o (S ui)
< = m* (M — ;wiAi> (; wiA; — m)

1
< T O — ! ()] (M —m),
where A; is defined as a tensorial product of A; in position i = 1,...,n and with
1 in the other positions. Let (A¢),., and (B;),.obe continuous fields of positive
operators in B (H) with Sp (4;), Sp (B:) C [m, M] C I for t € Q, then for v € [0, 1]

we have the inequalities for the Hadamard product

/Q [(1—v)exp Ar + vexp By du(t) ol

- (/Q exp (1 — v) Ay) dp (t)> o (/Q exp (vBy) du (t))

exp M —expm

S]\/[—m(M—/Q[(l—V)(At)+VBt]dM(t)ol>
(/Q[(l—u)(At)JruBt]du(t)ol_m>

1
Z(expM—expm) (M —m).

X

IN
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2. SOME PRELIMINARY FACTS
Recall the following property of the tensorial product
(2.1) (AC)® (BD)=(A® B)(C® D)

that holds for any A, B, C, D € B(H).
If we take C' = A and D = B, then we get

A’@ B?>=(A® B)*.
By induction and using (2.1) we derive that

(2.2) A" ® B" = (A® B)" for natural n > 0.
In particular
(2.3) A"®1=(A®1)" and 1® B" = (1® B)"
for all n > 0.

We also observe that, by (2.1), the operators A® 1 and 1 ® B are commutative
and

(2.4) (A1) (1®B)=(1®B)(A®1)=A® B.
Moreover, for two natural numbers m, n we have
(2.5) A1)"(1eB)"=1eB)"(Ae1)™ =A™ @ B"™.

By induction over m, we derive
(2.6) (AR A ®..0 Ap)" = AT @ AY ® ... @ A, for natural n > 0

m

and
(2.7) AR A ®..Q Ay
=(401.1)(1RA4®.01).1”1®..0 A,)

and the m operators (41 ®1®..01),(1® 42®..Q01),.and (1®1®..® A,)
are commutative between them.

n
We define for A;, B, € B(H),i€{l,..,n}, @ B; :=B1 ®...Q® By,
i=1

A=19.04;®.91,i=2,..,n—1,
and A A
Al =4R1®...1while A, =1%..011Q A,.

Basically A, is defined as a tensorial product of A4; in position i = 1, ...,n and with
1 in the other positions.
We need the following identity for the tensorial product, see also [6]:

Lemma 1. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A;) C I,
i € {1,...,m} and with the spectral resolutions

1

Let f;, i € {1,...,m} be continuous on I; and ¢ continuous on an interval K that
contains the product of the intervals f (I)...f (Im) , then

28) w<®fz«<z> = (Hfu>dEt1>® A ().
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We also have
(2.9 o (f(A)) = o (£ (A)
foralli=1,....m

Proof. By Stone-Weierstrass theorem, any continuous function can be approxi-
mated by a sequence of polynomials, therefore it suffices to prove the equality
for the power function ¢ (t) = t" with n any natural number.

Then, by (1.1) and (2.6) we obtain

/1/ [f1(t1) oo fn ()] dE (t1) @ ... ® dE (L)

m

/1 / (1 (D] oo [fon (t)]" dE (t1) @ ... @ dE (L)
"R ® [frn (A" = [f1 (A1) ® .. ® frn (Am)]"

which shows that the identity (2.6) is valid for the power function.
This proves the identity (2.8)
By taking f; =1 for j =1,...,m and j # i in (2.8) we get

<p(l®...®fi(Ai)®...®1)=/I /I o (f: (£)) dE (1) @ .. ® dE (tn)
=1®..0¢(fi(4)®..01,

which proves (2.9). O

Corollary 1. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I;
and f;, i € {1,...,m} are continuous and positive on I;, then

(2.10) In <® fi (Ai)> =Y In (£ (A2))
i=1 i=1

Also
(2.11) In (£ (A7) = (£ (A1)
foralli=1,....m
Proof. Assume that

A= |t i

/I tdE (t,)

are the spectral resolutions for A;, i =1,...,m.
We have for ¢ (u) = Inu, u > 0, in (2.8) that

In fl ® ®fm( m))
/1 / In(f1(t1) oo fon Em)) dE (1) @ ... @ dE (t,)
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/ Mnfi (t1) + ... +In fr, (tn)]dE (1) @ ... @ dE (t)

A
:/11 '"/Imlnfl(tl)dE(tl)@) @ dE (by) + ..

+
—

/ I fon (b) dE (1) @ ... © dE (t)
I

1 m

—(Infi(A)®1®.01+..+10...01 (In f,, (An))
and the identity (2.10) is proved. O

Corollary 2. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A;) C I;
and f;, i € {1,...,m} are continuous on I;, then for r >0

(2.12) ®f (A)| = ® | fi (A
and
(2.13) £ (A)| = I (A"

foralli=1,....m
Proof. From (2.8) we have for the function ¢ () = [t|" that
|f1 (Al) ®...® fm (Am)|7

:/1 / [f1 (1) oo fon (b))  dE (t1) ® ... @ dE (L)
/1 /|f1 )] oo [ fon (t)|" dE (1) @ ... @ dE (ty,)

|f1 A1| X .. ®|fm( m)|ra

which proves (2.12).
The identity (2.13) follows in a similar way. O

Corollary 3. Assume A;, i € {1,...,m} are positive operators and q; > 0, i €
{1,...,m}, then

(2.14) ¢<(§Agi> / / (HtW)dE(tl)@ L@ dE (ty,) .

We also have the additive result [6]:

Lemma 2. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (A;) C I,
i € {1,....,m} and with the spectral resolutions

A; = / t;idE (tl‘), 1€ {1, ,m}
I;

Let g;, i € {1,...,m} be continuous on I; and ¢ continuous on an interval K that
contains the sum of the intervals g (I) + ... + g (I;,) , then

(2.15) w(;gi“) / /1 (Zgu>dEt1) o @ dE (ty,).

i=1
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Proof. Let f;, continuous, positive and such that g; (¢;) = Inf; (¢;), t; € I;, ¢ €
{1,...,m}. Then

D gi(t) =D fi(t;) =In (H fi (tz')) :
i=1 i=1 i=1

By (2.8) we get for ¢ =1 oln that

/,1"'/m1/’<zgz Z)dE (t1) ® ... @ dE (tm)

:/I /1 ¥ <ln <Hf (ti)>> dE (t1) @ ... @ dE (t,)

/1 (1 o In) Hfl (ti)> dE (1) ® ... @ dE (tm)

i=1

By (2.10) we also have

(&40 = Som R - 3 a )
i=1
and the identity (2.15) is obtained. O

Corollary 4. Assume that A;, i € {1,...,m} and g;, 7 € {1,...,m} are as in Lemma

2 and r > 0, then
“Jol.

Y i (A)
=1

Also, if we take b = exp, then we get

(2.17)  exp (é g (A, ) /11 /m exp (

® exp gl 1

The case of convex combination is as follows:

m

Zgl i

i=1

(2.16) dE (1) ® ... ® dE (ty,) -

)) dE () ® ... ® dE (t,)

Corollary 5. Assume A;, i € {1,...,m} are selfadjoint operators with Sp (4;) C I,
i €{1,...,m} and with the spectral resolutions

A; = /tsz (t1)7 1€ {1, ,m} .

If p; > 0 with ZZ 1pi = 1, and ¢ continuous on I, then

(2.18) P (Zp@) = /1/17’[} (Zpﬂf,-) dE (1) @ ... @ dE ().

Follows by (2.4) for g; (t;) = pit;, © € {1,...,m}.
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3. MAIN RESULTS

Our first main result is as follows:

Theorem 1. Assume v is differentiable convexr on the open interval I, A;, i €
{1,...,n} are selfadjoint operators with Sp (A;) C [m,M] C I, i € {1,...,n} and
w; > 0,1 €{1,...,n} with >, w; =1, then

(3.1) o<2m¢ (sz>
< sup Wy (tm, M) (M—Zwﬂ?z) <iwi1§ —m>

te(m,M)

YL (M) = N~
U m+ (M Zwl 1) (;w1A1m>

[ (M) =4 (m)] (M —m),

IN

IN
=

where Wy, (<;m, M) : (m, M) — R is defined by

b s, 1)~ LDV 900~

Proof. We use the following reverse of Jensen’s inequality, see for instance [5, p.
228]

(3.2) 0< sz@b (2) <Zw x)
(M S wizg) (O, wir; —m)

= M—-m te(Srlrl:PM) o (t5m, M)
nON( N ()= (m)

< (M;wlxl> (;wlzz m) M—m

< 3 (M —m) [y (M) — ', (m)]

where 1) is differentiable convex on the open interval I, [m, M| C I, z; € [m, M],
and w; > 0,7 € {1,....,n} with Y  w; = 1.
Assume that we have the spectral resolutions

M
&z/ tAE (), i € {1, n} .
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By (3.2) we get

(3.3) 0< Z with (t;) — <Z wit,)
(M =370 wity) (D01 witi —m)

sup Uy (t;m, M)

M—m te(m,M)
By (M Zw) (Z witi — m) .00~ ¥, ()
i=1
< 3 (M —m) [ (M)~ (m)]

for all t; € [m,M], i€ {1,...,n}.
If we take the integral fri\f fri\:l over dE (1) ® ... dE (t,) in (3.3), then we get

(3.4) OgZn:wi/M.../Mzﬂ(ti)dE(tl)@...®dE(tn)

—/M/ (Zw Z)dE (t1) ® ... ® dE (t,,)

< sup Wy (t;m, M)

te(m,M)
></m /m (M =3 1'“’]@\41) (%?:1’101'151‘—m)dE(tl)®...®dE(tn)
SEAURIAL)
M n

By (1.2) we have

/M /sz (t) dE (1) @ ... @ dE (by) = 9 (A}), i € {1, ...m},

by (2.18) we have

//w <Xn:wztz> dE (t1) ® ...  dE (t,) = ¢ (iwi&) ,
I I i=1 i=1

also

/.../dE(t1)®...®dE(tn):1®...®1:1
I
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and, by (2.16) for ¢ (u) =

/ /M M- iw’f> (iwz‘ti—m> dE (t1) ® ... ® dE (t,,)

i=1

M S

i=1

x dE (t1) ® ... ® dE (t,)

m e m - 2
i=1

i=1

= (M—iw“&:) (iwi:&\i —m) .
i=1 i=1

Then by (3.4) we deduce (3.1). O

We also have:

Theorem 2. Assume 1 is conver and monotonic nondecreasing on the open in-
terval I, A;, i € {1,...,n} are selfadjoint operators with Sp (4;) C [m, M| C I,
i€{l,...,n} andw; > 0,1 € {1,...,n} with >\, w; =1, then

(3.5) 0< > wip (A (Zw )

<
- M—-—m
(s wilki = m) (w1 - v (T1, wA))
* M —m
1 ‘Z?:l wi A, mJEM
_{2 A ]W(M)—w(m)]

Proof. If z; € I and w; > 0 for ¢ € {1,...,n} with Z _,w; = 1, then we also have
the inequality [5, p. 219]:

(36) 0< wa (z:) = ¢ (Zu)

_ O —z) [ [ O] de+ (@0 —m) [T |0 (1) de
- M—-m

m+ M
|:% + %] m |w )} dt,

<

[ M1y ()] de + L

2 o)t f

|,

where 9 is differentiable convex on I.
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Moreover, if ¢ is monotonic nondecreasing or nonincreasing on I, then we have
from 3.6 the simpler inequalities

(3.7) 0< wa (i) — 9 (Zuw)

<

(M — Zy) [ (Zw) — ¢ (m)| + (T —m) ¢ (M) — ¢ (Zw)|
M —-m
1 ’jw_m—iQ-M

2+M—m] [V (M) — 4 (m)]

for z; € I and w; > 0 for i € {1,...,n} with Z?:l w; = 1.
Assume that we have the spectral resolutions

M
A; :/ t;dF (ti), 1€ {1,,7’1}

m

By (3.7) in the case of nondecreasing functions we get

(3.8) 0< Z with (&) — (Z wt>
1 n n
e Eo )

- wm‘—w
g+ Tt 2 ']w(M)—w(m)L

M—-—m

forall t; € [m,M], i€ {1,....,.n}.
If we take the integral f:f f,f\f over dE (1) ® ... dE (t,) in (3.8), then we get

n M M
(3.9) 0<S w; [ .| Y#)dE(t) @ ... 0 dE ()
A
M M n
- N Y (szt1> dE (t) ® ... @ dE (t,)
m m i=1
1
<
~M-m
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L e S [ witi = M dE () © . @ dE (1)
K M —m
X [t (M) — o (m)]

Now, observe that (2.18)

[l (M sz ) [w@witi)w(m)]

X dE (t) ® .. ®dE(n)
M M n
= / M (Z tz> ¥ (m)
m m i=1
= witip (Z wm) +1¢ (m) Z wit;
i=1 i=1 i=1
= My (Z w@> — My (m)
i=1
S wAw (z @) o 3w
=1 =1 =1

(oS (Se) o]

From (2.18) for r = 1 we also have
[

and by (3.9) we derive (3.5). O

dE () ® ... ® dE (t,)

m-l—

’L

dE (t) ® ... ® dE (¢t

m+ M
LzlwlA - 5 ‘

Remark 1. We observe that, if ¢ is convex and monotonic nonincreasing on the
open interval I, A;, i € {1,...,n} are selfadjoint operators with Sp (A;) C [m, M] C
I,ie{l,...,n} and w; >0, i€ {1,..,n} with > ", w; =1, then

(3.10) Z (A, (Z w; A )

= ( M—m

() wki = m) (v (S0, wik) — v (a1))
+ M—-m

{1 ‘Z?:l w;A; mJEM ]
<3 Y [¥ (m) — ¢ (M)]



TWO NEW REVERSES OF JENSEN TENSORIAL INEQUALITY 13

Remark 2. If v is convex and change monotonicity on [m, M|, then by (3.6) we
can also get the inequality

) 0< 3w (A) v (&@)
i=1 i=1

[0 (t)] dt,

m

where A;, i € {1,...,n} are selfadjoint operators with Sp (4;) C [m,M], i €
{1,..,n} and w; >0, i € {1,...,n} with 3", w; = 1.

4. SOME EXAMPLES

Consider the convex function ¢ (¢) = —1Int, ¢ > 0 and assume that A;, i €
{1,...,n} are selfadjoint operators with Sp (A4;) C [m,M] C (0,00), i € {1,...,n}
and w; > 0,4 € {1,...,n} with >, w; = 1. By (3.1) we get

(4.1) 0<In (Z wl‘TA;) —In <® A;"l)
=1 =1
1 R L (M —m)?
< - A A, — < 7
< o (3 ) (S ) < W

while from (3.10)
(4.2) 0<In <Z wlj/Xi) —1In <® AZ“)
i=1 i=1
(M -3, wJ&j) <ln <é AZ“) —1In m>
<

i=1
< Y
e n
(Z?:l wiA; — m) <lnM —1In <® A;’”))
+ i=1
M —m
n A _ m+M
1 ‘Z: wiA; — ‘
< §+ le—m 2 (InM —1Inm).

Consider the convex function ¢ (¢) = expt, t € R and assume that A;, i €
{1,...,n} are selfadjoint operators with Sp (A4;) C [m,M] C (0,00), 7 € {1,...,n}
and w; > 0,4 € {1,...,n} with >, w; = 1. By (3.1) we get

(4.3) 0< Zwie@i) — exp (Z wJQ)
i=1 i=1
M oepm (4 S &) (3w - m
M—m pt K3 3 — K3 1

1
1 (exp M —expm) (M —m)

IN
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and by (3.5) we get

(4.4) 0< i wie@i) — exp (i w1&>
i=1 i=1
g (M -3 wi‘//k\i) (exp (E?:l wi&?) — exp m)
- M—-—m
. (2;1 w;A; — m) (exp M —exp (Z?zl wl£)>
M —m
’En 1 w% i m;M‘

< 2 7 (exp M —expm).

Now, by taking A; = In B;, where 0 < k < B; < K for i € {1,...,n}, then by
(4.3) we get

(4.5) Oﬁiwiﬁ\i—éBz‘wi
i=1 i1

K—k n n
< — Wi wi | _
< SR <1nK In (@Bl )) <1n (@Bl ) lnk>

< %(K—k) (InK —Ink),
while from (4.4)
n e n
(4.6) 0< ZwiBi - ®B}”"‘
i=1 i=1
<an —1In (® B;”‘)) <® B — k)
< i=1 i=1
- InK —Ink
n
e (e
n i=1
InK —Ink
®Bw > _ 1nk+1nK‘
2
< K—k).
- an—lnk ( k)

Assume that 0 < m < A; < M and w; > 0,4 € {1,...,n} with > I" , w; = 1,
then for r € (—o00,0) U [0,00) we get from (3.1) that

(4.7) 0< zn:wf - (i wu@)
=1
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while from (3.5)

(4.8) 0< iwi&’ — (2”: wLE> T
i=1 i=1
(k) (£ eE) )

- M—-—m

(Z?:l wi*&\i - m) (MT - (Z?:l wi:‘:i)r)
* M —-m
< |1y )Zi—ﬂj’zA_ﬂm"‘?M’ Ry

for r > 1 and a similar inequality for » < 0.
Now, if we take r = —1 in (4.7), then we get

n . n -1
i=1 i=1
M+ n . n e

1 M—I—m 2
4<m2M2)(M_m) ’

Now, if we take 7 = —1 in (4.8), then we get

n o n -1
(4.10) 0< ) wA! - (Z wi};>
=1 1=1

- M—-—m
—~ N\ —1
(Z?:l wiA; — m) (ZL w,»Ai) - M_1>
+ M—-—m
§ 1+’Z?—1wiAz‘—m§M‘ M—m
— |2 M—-—m mM

Assume that 0 < k < B; < K and w; > 0, i € {1,...,n} with >_1" ; w; = 1, then
by taking A; = Bi_l, m=K~!, M =k~ we get from (4.9) that
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n n o -1
(4.11) 0< Zwiﬁi — (ZwiBi1>
i=1 i=1
< kK (k + K) (kl - iwlﬁ) <Zn: wB; ! — K1>
=1 3

(K —k)°

< X =
< Sk K),

5. SOME INTEGRAL INEQUALITIES

Let  be a locally compact Hausdorff space endowed with a Radon measure pu.
A field (Ay),cq, of operators in B (H) is called a continuous field of operators if the
parametrization ¢t — A; is norm continuous on B (H). If, in addition, the norm
function ¢t — ||A¢|| is Lebesgue integrable on 2, we can form the Bochner integral
Joy Aedp (t), which is the unique operator in B (H) such that ¢ ([, Audp(t)) =
Jo @ (Ay) dp (t) for every bounded linear functional ¢ on B (H) . Assume also that,
Jo ldu(t) = 1.

Theorem 3. Let (Bgi)) o i =1,....,n be continuous fields of positive operators
te

in B (H) with Sp (Bgi)) C [k,K] C (0,00) fort € Q, i =1,...n, and w; > 0,
i€ {1,....,n} with !, w; =1, then,

(5.1) Z:L:wz /Q exJB\Ef))d,u (t:) — é (/Q exp (wiBt(f)) dp (u))

i=1

exp M —expm S
< |\ M- | .. By dp (ty) ...dp (T,
< oMo ( f - [ o wBan e u(ﬂ

X (/ / Z’U}LBS) — m) du (tl) A (tn)
o Jo=

< i(expM—expm) (M —m).

Proof. From (4.3) we have, by the comutativity of A; with A; forall4,j € {1,...,n}

(5.2) 0< iwie)ﬂi) — exp (wlg\l) .o  €XP (wn;:n)
i=1

exp M —expm LI LI

1
Z(eXpM—expm) (M —m).

IN

Also, since

—~

=1®..®exp(wi;) 1.1,
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then
exp (wl./i\l) ... €Xp (wnji\n)
= (exp (w141)®1..01)...(1...® 1 @ exp (W, 4y))

= €exp (wlAl) ®...Q® €exXp wn n ®9XP wl 1

Now, if we take A; = Bt(j), t; € Qin (5.2), then we get
(5.3) w1 exp (Bt(l) ®1..0 1) F oo+ wy exp (1 R1® Bt(:))
— exp (wlB(1)> ® ... ® exp ( B(")>

expM —expm " ) " )
S m (M‘Z“”Bg)> (Z B - )

< %(expM—expm) (M —m).

If we take in (5.3) the integral [, ... [, over du (t1)...du (t,) and use the properties
of tensorial products and integrals, then we get

(5.4) wl/ .../exp (B§j)®1...®1) dp (1) ..dps (t)
Q Q
+...+wn/.../exp 1...®1®Bt(:)> dp (1) ...dp (tn)

/ /exp wlB ®...®exp (wnBt(:)) du (t1) ...dp (t,)

exp M —expm

/ /(M ZwZB“)(Z B<jf) m)d,u(tl)...du(tn)

< —(expM —expm) (M —m).

4 (
Observe that

wl/ .../exp (Bt(ll)®1...®1) dp (t1) ...dp ()
Q Q
+...+wn/ .../exp (1...®1®B§7’j>) dp (1) ...dp (tn)
Q Q
:wl/exp (Bt(ll)®1...®1> dp (t1)
Q

+..+ wn/ exp (1 ®l® Bt(:)) du (t,)
Q

-3 fow ()

i=1
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/Q /Q exp (wlB,fll)) ® ... ® exp (wnB,§:)> dp (1) ...dp (t)
- (/Q exp (wlBt(ll)) dp (t1)> ®..® (/Q exp (wntf)) dp (tn)>
& BOY gu(t.
= g (/Q exp (szti ) du (tl)> .

The function g (t) = (M —t) (¢t — m) is operator concave on [m, M], then

Q Q

=1 =1

M—/Q.../inilgg)du(tl)...du(tn))
[ Z; : m) G (1) o (1)

(M —m)”

IN
VR

IN

X
e Nl SN

and by (5.4) we derive (5.1). O

The case of two fields of operators is as follows:

Corollary 6. Let (A¢),cq and (By),cqbe continuous fields of positive operators in
B (H) with Sp (A¢), Sp (B:) C [m, M| C I fort € Q, then forv € [0,1],

(5.5) (1-v) /Q (exp Ay ® 1) dp (t) + l//Q (1 @ exp By) du (t)

- ( o= a)d <t>) ® ( [ e B <t>)
< PO (- [ [0 (o) +ie Bldu)
< (/Q[(l—V)(At®l)+V1®Bt]du(t)—m)

1
< Z(expM—expm) (M —m).

We also have the following inequality for the Hadamard product of operators:
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Corollary 7. With the assumptions of Corollary 6, we have

(5.6) /Q [(1—v)exp Ay +vexp By du(t)ol

~([ewa-naramw)e( [ eowpiimnw)
< w (M—/Q[(1—V)At+1/Bt]d,u(t)ol>
(/Q[(ly)AtJrl/Bt]du(t)olm)

< i(expM—expm) (M —m).

X

Proof. We have the representation for the operators A, B € B(H), Ao B =
U* (A® B)U, where U : H — H ® H is the isometry defined by Ue; = e; ® e; for
all j € N.

If we take U* to the left and U to the right in the inequality (5.5)

(5.7) (1-v) /QZ/I* (exp A @ 1) Udp (t) + V/QZ/[* (1 ® exp By) Udp (t)

vy (/Q exp (1 — v) Ay) dp (t)) ® (/Q exp (vBy) dpi (t)>u
< SRRy (4 - [0 (s )+l Bl )
« </Q[(1—z/)(At®1)+V1®Bt]du(t)—m)u

< ! (exp M —expm) (M —m).

4
Observe that
U (expA; @ 1)U =expArol, U (1 ®expBy)U =1oexp By

and

u* </Q exp (1 — v) Ay) du (t)) ® (/Q exp (VBy) dy (t)) u

~([ew@-naram®)e ([ ewwrimno).

Also, by Davies-Choi-Jensen’s inequality for the operator concave function g (t) =
(M —t) (t —m) on [m, M] we have that

u (M_/Q ((1— 1) (At®1)+u1®Bt]du(t))
« (/Q[(l—u)(At®1)+y1®Bt}du(t)—m>u
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< <M - / U (1) (A1) + vl @ By Udp (t))
Q
x (/ U [(1—v) (A, @ 1) + vl ® B Udu (t) m>
Q
- (M—/ [(1—v) (Ao 1)+uloBt}du(t)>
Q
X (/ [(1—V)(Atol)+uloBt]du(t)—m)
Q
and by (5.7) we derive the desired result (5.6). O
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