UPPER BOUNDS FOR THE EXTENDED GENERALIZED ALUTHGE TRANSFORM OF BOUNDED OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let H be a complex Hilbert space. For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we define the operator $$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$

that we call the extended generalized Aluthge transform. In this paper we provide several upper bounds for the extended generalized Aluthge transform $\Delta_{t, V}(T)$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [9], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [10] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

[^0]for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [8]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [7] and [4].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $w(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[12]$.

Utilizing this transform T. Yamazaki, [12] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in B(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$ and an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we define the operator

$$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$

that we call the extended generalized Aluthge transform.
We assume in what follows that $|T|^{0}:=I$.
For $t=1$ we have

$$
\widehat{T}_{V}:=\Delta_{1, V}(T)=|T| V
$$

that we call the extended Dougal transform, for $t=1 / 2$,

$$
\widetilde{T}_{V}=\Delta_{1 / 2, V}(T):=|T|^{1 / 2} V|T|^{1 / 2}
$$

that we call the extended Aluthge transform and for $t=0$,

$$
T_{V}:=\Delta_{0, V}(T)=V|T|
$$

An operator $U \in \mathcal{B}(H)$ is called a partial isometry if $\|U x\|=\|x\|$ for all $x \in$ $\mathcal{N}^{\perp}(U)$.

Now, let $x \in H$, then there exists a unique $x_{1} \in \mathcal{N}(U)$ and a unique $x_{2} \in \mathcal{N}^{\perp}(U)$ such that $x=x_{1}+x_{2}$. Then

$$
0 \leq\left\langle U^{*} U x, x\right\rangle=\|U x\|^{2}=\left\|U x_{1}+U x_{2}\right\|^{2}=\left\|U x_{2}\right\|^{2}=\left\|x_{2}\right\|^{2}
$$

By the fact that $x_{1} \perp x_{2}$,

$$
\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}
$$

Therefore

$$
0 \leq\left\langle U^{*} U x, x\right\rangle \leq\|x\|^{2}
$$

which shows that U is a contraction on H.
Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then

$$
\begin{gathered}
T_{U}=U|T|=T \\
\widetilde{T}_{U}=|T|^{1 / 2} U|T|^{1 / 2}=\widetilde{T}
\end{gathered}
$$

is the usual Aluthge transform and

$$
\widehat{T}_{U}=|T| U=\widehat{T}
$$

is the usual Dougal transform.
For $t \in(0,1)$

$$
\Delta_{t, U}(T)=|T|^{t} U|T|^{1-t}=: \Delta_{t}(T)
$$

is the generalized Aluthge transform introduced in by Cho and Tanahashi in [6].
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right)
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.11}
\end{equation*}
$$

In [3] Bunia et al. also proved that

$$
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\}
$$

which for $t=1 / 2$ gives (1.10) as well.
If V is a contraction, then $\|V\| \leq 1$ and since $\left\|V^{*}\right\|=\|V\|$, hence V^{*} is also a contraction. Observe that

$$
\Delta_{t, V}^{*}(T):=\left(|T|^{t} V|T|^{1-t}\right)^{*}=|T|^{1-t} V^{*}|T|^{t}=\Delta_{1-t, V^{*}}(T)
$$

for all $t \in[0,1]$. Therefore

$$
\left(T_{V}\right)^{*}=\widehat{T}_{V^{*}}, \quad\left(\widehat{T}_{V}\right)^{*}=T_{V^{*}}
$$

and

$$
\left(\widetilde{T}_{V}\right)^{*}=\widetilde{T}_{V^{*}}
$$

Since $\left\|V^{*} V\right\|=\left\|V V^{*}\right\|=\|V\|^{2}$ and V is a contraction, then

$$
\left\|\frac{V^{*} V \pm V V^{*}}{2}\right\| \leq\|V\|^{2} \leq 1
$$

showing that

$$
W:=\frac{V^{*} V \pm V V^{*}}{2}
$$

is a contraction and we can consider the transform

$$
\Delta_{t, \frac{V^{*} V \pm V V^{*}}{2}}(T):=|T|^{t}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1-t}
$$

for $t \in[0,1]$.
For a contraction V, we have

$$
\operatorname{Im}(V):=\frac{V-V^{*}}{2 i}, \operatorname{Re}(V):=\operatorname{Re}\left(\frac{V+V^{*}}{2}\right)
$$

and since

$$
\|\operatorname{Im}(V)\|=\left\|\frac{V-V^{*}}{2 i}\right\| \leq\|V\| \leq 1 \text { and }\|\operatorname{Re}(V)\| \leq\|V\| \leq 1
$$

hence $\operatorname{Im}(V)$ and $\operatorname{Re}(V)$ are contractions as well. We can then consider the transforms

$$
\Delta_{t, \operatorname{Im}(V)}(T):=|T|^{t} \operatorname{Im}(V)|T|^{1-t} \text { and } \Delta_{t, \operatorname{Re}(V)}(T):=|T|^{t} \operatorname{Re}(V)|T|^{1-t}
$$

for $t \in[0,1]$.
For $T \in \mathcal{B}(H)$ we define

$$
T_{+}:=\frac{1}{2}(|T|+T) \text { and } T_{-}:=\frac{1}{2}(|T|-T) .
$$

If U is the partial isometry in the polar representation of T, then

$$
V:=\frac{I \pm U}{2}
$$

is a contraction and

$$
\Delta_{t, \frac{I \pm U}{2}}(T):=|T|^{t} \frac{I \pm U}{2}|T|^{1-t}=\frac{|T| \pm \Delta_{t}(T)}{2}
$$

In particular, we get

$$
T_{\frac{I \pm U}{2}}=\frac{|T| \pm T}{2}=T_{ \pm}, \widehat{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widehat{T}}{2}
$$

and

$$
\widetilde{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widetilde{T}}{2}
$$

for any operator $T \in \mathcal{B}(H)$.
Motivated by the above results, in this paper we provide several upper bounds for the extended generalized Aluthge transform $\Delta_{t, V}(T)$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

2. Main Results

We need the following fact, see [5]:
Lemma 1. For any $A, B \in \mathcal{B}(H)$,

$$
\begin{align*}
\omega(A B) & \leq \frac{1}{2} \omega(B A)+\frac{1}{4}(\|A B\|+\|A\|\|B\|) \tag{2.1}\\
& \leq \frac{1}{2}(\omega(B A)+\|A\|\|B\|)
\end{align*}
$$

We have the following first result:
Theorem 1. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$,

$$
\begin{align*}
\omega\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\|V\|\|T\|\right) \tag{2.2}\\
& \leq \frac{1}{2}\left[\omega\left(T_{V}\right)+\|V\|\|T\|\right]
\end{align*}
$$

In particular,

$$
\begin{aligned}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|V\|\|T\|\right) \\
& \leq \frac{1}{2}\left[\omega\left(T_{V}\right)+\|V\|\|T\|\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\|V\|\|T\|\right) \\
& \leq \frac{1}{2}\left[\omega\left(T_{V}\right)+\|V\|\|T\|\right]
\end{aligned}
$$

Proof. If we take $A=|T|^{1-t}$ and $B=V|T|^{t}$ in (2.1), then we get

$$
\begin{aligned}
\omega\left(\Delta_{t, V}(T)\right) & =\omega\left(|T|^{1-t} V|T|^{t}\right) \\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\left\||T|^{1-t}\right\|\left\|V|T|^{t}\right\|\right) \\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\|T\|^{1-t}\|V\|\|T\|^{t}\right) \\
& =\frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\|V\|\|T\|\right)
\end{aligned}
$$

for $t \in[0,1]$, which proves the first part of (2.2)
Since

$$
\left\|\Delta_{t, V}(T)\right\|=\left\||T|^{1-t} V|T|^{t}\right\| \leq\|T\|^{1-t}\|V\|\|T\|^{t}=\|T\|
$$

hence the proof is concluded.
Remark 1. For an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we derive the following inequalities:

$$
\omega\left(\Delta_{t}(T)\right) \leq \frac{1}{2} \omega(T)+\frac{1}{4}\left(\left\|\Delta_{t}(T)\right\|+\|T\|\right) \leq \frac{1}{2}[\omega(T)+\|T\|]
$$

In particular,

$$
\omega(\widehat{T}) \leq \frac{1}{2} \omega(T)+\frac{1}{4}(\|\widehat{T}\|+\|T\|) \leq \frac{1}{2}[\omega(T)+\|T\|]
$$

and

$$
\omega(\widetilde{T}) \leq \frac{1}{2} \omega(T)+\frac{1}{4}(\|\widetilde{T}\|+\|T\|) \leq \frac{1}{2}[\omega(T)+\|T\|] .
$$

If $T=U|T|$ is the polar decomposition of T with U a partial isometry, then by putting $V=U$ in (2.2) we deduce the inequalities listed above in the Remark 1.

Corollary 1. For a contraction $V \in \mathcal{B}(H)$ and an operator $T \in \mathcal{B}(H)$ we have

$$
\begin{aligned}
& \omega\left(|T|^{1-t}\left(V^{*} V \pm V V^{*}\right)|T|^{t}\right) \\
& \leq \frac{1}{2} \omega\left(\left(V^{*} V \pm V V^{*}\right)|T|\right) \\
& +\frac{1}{4}\left(\left\||T|^{1-t}\left(V^{*} V \pm V V^{*}\right)|T|^{t}\right\|+2\|V\|\|T\|\right) \\
& \leq \frac{1}{2} \omega\left(\left(V^{*} V \pm V V^{*}\right)|T|\right)+\|V\|\|T\|
\end{aligned}
$$

Proof. Follows by (2.2) for the contraction

$$
W=\frac{V^{*} V \pm V V^{*}}{2}
$$

We observe that for $t=1 / 2$,

$$
|T|^{1 / 2}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1 / 2}
$$

is selfadjoint and then

$$
\omega\left(|T|^{1 / 2}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1 / 2}\right)=\left\||T|^{1 / 2}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1 / 2}\right\|
$$

and from the first inequality in (2.2) we derive

$$
\begin{equation*}
\left\||T|^{1 / 2}\left(V^{*} V \pm V V^{*}\right)|T|^{1 / 2}\right\| \leq \frac{2}{3}\left[\omega\left(\left(V^{*} V \pm V V^{*}\right)|T|\right)+\|V\|\|T\|\right] \tag{2.3}
\end{equation*}
$$

Corollary 2. For a contraction $V \in \mathcal{B}(H)$ and an operator $T \in \mathcal{B}(H)$ we have

$$
\begin{align*}
\omega\left(\Delta_{t, \operatorname{Im}(V)}(T)\right) & \leq \frac{1}{2} \omega\left(T_{\operatorname{Im}(V)}\right)+\frac{1}{4}\left(\left\|\Delta_{t, \operatorname{Im}(V)}(T)\right\|+\|\operatorname{Im}(V)\|\|T\|\right) \tag{2.4}\\
& \leq \frac{1}{2}\left[\omega\left(T_{\operatorname{Im}(V)}\right)+\|\operatorname{Im}(V)\|\|T\|\right]
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\Delta_{t, \operatorname{Re}(V)}(T)\right) & \leq \frac{1}{2} \omega\left(T_{\operatorname{Re}(V)}\right)+\frac{1}{4}\left(\left\|\Delta_{t, \operatorname{Re}(V)}(T)\right\|+\|\operatorname{Re}(V)\|\|T\|\right) \tag{2.5}\\
& \leq \frac{1}{2}\left[\omega\left(T_{\operatorname{Re}(V)}\right)+\|\operatorname{Re}(V)\|\|T\|\right]
\end{align*}
$$

for all $t \in[0,1]$.
Proof. Follows by (2.2) for the contractions $\operatorname{Im}(V)$ and $\operatorname{Re}(V)$.

Observe that

$$
\begin{aligned}
|T|^{1 / 2}(\operatorname{Im}(V))|T|^{1 / 2} & =|T|^{1 / 2}\left(\frac{V-V^{*}}{2 i}\right)|T|^{1 / 2}=\frac{\widetilde{T}_{V}-\left(\widetilde{T}_{V}\right)^{*}}{2 i} \\
& =\operatorname{Im}\left(\widetilde{T}_{V}\right)
\end{aligned}
$$

Since $\operatorname{Im}\left(\widetilde{T}_{V}\right)$ is selfadjoint, then by (2.4) for $t=1 / 2$ we get

$$
\begin{equation*}
\left\|\operatorname{Im}\left(\widetilde{T}_{V}\right)\right\| \leq \frac{2}{3} \omega(\operatorname{Im}(V)|T|)+\frac{1}{3}\|\operatorname{Im}(V)\|\|T\| \tag{2.6}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\left\|\operatorname{Re}\left(\widetilde{T}_{V}\right)\right\| \leq \frac{2}{3} \omega(\operatorname{Re}(V)|T|)+\frac{1}{3}\|\operatorname{Re}(V)\|\|T\| \tag{2.7}
\end{equation*}
$$

For $T \in \mathcal{B}(H)$ we define

$$
T_{+}:=\frac{1}{2}(|T|+T) \text { and } T_{-}:=\frac{1}{2}(|T|-T) .
$$

Corollary 3. For an operator $T \in \mathcal{B}(H)$ we have for $t \in[0,1]$ that

$$
\begin{aligned}
\omega\left(|T|-\Delta_{t}(T)\right) & \leq \omega\left(T_{-}\right)+\frac{1}{4}\left(\left\|| | T \mid-\Delta_{t}(T)\right\|+\|U-I\|\|T\|\right) \\
& \leq \omega\left(T_{-}\right)+\left\|\frac{U-I}{2}\right\|\|T\|
\end{aligned}
$$

and

$$
\begin{aligned}
\omega\left(|T|+\Delta_{t}(T)\right) & \leq \omega\left(T_{+}\right)+\frac{1}{4}\left(\left\||T|+\Delta_{t}(T)\right\|+\|U+I\|\|T\|\right) \\
& \leq \omega\left(T_{+}\right)+\left\|\frac{U+I}{2}\right\|\|T\|
\end{aligned}
$$

Proof. From (2.2) we get for the contraction $V:=\frac{I \pm U}{2}$ that

$$
\begin{aligned}
& \omega\left(\Delta_{t, \frac{I \pm U}{2}}(T)\right) \\
& \leq \frac{1}{2} \omega\left(T_{\frac{I \pm U}{2}}\right)+\frac{1}{4}\left(\left\|\Delta_{t, \frac{I \pm U}{2}}(T)\right\|+\left\|\frac{I \pm U}{2}\right\|\|T\|\right) \\
& \leq \frac{1}{2}\left[\omega\left(T_{\frac{I \pm U}{2}}\right)+\left\|\frac{I \pm U}{2}\right\|\|T\|\right]
\end{aligned}
$$

which proves the corollary.
Theorem 2. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\begin{align*}
\omega\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\|V\|\|T\|\right) \tag{2.8}\\
& \leq \frac{1}{2}\left[\omega\left(\widehat{T}_{V}\right)+\|V\|\|T\|\right]
\end{align*}
$$

In particular,

$$
\begin{aligned}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right) \\
& \leq \frac{1}{2}\left[\omega\left(\widehat{T}_{V}\right)+\|V\|\|T\|\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\|V\|\|T\|\right) \\
& \leq \frac{1}{2}\left[\omega\left(\widehat{T}_{V}\right)+\|V\|\|T\|\right] .
\end{aligned}
$$

Proof. If we take $A=|T|^{1-t} V$ and $B=|T|^{t}$ in (2.1), then we get

$$
\begin{aligned}
\omega\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\left\||T|^{1-t} V\right\|\left\||T|^{t}\right\|\right) \\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|\Delta_{t, V}(T)\right\|+\|V\|\|T\|\right)
\end{aligned}
$$

for $t \in[0,1]$.
Also

$$
\left\|\Delta_{t, V}(T)\right\|=\left\||T|^{t} V|T|^{1-t}\right\| \leq\|V\|\|T\|
$$

and the inequality (2.8) is proved.
Remark 2. For an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\begin{equation*}
\omega\left(\Delta_{t}(T)\right) \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}\left(\left\|\Delta_{t}(T)\right\|+\|T\|\right) \leq \frac{1}{2}[\omega(\widehat{T})+\|T\|] . \tag{2.9}
\end{equation*}
$$

In particular,

$$
\omega(T) \leq \frac{1}{2}[\omega(\widehat{T})+\|T\|], \text { see also (1.11) }
$$

and

$$
\omega(\widetilde{T}) \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}(\|\widetilde{T}\|+\|T\|) \leq \frac{1}{2}[\omega(\widehat{T})+\|T\|] .
$$

If $T=U|T|$ is the polar decomposition of T with U a partial isometry, then by putting $V=U$ in (2.8) we deduce the inequalities listed above in the Remark 2.

One can obtain other results for the difference $V^{*} V-V V^{*}$. For instance, by using the inequality from Theorem 2

$$
\begin{equation*}
\omega\left(\Delta_{t, V}(T)\right) \leq \frac{1}{2}\left[\omega\left(\widehat{T}_{V}\right)+\|V\|\|T\|\right] \tag{2.10}
\end{equation*}
$$

for $\frac{1}{2}\left(V^{*} V-V V^{*}\right)$, we obtain

$$
\begin{align*}
& \omega\left(|T|^{t}\left(V^{*} V-V V^{*}\right)|T|^{1-t}\right) \tag{2.11}\\
& \leq \frac{1}{2}\left[\omega\left(|T|\left(V^{*} V-V V^{*}\right)\right)+\left\|V^{*} V-V V^{*}\right\|\|T\|\right]
\end{align*}
$$

for $t \in[0,1]$.
Also, if we take $\frac{1}{2}\left(V-V^{*}\right)$ in (2.10) we get

$$
\begin{equation*}
\omega\left(|T|^{t} \operatorname{Im}(V)|T|^{1-t}\right) \leq \frac{1}{2}[\omega(|T| \operatorname{Im}(V))+\|\operatorname{Im}(V)\|\|T\|] \tag{2.12}
\end{equation*}
$$

while for $\frac{1}{2}\left(V+V^{*}\right)$ in (2.10) we obtain

$$
\begin{equation*}
\omega\left(|T|^{t} \operatorname{Re}(V)|T|^{1-t}\right) \leq \frac{1}{2}[\omega(|T| \operatorname{Re}(V))+\|\operatorname{Re}(V)\|\|T\|] \tag{2.13}
\end{equation*}
$$

for $t \in[0,1]$.
We also have:

Theorem 3. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$,

$$
\begin{align*}
\omega\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\| \| T\left\|^{2(1-t)}\left|V^{*}\right|^{2}+|T|^{2 t}\right\| \tag{2.14}\\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\|T\|^{2(1-t)}\|V\|^{2}+\|T\|^{2 t}\right)
\end{align*}
$$

In particular,

$$
\begin{aligned}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\| \| T\left\|\left|V^{*}\right|^{2}+|T|\right\| \\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\|V\|^{2}+1\right)\|T\|
\end{aligned}
$$

and

$$
\begin{aligned}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\|\left|V^{*}\right|^{2}+|T|^{2}\right\| \\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\|V\|^{2}+\|T\|^{2}\right) .
\end{aligned}
$$

Proof. We use the following inequality obtained in [11]

$$
\begin{equation*}
\omega(A B) \leq \frac{1}{2} \omega(B A)+\frac{1}{4}\left\|B B^{*}+A^{*} A\right\| \tag{2.15}
\end{equation*}
$$

for all $A, B \in \mathbb{B}(\mathcal{H})$.
If we take $A=|T|^{t}$ and $B=V|T|^{1-t}$, then we get

$$
\begin{align*}
\omega\left(\Delta_{t, V}(T)\right) & =\omega\left(|T|^{1-t} V|T|^{t}\right) \tag{2.16}\\
& \leq \frac{1}{2} \omega(V|T|)+\frac{1}{4}\left\|V|T|^{2(1-t)} V^{*}+|T|^{2 t}\right\| \\
& =\frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\|V|T|^{2(1-t)} V^{*}+|T|^{2 t}\right\|
\end{align*}
$$

Observe that

$$
0 \leq|T|^{2(1-t)} \leq\left\||T|^{2(1-t)}\right\| I=\|T\|^{2(1-t)} I .
$$

Then by multiplying to the left with V and to the right with V^{*} we get

$$
0 \leq V|T|^{2(1-t)} V^{*} \leq\|T\|^{2(1-t)} V V^{*}=\|T\|^{2(1-t)}\left|V^{*}\right|^{2}
$$

Therefore

$$
0 \leq V|T|^{2(1-t)} V^{*}+|T|^{2 t} \leq\|T\|^{2(1-t)}\left|V^{*}\right|^{2}+|T|^{2 t}
$$

which implies that

$$
\left\|V|T|^{2(1-t)} V^{*}+|T|^{2 t}\right\| \leq\| \| T\left\|^{2(1-t)}\left|V^{*}\right|^{2}+|T|^{2 t}\right\|
$$

and by (2.16) we derive the first part of (2.14).
Finally, since

$$
\begin{aligned}
\left\|\|T\|^{2(1-t)}\left|V^{*}\right|^{2}+|T|^{2 t}\right\| & \leq\|T\|^{2(1-t)}\left\|\left|V^{*}\right|^{2}\right\|+\left\||T|^{2 t}\right\| \\
& =\|T\|^{2(1-t)}\|V\|^{2}+\|T\|^{2 t}
\end{aligned}
$$

hence the proof is completed.

Remark 3. For an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\begin{align*}
\omega\left(\Delta_{t}(T)\right) & \leq \frac{1}{2} \omega(T)+\frac{1}{4}\| \| T\left\|^{2(1-t)}+|T|^{2 t}\right\| \tag{2.17}\\
& \leq \frac{1}{2} \omega(T)+\frac{1}{4}\left(\|T\|^{2(1-t)}+\|T\|^{2 t}\right)
\end{align*}
$$

In particular,

$$
\omega(\widetilde{T}) \leq \frac{1}{2} \omega(T)+\frac{1}{4}\| \| T\|I+|T|\| \leq \frac{1}{2}(\omega(T)+\|T\|)
$$

and

$$
\omega(\widehat{T}) \leq \frac{1}{2} \omega(T)+\frac{1}{4}\left\|I+|T|^{2}\right\| \leq \frac{1}{2} \omega(T)+\frac{1}{4}\left(1+\|T\|^{2}\right) .
$$

If $T=U|T|$ is the polar decomposition of T with U a partial isometry, then by putting $V=U$ in (2.14) and observing that $\left|U^{*}\right|^{2} \leq I$ we obtain the desired results.

Moreover, we can also state:
Theorem 4. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\begin{align*}
\omega\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2(1-t)}+\right\| T\left\|^{2 t}|V|^{2}\right\| \tag{2.18}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\|T\|^{2(1-t)}+\|T\|^{2 t}\|V\|^{2}\right)
\end{align*}
$$

In particular,

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2}+|V|^{2}\right\| \tag{2.19}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\|T\|^{2}+\|V\|^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\||T|+\| T\left\||V|^{2}\right\| \tag{2.20}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(1+\|V\|^{2}\right)\|T\|
\end{align*}
$$

Proof. If we take $A=|T|^{t} V$ and $B=|T|^{1-t}$ in (2.15), then we get

$$
\begin{align*}
\omega\left(\Delta_{t, V}(T)\right) & =\omega\left(|T|^{t} V|T|^{1-t}\right) \tag{2.21}\\
& \leq \frac{1}{2} \omega(|T| V)+\frac{1}{4}\left\||T|^{2(1-t)}+V^{*}|T|^{2 t} V\right\|
\end{align*}
$$

Now, observe that, since

$$
0 \leq|T|^{2 t} \leq\left\||T|^{2 t}\right\| I=\|T\|^{2 t} I
$$

hence

$$
0 \leq V^{*}|T|^{2 t} V \leq\|T\|^{2 t} V^{*} V=\|T\|^{2 t}|V|^{2} \leq\|T\|^{2 t}\left\||V|^{2}\right\| I=\|T\|^{2 t}\|V\|^{2} I
$$

Therefore

$$
\begin{aligned}
\left\||T|^{2(1-t)}+V^{*}|T|^{2 t} V\right\| & \leq\left\||T|^{2(1-t)}+\right\| T\left\|^{2 t}|V|^{2}\right\| \\
& \leq\left\||T|^{2(1-t)}+\right\| T\left\|^{2 t}\right\| V\left\|^{2} I\right\| \\
& \leq\|T\|^{2(1-t)}+\|T\|^{2 t}\|V\|^{2}
\end{aligned}
$$

and by (2.21) we get (2.18).
Remark 4. For an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\begin{align*}
\omega\left(\Delta_{t}(T)\right) & \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}\left\||T|^{2(1-t)}+\right\| T\left\|^{2 t}\right\| \tag{2.22}\\
& \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}\left(\|T\|^{2(1-t)}+\|T\|^{2 t}\right)
\end{align*}
$$

In particular,

$$
\omega(T) \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}\left\||T|^{2}+I\right\| \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}\left(\|T\|^{2}+1\right)
$$

and

$$
\omega(\widetilde{T}) \leq \frac{1}{2} \omega(\widehat{T})+\frac{1}{4}\||T|+\| T\|I\| \leq \frac{1}{2}(\omega(\widehat{T})+\|T\|)
$$

If $T=U|T|$ is the polar decomposition of T with U a partial isometry, then by putting $V=U$ in (2.18) and observing that $|U|^{2} \leq I$ we obtain the desired inequalities.

3. Some Related Results

We also have:
Theorem 5. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\begin{align*}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\left\||T|^{1-t} V^{*}|T|^{2 t} V|T|^{1-t}+|T|^{t} V|T|^{2(1-t)} V^{*}|T|^{t}\right\| \tag{3.1}\\
& \leq \frac{1}{2}\| \| T\left\|^{2 t}|T|^{2(1-t)}+\right\| T\left\|^{2(1-t)}|T|^{2 t}\right\| \leq\|T\|^{2}
\end{align*}
$$

In particular,

$$
\begin{gathered}
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\| \| T\left\|^{2}|V|^{2}+|T|\left|V^{*}\right|^{2}|T|\right\| \leq \frac{1}{2}\| \| T\left\|^{2}+|T|^{2}\right\| \leq\|T\|^{2} \\
\omega^{2}\left(\widetilde{T}_{V}\right) \leq \frac{1}{2}\left\||T|^{1 / 2}\left(|V|^{2}+\left|V^{*}\right|^{2}\right)|T|^{1 / 2}\right\|\|T\| \leq\|T\|^{2}
\end{gathered}
$$

and

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left\||T||V|^{2}|T|+\right\| T\left\|^{2}\left|V^{*}\right|^{2}\right\| \leq \frac{1}{2}\left\||T|^{2}+\right\| T\left\|^{2} I\right\| \leq\|T\|^{2}
$$

Proof. We use the following inequality obtained by Kittaneh in [10]

$$
\begin{equation*}
\omega^{2}(A) \leq \frac{1}{2}\left\|A^{*} A+A A^{*}\right\| \tag{3.2}
\end{equation*}
$$

for all $A \in \mathbb{B}(\mathcal{H})$.
If we put $A=|T|^{t} V|T|^{1-t}$ in (2.15), then we get

$$
\begin{equation*}
\omega^{2}\left(|T|^{t} V|T|^{1-t}\right) \leq \frac{1}{2}\left\||T|^{1-t} V^{*}|T|^{2 t} V|T|^{1-t}+|T|^{t} V|T|^{2(1-t)} V^{*}|T|^{t}\right\| \tag{3.3}
\end{equation*}
$$

for $t \in[0,1]$.
Since $|T|^{2 t} \leq\|T\|^{2 t}$ then $V^{*}|T|^{2 t} V \leq\|T\|^{2 t}|V|^{2}$, which implies that

$$
|T|^{1-t} V^{*}|T|^{2 t} V|T|^{1-t} \leq\|T\|^{2 t}|T|^{1-t}|V|^{2}|T|^{1-t}=\|T\|^{2 t}|T|^{2(1-t)}
$$

since $|V|^{2} \leq I$.
Also $|T|^{\overline{2}(1-t)} \leq\|T\|^{2(1-t)}$ implies that $V|T|^{2(1-t)} V^{*} \leq\|T\|^{2(1-t)}\left|V^{*}\right|^{2}$ and

$$
|T|^{t} V|T|^{2(1-t)} V^{*}|T|^{t} \leq\|T\|^{2(1-t)}|T|^{t}\left|V^{*}\right|^{2}|T|^{t} \leq\|T\|^{2(1-t)}|T|^{2 t}
$$

since $\left|V^{*}\right|^{2} \leq I$.
By using (3.3) we derive (3.1).
Remark 5. For an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have

$$
\omega\left(\Delta_{t}(T)\right) \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2 t}|T|^{2(1-t)}+\right\| T\left\|^{2(1-t)}|T|^{2 t}\right\|^{1 / 2} \leq\|T\|
$$

In particular,

$$
\omega(\widehat{T}) \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2}+|T|^{2}\right\|^{1 / 2} \leq\|T\|
$$

and

$$
\omega(T) \leq \frac{\sqrt{2}}{2}\left\||T|^{2}+\right\| T\left\|^{2} I\right\|^{1 / 2} \leq\|T\|
$$

Finally, we can also state:
Theorem 6. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we have for $r \geq 2$ and $\alpha \in[0,1]$ that

$$
\begin{align*}
\omega^{r}\left(\Delta_{t, V}(T)\right) & \leq\|V\|^{r}\left\|\alpha|T|^{\frac{t r}{\alpha}}+(1-\alpha)|T|^{\frac{(1-t) r}{1-\alpha}}\right\| \tag{3.4}\\
& \leq\left\|\alpha|T|^{\frac{t r}{\alpha}}+(1-\alpha)|T|^{\frac{(1-t) r}{1-\alpha}}\right\|
\end{align*}
$$

In particular

$$
\begin{aligned}
& \omega^{r}\left(\widehat{T}_{V}\right) \leq\|V\|^{r}\left\|\alpha|T|^{\frac{r}{\alpha}}+(1-\alpha) I\right\| \leq\left\|\alpha|T|^{\frac{r}{\alpha}}+(1-\alpha) I\right\| \\
& \omega^{r}\left(\widetilde{T}_{V}\right) \leq\|V\|^{r}\left\|\alpha|T|^{\frac{r}{2 \alpha}}+(1-\alpha)|T|^{\frac{r}{2(1-\alpha)}}\right\| \\
& \leq\left\|\alpha|T|^{\frac{r}{2 \alpha}}+(1-\alpha)|T|^{\frac{r}{2(1-\alpha)}}\right\|
\end{aligned}
$$

and

$$
\omega^{r}\left(T_{V}\right) \leq\|V\|^{r}\left\|\alpha I+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\| \leq\left\|\alpha I+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\| .
$$

If $r \geq 0, \alpha \in(0,1]$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, we also have that

$$
\begin{align*}
\omega^{r}\left(\Delta_{t, V}(T)\right) & \leq\|V\|^{r}\left\|\frac{1}{p}|T|^{\frac{p r t}{\alpha}}+\frac{1}{q}|T|^{\frac{q r(1-t)}{\alpha}}\right\|^{\alpha} \tag{3.5}\\
& \leq\left\|\frac{1}{p}|T|^{\frac{p r t}{\alpha}}+\frac{1}{q}|T|^{\frac{q r(1-t)}{\alpha}}\right\|^{\alpha}
\end{align*}
$$

In particular,

$$
\omega^{r}\left(\widehat{T}_{V}\right) \leq\|V\|^{r}\left\|\frac{1}{p}|T|^{\frac{p r}{\alpha}}+\frac{1}{q} I\right\|^{\alpha} \leq\left\|\frac{1}{p}|T|^{\frac{p r}{\alpha}}+\frac{1}{q} I\right\|^{\alpha}
$$

$$
\omega^{r}\left(\widetilde{T}_{V}\right) \leq\|V\|^{r}\left\|\frac{1}{p}|T|^{\frac{p r}{2 \alpha}}+\frac{1}{q}|T|^{\frac{q r}{2 \alpha}}\right\|^{\alpha} \leq\left\|\frac{1}{p}|T|^{\frac{p r}{2 \alpha}}+\frac{1}{q}|T|^{\frac{q r}{2 \alpha}}\right\|^{\alpha}
$$

and

$$
\omega^{r}\left(T_{V}\right) \leq\|V\|^{r}\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\alpha} \leq\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\alpha}
$$

Proof. We use the following inequality obtained in [11]

$$
\begin{equation*}
\omega^{r}\left(A^{\alpha} X B^{1-\alpha}\right) \leq\|X\|^{r}\left\|\alpha A^{r}+(1-\alpha) B^{r}\right\| \tag{3.6}
\end{equation*}
$$

where $A, B \geq 0, X \in \mathbb{B}(\mathcal{H}), r \geq 2$ and $\alpha \in[0,1]$.
By utilizing (3.6) we get

$$
\begin{aligned}
\omega^{r}\left(|T|^{t} V|T|^{1-t}\right) & =\omega^{r}\left(\left(|T|^{\frac{t}{\alpha}}\right)^{\alpha} V\left(|T|^{\frac{1-t}{1-\alpha}}\right)^{1-\alpha}\right) \\
& \leq\|V\|^{r}\left\|\alpha\left(|T|^{\frac{t}{\alpha}}\right)^{r}+(1-\alpha)\left(|T|^{\frac{1-t}{1-\alpha}}\right)^{r}\right\| \\
& \leq\|V\|^{r}\left\|\alpha|T|^{\frac{t r}{\alpha}}+(1-\alpha)|T|^{\frac{(1-t) r}{1-\alpha}}\right\| \\
& \leq\left\|\alpha|T|^{\frac{t r}{\alpha}}+(1-\alpha)|T|^{\frac{(1-t) r}{1-\alpha}}\right\|
\end{aligned}
$$

which proves (3.4).
We use the following inequality obtained in [11]

$$
\begin{equation*}
\omega^{r}\left(A^{\alpha} X B^{\alpha}\right) \leq\|X\|^{r}\left\|\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right\|^{\alpha} \tag{3.7}
\end{equation*}
$$

for $A, B \geq 0, X \in \mathbb{B}(\mathcal{H}), 0 \leq \alpha \leq 1, r \geq 0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 2$.

We have by (3.7) that

$$
\begin{aligned}
\omega^{r}\left(|T|^{t} V|T|^{1-t}\right) & =\omega^{r}\left(\left(|T|^{\frac{t}{\alpha}}\right)^{\alpha} V\left(|T|^{\frac{1-t}{\alpha}}\right)^{\alpha}\right) \\
& \leq\|V\|^{r}\left\|\frac{1}{p}\left(|T|^{\frac{t}{\alpha}}\right)^{p r}+\frac{1}{q}\left(|T|^{\frac{1-t}{\alpha}}\right)^{q r}\right\|^{\alpha} \\
& =\|V\|^{r}\left\|\frac{1}{p}|T|^{\frac{p r t}{\alpha}}+\frac{1}{q}|T|^{\frac{q r(1-t)}{\alpha}}\right\|^{\alpha} \\
& \leq\left\|\frac{1}{p}|T|^{\frac{p r t}{\alpha}}+\frac{1}{q}|T|^{\frac{q r(1-t)}{\alpha}}\right\|^{\alpha}
\end{aligned}
$$

which gives (3.5).
By taking $V=U$ from the polar decomposition of T we can obtain the corresponding inequalities concerning the usual transforms, namely

$$
\begin{equation*}
\omega\left(\Delta_{t}(T)\right) \leq\left\|\alpha|T|^{\frac{t r}{\alpha}}+(1-\alpha)|T|^{\frac{(1-t) r}{1-\alpha}}\right\|^{1 / r} \tag{3.8}
\end{equation*}
$$

for all $r \geq 2, \alpha \in[0,1]$ and $t \in[0,1]$.
In particular

$$
\omega(\widehat{T}) \leq\left\|\alpha|T|^{\frac{r}{\alpha}}+(1-\alpha) I\right\|^{1 / r}, \omega(\widetilde{T}) \leq\left\|\alpha|T|^{\frac{r}{2 \alpha}}+(1-\alpha)|T|^{\frac{r}{2(1-\alpha)}}\right\|^{1 / r}
$$

and

$$
\omega(T) \leq\left\|\alpha I+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\|^{1 / r}
$$

Also for $r>0, \alpha \in(0,1]$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, we also have that

$$
\begin{equation*}
\omega\left(\Delta_{t}(T)\right) \leq\left\|\frac{1}{p}|T|^{\frac{p r t}{\alpha}}+\frac{1}{q}|T|^{\frac{q r(1-t)}{\alpha}}\right\|^{\alpha / r} \tag{3.9}
\end{equation*}
$$

for all $t \in[0,1]$.
In particular,

$$
\omega(\widehat{T}) \leq\left\|\frac{1}{p}|T|^{\frac{p r}{\alpha}}+\frac{1}{q} I\right\|^{\alpha / r}, \omega(\widetilde{T}) \leq\left\|\frac{1}{p}|T|^{\frac{p r}{2 \alpha}}+\frac{1}{q}|T|^{\frac{q r}{2 \alpha}}\right\|^{\alpha / r}
$$

and

$$
\omega(T) \leq\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\alpha / r}
$$

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia, S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] P. Bhunia, K. Feki and K. Paul, Numerical radius inequalities for products and sums of semi-Hilberian space operators, Filomat Vol 36 (2022), No. 4.
[6] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[7] Silvestru Sever Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[9] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[10] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., $\mathbf{1 6 8}$ (2005), No. 1, 73-80.
[11] M. Sattari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 470(1), 216-227 (2015)
[12] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dugal transform, Contractions, Partial isometrie, Numerical radius.

