SOME INEQUALITIES FOR THE EXTENDED GENERALIZED ALUTHGE TRANSFORM OF BOUNDED OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let H be a complex Hilbert space. For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we define the operator $$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$ that we call the extended generalized Aluthge transform. In this paper we provide several inequalities concerning the extended generalized Aluthge transform $\Delta_{t, V}(T)$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [9], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [10] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

[^0]for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [8]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [7] and [4].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $w(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[12]$.

Utilizing this transform T. Yamazaki, [12] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in B(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$ and an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we define the operator

$$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$

that we call the extended generalized Aluthge transform.
We assume in what follows that $|T|^{0}:=I$.
For $t=1$ we have

$$
\widehat{T}_{V}:=\Delta_{1, V}(T)=|T| V
$$

that we call the extended Dougal transform, for $t=1 / 2$,

$$
\widetilde{T}_{V}=\Delta_{1 / 2, V}(T):=|T|^{1 / 2} V|T|^{1 / 2}
$$

that we call the extended Aluthge transform and for $t=0$,

$$
T_{V}:=\Delta_{0, V}(T)=V|T|
$$

An operator $U \in \mathcal{B}(H)$ is called a partial isometry if $\|U x\|=\|x\|$ for all $x \in$ $\mathcal{N}^{\perp}(U)$.

Now, let $x \in H$, then there exists a unique $x_{1} \in \mathcal{N}(U)$ and a unique $x_{2} \in \mathcal{N}^{\perp}(U)$ such that $x=x_{1}+x_{2}$. Then

$$
0 \leq\left\langle U^{*} U x, x\right\rangle=\|U x\|^{2}=\left\|U x_{1}+U x_{2}\right\|^{2}=\left\|U x_{2}\right\|^{2}=\left\|x_{2}\right\|^{2}
$$

By the fact that $x_{1} \perp x_{2}$,

$$
\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}
$$

Therefore

$$
0 \leq\left\langle U^{*} U x, x\right\rangle \leq\|x\|^{2}
$$

which shows that U is a contraction on H.
Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then

$$
\begin{gathered}
T_{U}=U|T|=T \\
\widetilde{T}_{U}=|T|^{1 / 2} U|T|^{1 / 2}=\widetilde{T}
\end{gathered}
$$

is the usual Aluthge transform and

$$
\widehat{T}_{U}=|T| U=\widehat{T}
$$

is the usual Dougal transform.
For $t \in(0,1)$

$$
\Delta_{t, U}(T)=|T|^{t} U|T|^{1-t}=: \Delta_{t}(T)
$$

is the generalized Aluthge transform introduced in by Cho and Tanahashi in [6].
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right) \tag{1.11}
\end{equation*}
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.12}
\end{equation*}
$$

In [3] Bunia et al. also proved that

$$
\begin{equation*}
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\} \tag{1.13}
\end{equation*}
$$

which for $t=1 / 2$ gives (1.10) as well.
If V is a contraction, then $\|V\| \leq 1$ and since $\left\|V^{*}\right\|=\|V\|$, hence V^{*} is also a contraction. Observe that

$$
\Delta_{t, V}^{*}(T):=\left(|T|^{t} V|T|^{1-t}\right)^{*}=|T|^{1-t} V^{*}|T|^{t}=\Delta_{1-t, V^{*}}(T)
$$

for all $t \in[0,1]$. Therefore

$$
\left(T_{V}\right)^{*}=\widehat{T}_{V^{*}}, \quad\left(\widehat{T}_{V}\right)^{*}=T_{V^{*}}
$$

and

$$
\left(\widetilde{T}_{V}\right)^{*}=\widetilde{T}_{V^{*}}
$$

Since $\left\|V^{*} V\right\|=\left\|V V^{*}\right\|=\|V\|^{2}$ and V is a contraction, then

$$
\left\|\frac{V^{*} V \pm V V^{*}}{2}\right\| \leq\|V\|^{2} \leq 1
$$

showing that

$$
W:=\frac{V^{*} V \pm V V^{*}}{2}
$$

is a contraction and we can consider the transform

$$
\Delta_{t, \frac{V^{*} V \pm V V^{*}}{2}}(T):=|T|^{t}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1-t}
$$

for $t \in[0,1]$.
For a contraction V, we have

$$
\operatorname{Im}(V):=\frac{V-V^{*}}{2 i}, \operatorname{Re}(V):=\operatorname{Re}\left(\frac{V+V^{*}}{2}\right)
$$

and since

$$
\|\operatorname{Im}(V)\|=\left\|\frac{V-V^{*}}{2 i}\right\| \leq\|V\| \leq 1 \text { and }\|\operatorname{Re}(V)\| \leq\|V\| \leq 1
$$

hence $\operatorname{Im}(V)$ and $\operatorname{Re}(V)$ are contractions as well. We can then consider the transforms

$$
\Delta_{t, \operatorname{Im}(V)}(T):=|T|^{t} \operatorname{Im}(V)|T|^{1-t} \text { and } \Delta_{t, \operatorname{Re}(V)}(T):=|T|^{t} \operatorname{Re}(V)|T|^{1-t}
$$

for $t \in[0,1]$.
For $T \in \mathcal{B}(H)$ we define

$$
T_{+}:=\frac{1}{2}(|T|+T) \text { and } T_{-}:=\frac{1}{2}(|T|-T) .
$$

If U is the partial isometry in the polar representation of T, then

$$
V:=\frac{I \pm U}{2}
$$

is a contraction and

$$
\Delta_{t, \frac{I \pm U}{2}}(T):=|T|^{t} \frac{I \pm U}{2}|T|^{1-t}=\frac{|T| \pm \Delta_{t}(T)}{2}
$$

In particular, we get

$$
T_{\frac{I \pm U}{2}}=\frac{|T| \pm T}{2}=T_{ \pm}, \widehat{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widehat{T}}{2}
$$

and

$$
\widetilde{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widetilde{T}}{2}
$$

for any operator $T \in \mathcal{B}(H)$.
Motivated by the above results, in this paper we provide several inequalities concerning the extended generalized Aluthge transform $\Delta_{t, V}(T)$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

2. Main Results

We need the following fact, see [5]:
Lemma 1. For any $A, B \in \mathcal{B}(H)$,

$$
\begin{align*}
\omega(A B) & \leq \frac{1}{2} \omega(B A)+\frac{1}{4}(\|A B\|+\|A\|\|B\|) \tag{2.1}\\
& \leq \frac{1}{2}(\omega(B A)+\|A\|\|B\|)
\end{align*}
$$

We have the following first result:
Theorem 1. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ we have that

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \min _{t \in[0,1]} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right) \tag{2.2}\\
& \leq \frac{1}{2}\left(\min _{t \in[0,1]} \omega\left(\Delta_{t, V}(T)\right)+\|V\|\|T\|\right)
\end{align*}
$$

In particular,

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right) \tag{2.3}\\
& \leq \frac{1}{2}\left(\omega\left(\widetilde{T}_{V}\right)+\|V\|\|T\|\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right) \tag{2.4}\\
& \leq \frac{1}{2}\left(\omega\left(\widehat{T}_{V}\right)+\|V\|\|T\|\right)
\end{align*}
$$

Also,

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \min _{t \in[0,1]} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|V\|\|T\|\right) \tag{2.5}\\
& \leq \frac{1}{2}\left(\min _{t \in[0,1]} \omega\left(\Delta_{t, V}(T)\right)+\|V\|\|T\|\right)
\end{align*}
$$

In particular,

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|V\|\|T\|\right) \tag{2.6}\\
& \leq \frac{1}{2}\left(\omega\left(T_{V}\right)+\|V\|\|T\|\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|V\|\|T\|\right) \tag{2.7}\\
& \leq \frac{1}{2}\left(\omega\left(\widetilde{T}_{V}\right)+\|V\|\|T\|\right)
\end{align*}
$$

Proof. If we take $A=V|T|^{1-t}$ and $B=|T|^{t}$ in (2.1) then we get

$$
\begin{aligned}
\omega\left(T_{V}\right) & =\omega(V|T|)=\omega\left(V|T|^{1-t}|T|^{t}\right) \\
& \leq \frac{1}{2} \omega\left(|T|^{t} V|T|^{1-t}\right)+\frac{1}{4}\left(\|V|T|\|+\left\|V|T|^{1-t}\right\|\left\||T|^{t}\right\|\right) \\
& \leq \frac{1}{2} \omega\left(|T|^{t} V|T|^{1-t}\right)+\frac{1}{4}\left(\|V|T|\|+\|V\|\left\||T|^{1-t}\right\|\left\||T|^{t}\right\|\right) \\
& =\frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|^{1-t}\|T\|^{t}\right) \\
& =\frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right)
\end{aligned}
$$

for all $t \in[0,1]$, which proves (2.2).
If we take in Lemma $1 A=|T|^{1-t}, B=|T|^{t} V$, then we derive

$$
\begin{aligned}
\omega\left(\widehat{T}_{V}\right) & =\omega(|P| V)=\omega\left(|T|^{1-t}|T|^{t} V\right) \\
& \leq \frac{1}{2} \omega\left(|T|^{t} V|T|^{1-t}\right)+\frac{1}{4}\left(\||P| V\|+\left\||T|^{1-t}\right\|\left\||T|^{t} V\right\|\right) \\
& \leq \frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|T\|^{1-t}\|V\|\|T\|^{t}\right) \\
& =\frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|V\|\|T\|\right)
\end{aligned}
$$

for all $t \in[0,1]$, which proves (2.2).
Remark 1. For an operator $T \in \mathcal{B}(H)$ we recapture some known results

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)+\|T\|\right), \text { see also (1.11). } \tag{2.8}
\end{equation*}
$$

In particular,

$$
\omega(T) \leq \frac{1}{2}(\omega(\widetilde{T})+\|T\|), \text { see also (1.10) }
$$

and

$$
\omega(T) \leq \frac{1}{2}(\omega(\widehat{T})+\|T\|) \text { see also (1.12). }
$$

Also, we obtain the following bounds for the Dougal transform

$$
\begin{align*}
\omega(\widehat{T}) & \leq \frac{1}{2} \min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}(\|\widehat{T}\|+\|T\|) \tag{2.9}\\
& \leq \frac{1}{2}\left(\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)+\|T\|\right)
\end{align*}
$$

In particular,

$$
\omega(\widehat{T}) \leq \frac{1}{2} \omega(T)+\frac{1}{4}(\|\widehat{T}\|+\|T\|) \leq \frac{1}{2}(\omega(T)+\|T\|)
$$

and

$$
\omega(\widehat{T}) \leq \frac{1}{2} \omega(\widetilde{T})+\frac{1}{4}(\|\widehat{T}\|+\|T\|) \leq \frac{1}{2}(\omega(\widetilde{T})+\|T\|)
$$

The proof follows from Theorem 1 applied for the polar decomposition $T=U|T|$ where U is a partial isometry and observing that for $V=U,\|V\| \leq 1$.

Theorem 2. With the assumptions of Theorem 1, we have

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left\||T|^{2 t}+|T|^{1-t}|V|^{2}|T|^{1-t}\right\| \tag{2.10}\\
& \leq \frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left\||T|^{2 t}+|T|^{2(1-t)}\right\|
\end{align*}
$$

for all $t \in[0,1]$.
In particular

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2}+|V|^{2}\right\| \tag{2.11}\\
& \leq \frac{1}{2}\left(\omega\left(\widehat{T}_{V}\right)+\frac{1}{2}\left\||T|^{2 t}+I\right\|\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left\||T|+|T|^{1 / 2}|V|^{2}|T|^{1 / 2}\right\| \tag{2.12}\\
& \leq \frac{1}{2}\left(\omega\left(\widetilde{T}_{V}\right)+\|T\|\right)
\end{align*}
$$

Also

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left\||T|^{t}\left|V^{*}\right|^{2}|T|^{t}+|T|^{2(1-t)}\right\| \tag{2.13}\\
& \leq \frac{1}{2} \omega\left(\Delta_{t, V}(T)\right)+\frac{1}{4}\left\||T|^{2 t}+|T|^{2(1-t)}\right\|
\end{align*}
$$

for all $t \in[0,1]$.
In particular,

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\|\left|V^{*}\right|^{2}+|T|^{2}\right\| \tag{2.14}\\
& \leq \frac{1}{2}\left(\omega\left(T_{V}\right)+\frac{1}{2}\left\|I+|T|^{2}\right\|\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left\||T|^{1 / 2}\left|V^{*}\right|^{2}|T|^{1 / 2}+|T|\right\| \tag{2.15}\\
& \leq \frac{1}{2}\left(\omega\left(\widetilde{T}_{V}\right)+\|T\|\right)
\end{align*}
$$

Proof. We use the following inequality obtained in [11]

$$
\begin{equation*}
\omega(A B) \leq \frac{1}{4}\left\|B B^{*}+A^{*} A\right\|+\frac{1}{2} \omega(B A) \tag{2.16}
\end{equation*}
$$

for all $A, B \in \mathbb{B}(\mathcal{H})$.
If we take $A=V|T|^{1-t}$ and $B=|T|^{t}$ in (2.16), then we get

$$
\begin{equation*}
\omega(V|T|) \leq \frac{1}{4}\left\||T|^{2 t}+|T|^{1-t} V^{*} V|T|^{1-t}\right\|+\frac{1}{2} \omega\left(|T|^{t} V|T|^{1-t}\right) \tag{2.17}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
0 \leq V^{*} V=|V|^{2} \leq\left\||V|^{2}\right\| I=\|V\|^{2} I \leq I \tag{2.18}
\end{equation*}
$$

since $\|V\| \leq 1$.
By multiplying both sides of (2.18) with $|T|^{1-t} \geq 0$ we get

$$
0 \leq|T|^{1-t} V^{*} V|T|^{1-t} \leq|T|^{2(1-t)}
$$

which gives that

$$
0 \leq|T|^{2 t}+|T|^{1-t} V^{*} V|T|^{1-t} \leq|T|^{2 t}+|T|^{2(1-t)}
$$

By taking the norm we obtain

$$
\left\||T|^{2 t}+|T|^{1-t} V^{*} V|T|^{1-t}\right\| \leq\left\||T|^{2 t}+|T|^{2(1-t)}\right\|
$$

and by (2.17) we obtain (2.10).
Further, if we take in (2.16) $A=|T|^{1-t}, B=|T|^{t} V$, then we have

$$
\begin{equation*}
\omega(|T| V) \leq \frac{1}{4}\left\||T|^{t} V V^{*}|T|^{t}+|T|^{2(1-t)}\right\|+\frac{1}{2} \omega\left(|T|^{t} V|T|^{1-t}\right) \tag{2.19}
\end{equation*}
$$

Since, as above,

$$
0 \leq|T|^{t} V V^{*}|T|^{t} \leq|T|^{2 t}
$$

hence

$$
\left\||T|^{t} V V^{*}|T|^{t}+|T|^{2(1-t)}\right\| \leq\left\||T|^{2 t}+|T|^{2(1-t)}\right\|
$$

and by (2.19) we get (2.13).
Remark 2. For an operator $T \in \mathcal{B}(H)$ we have

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left\||T|^{2 t}+|T|^{2(1-t)}\right\| \tag{2.20}
\end{equation*}
$$

for all $t \in[0,1]$. The inequality (2.20) is better than (1.13) since

$$
\left\||T|^{2 t}+|T|^{2(1-t)}\right\| \leq\|T\|^{2 t}+\|T\|^{2(1-t)}
$$

In particular we get

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\omega\left(\widehat{T}_{V}\right)+\frac{1}{2}\left\||T|^{2 t}+I\right\|\right) \tag{2.21}
\end{equation*}
$$

and the known inequality

$$
\omega(T) \leq \frac{1}{2}(\omega(\widetilde{T})+\|T\|), \text { see }(1.12)
$$

Also

$$
\begin{equation*}
\omega(\widehat{T}) \leq \frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left\||T|^{2 t}+|T|^{2(1-t)}\right\| \tag{2.22}
\end{equation*}
$$

for all $t \in[0,1]$.
In particular,

$$
\begin{equation*}
\omega(\widehat{T}) \leq \frac{1}{2}\left(\omega(T)+\frac{1}{2}\left\|I+|T|^{2}\right\|\right) \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(\widehat{T}) \leq \frac{1}{2}(\omega(\widetilde{T})+\|T\|) \tag{2.24}
\end{equation*}
$$

The proof follows from Theorem 2 applied for the polar decomposition $T=U|T|$ where U is a partial isometry and observing that for $V=U,\|V\| \leq 1$.

3. Some Related Results

We start to the following simple result:
Proposition 1. For a contraction $V \in \mathcal{B}(H)$ and an operator $T \in \mathcal{B}(H)$, we have

$$
\begin{equation*}
\omega\left(T_{V}\right), \omega\left(\widehat{T}_{V}\right) \leq \frac{\sqrt{2}}{2}\left\||T|^{2}+\right\| T\left\|^{2} I\right\|^{1 / 2} \leq\|T\| \tag{3.1}
\end{equation*}
$$

Proof. We use the following inequality obtained by Kittaneh in [10]

$$
\begin{equation*}
\omega^{2}(A) \leq \frac{1}{2}\left\|A^{*} A+A A^{*}\right\| \tag{3.2}
\end{equation*}
$$

for all $A \in \mathbb{B}(\mathcal{H})$.
If we take $A=V|T|$ in (3.2) then we get

$$
\omega^{2}(V|T|) \leq \frac{1}{2}\left\||T| V^{*} V|T|+V|T|^{2} V^{*}\right\|
$$

Since $0 \leq V^{*} V \leq I$, then by multiplying both sides with $|T| \geq 0$ we get $|T| V^{*} V|T| \leq$ $|T|^{2}$. Also since $|T|^{2} \leq\|T\|^{2} I$ hence by multiplying at the left with V and at the right with V^{*}, we get $V|T|^{2} V^{*} \leq\|T\|^{2} V V^{*} \leq\|T\|^{2} I$. Therefore

$$
0 \leq|T| V^{*} V|T|+V|T|^{2} V^{*} \leq|T|^{2}+\|T\|^{2} I
$$

which implies that

$$
\frac{1}{2}\left\||T| V^{*} V|T|+V|T|^{2} V^{*}\right\| \leq \frac{1}{2}\left\||T|^{2}+\right\| T\left\|^{2} I\right\|
$$

This proves the first part of (3.1).
If we take $A=|T| V$ in (3.2) then we get

$$
\omega^{2}(|T| V) \leq \frac{1}{2}\left\|V^{*}|T|^{2} V+|T| V V^{*}|T|\right\| \leq \frac{1}{2}\| \| T\left\|^{2} I+|T|^{2}\right\|
$$

which proves the second part of (3.1).
We also have:
Theorem 3. For a contraction $V \in \mathcal{B}(H)$ and an operator $T \in \mathcal{B}(H)$, we have for $r \geq 2$ and $\alpha \in[0,1]$ that

$$
\begin{align*}
\omega\left(T_{V}\right), \omega\left(\widehat{T}_{V}\right) & \leq\|V\|\left\|\alpha I+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\|^{1 / r} \tag{3.3}\\
& \leq\left\|\alpha I+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\|^{1 / r}
\end{align*}
$$

Moreover, if T is invertible, then

$$
\begin{equation*}
\omega\left(T_{V}\right) \leq\left\|\Delta_{t, V}(T)\right\|\left\|\alpha|T|^{-\frac{r t}{\alpha}}+(1-\alpha)|T|^{\frac{r t}{1-\alpha}}\right\|^{1 / r} \tag{3.4}
\end{equation*}
$$

for all $t \in[0,1]$.
In particular,

$$
\omega\left(T_{V}\right) \leq\left\|\widehat{T}_{V}\right\|\left\|\alpha|T|^{-\frac{r}{\alpha}}+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\|^{1 / r}
$$

and

$$
\omega\left(T_{V}\right) \leq\left\|\widetilde{T}_{V}\right\|\left\|\alpha|T|^{-\frac{r t}{2 \alpha}}+(1-\alpha)|T|^{\frac{r}{2(1-\alpha)}}\right\|^{1 / r}
$$

Also,

$$
\begin{equation*}
\omega\left(\widehat{T}_{V}\right) \leq\left\|\Delta_{t, V}(T)\right\|\left\|\alpha|T|^{\frac{(1-t) r}{\alpha}}+(1-\alpha)|T|^{\frac{(1-t) r}{1-\alpha}}\right\|^{1 / r} \tag{3.5}
\end{equation*}
$$

for all $t \in[0,1]$.
In particular

$$
\omega\left(\widehat{T}_{V}\right) \leq\left\|T_{V}\right\|\left\|\alpha|T|^{\frac{r}{\alpha}}+(1-\alpha)|T|^{-\frac{r}{1-\alpha}}\right\|^{1 / r}
$$

and

$$
\omega\left(\widehat{T}_{V}\right) \leq\left\|\widetilde{T}_{V}\right\|\left\|\alpha|T|^{\frac{r}{2 \alpha}}+(1-\alpha)|T|^{-\frac{r}{2(1-\alpha)}}\right\|^{1 / r} .
$$

Proof. We use the following inequality obtained in [11]

$$
\begin{equation*}
\omega^{r}\left(A^{\alpha} X B^{1-\alpha}\right) \leq\|X\|^{r}\left\|\alpha A^{r}+(1-\alpha) B^{r}\right\|, \tag{3.6}
\end{equation*}
$$

where $A, B \geq 0, X \in \mathbb{B}(\mathcal{H}), r \geq 2$ and $\alpha \in[0,1]$.
Then

$$
\begin{aligned}
\omega^{r}\left(T_{V}\right) & =\omega^{r}(V|T|)=\omega^{r}\left(I^{\alpha} V\left(|T|^{\frac{1}{1-\alpha}}\right)^{1-\alpha}\right) \\
& \leq\|V\|^{r}\left\|\alpha I+(1-\alpha)\left(|T|^{\frac{1}{1-\alpha}}\right)^{r}\right\| \leq\left\|\alpha I+(1-\alpha)|T|^{\frac{r}{1-\alpha}}\right\|,
\end{aligned}
$$

which proves the first part of (3.3).
Also,

$$
\begin{aligned}
\omega^{r}\left(\widehat{T}_{V}\right) & =\omega(|T| V)=\omega\left(\left(|T|^{\frac{1}{\alpha}}\right)^{\alpha} V I^{1-\alpha}\right) \\
& \leq\|V\|^{r}\left\|\alpha\left(|T|^{\frac{1}{\alpha}}\right)^{r}+(1-\alpha) I\right\| \leq\left\|\alpha\left(|T|^{\frac{1}{\alpha}}\right)^{r}+(1-\alpha) I\right\|,
\end{aligned}
$$

which, by changing α with $1-\alpha$, proves the second part of (3.3).
Now, if T is invertible, then $|T|$ is invertible and we have for $t \in[0,1]$ that

$$
\begin{aligned}
\omega^{r}\left(T_{V}\right) & =\omega^{r}(V|T|)=\omega^{r}\left(|T|^{-t}|T|^{t} V|T|^{1-t}|T|^{t}\right) \\
& =\omega^{r}\left(\left(|T|^{-\frac{t}{\alpha}}\right)^{\alpha}|T|^{t} V|T|^{1-t}\left(|T|^{\frac{t}{1-\alpha}}\right)^{1-\alpha}\right) .
\end{aligned}
$$

If we take $X=|T|^{t} V|T|^{1-t}, A=|T|^{-\frac{t}{\alpha}}$ and $B=|T|^{\frac{t}{1-\alpha}}$ in (3.6), then we get

$$
\begin{aligned}
\omega^{r}\left(T_{V}\right) & \leq\left\||T|^{t} V|T|^{1-t}\right\|^{r}\left\|\alpha\left(|T|^{-\frac{t}{\alpha}}\right)^{r}+(1-\alpha)\left(|T|^{\frac{t}{1-\alpha}}\right)^{r}\right\| \\
& =\left\|\Delta_{t, V}(T)\right\|^{r}\left\|\alpha|T|^{\frac{r t}{\alpha}}+(1-\alpha)|T|^{\frac{r t}{1-\alpha}}\right\|,
\end{aligned}
$$

which proves (3.4).
Also,

$$
\begin{aligned}
\omega^{r}\left(\widehat{T}_{V}\right) & =\omega(|T| V)=\omega\left(|T|^{1-t}|T|^{t} V|T|^{1-t}|T|^{-(1-t)}\right) \\
& =\omega\left(\left(|T|^{\frac{1-t}{\alpha}}\right)^{\alpha}|T|^{t} V|T|^{1-t}\left(|T|^{-\frac{1-t}{1-\alpha}}\right)^{1-\alpha}\right) \\
& \leq\left\||T|^{t} V|T|^{1-t}\right\|^{r}\left\|\alpha\left(|T|^{\frac{1-t}{\alpha}}\right)^{r}+(1-\alpha)\left(|T|^{-\frac{1-t}{1-\alpha}}\right)^{r}\right\| \\
& =\left\|\Delta_{t, V}(T)\right\|^{r}\left\|\alpha|T|^{\frac{(1-t) r}{\alpha}}+(1-\alpha)|T|^{-\frac{(1-t) r}{1-\alpha}}\right\|,
\end{aligned}
$$

which proves (3.5).
Finally, we have
Theorem 4. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H), 0 \leq \alpha \leq 1$, $r \geq 0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$ we have that

$$
\begin{equation*}
\omega\left(T_{V}\right), \omega\left(\widehat{T}_{V}\right) \leq\|V\|\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\frac{\alpha}{r}} \tag{3.7}
\end{equation*}
$$

Moreover, if T is invertible, then

$$
\begin{equation*}
\omega\left(T_{V}\right) \leq\left\|\Delta_{t, V}(T)\right\|\left\|\frac{1}{p}|T|^{-\frac{t p r}{\alpha}}+\frac{1}{q}|T|^{\frac{t q r}{\alpha}}\right\|^{\alpha / r} \tag{3.8}
\end{equation*}
$$

for all $t \in[0,1]$.
In particular,

$$
\omega\left(T_{V}\right) \leq\left\|\widehat{T}_{V}\right\|\left\|\frac{1}{p}|T|^{-\frac{p r}{\alpha}}+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\alpha / r}
$$

and

$$
\omega\left(T_{V}\right) \leq\left\|\widetilde{T}_{V}\right\|\left\|\frac{1}{p}|T|^{-\frac{p r}{2 \alpha}}+\frac{1}{q}|T|^{\frac{q r}{2 \alpha}}\right\|^{\alpha / r}
$$

Also

$$
\begin{equation*}
\omega\left(\widehat{T}_{V}\right) \leq\left\|\Delta_{t, V}(T)\right\|\left\|\frac{1}{p}|T|^{\frac{(1-t) p r}{\alpha}}+\frac{1}{q}|T|^{-\frac{(1-t) q r}{\alpha}}\right\|^{\alpha / r} \tag{3.9}
\end{equation*}
$$

for all $t \in[0,1]$.
In particular,

$$
\omega\left(\widehat{T}_{V}\right) \leq\left\|T_{V}\right\|\left\|\frac{1}{p}|T|^{\frac{p r}{\alpha}}+\frac{1}{q}|T|^{-\frac{q r}{\alpha}}\right\|^{\alpha / r}
$$

and

$$
\omega\left(\widehat{T}_{V}\right) \leq\left\|\widetilde{T}_{V}\right\|\left\|\frac{1}{p}|T|^{\frac{p r}{2 \alpha}}+\frac{1}{q}|T|^{-\frac{q r}{2 \alpha}}\right\|^{\alpha / r} .
$$

Proof. We use the following inequality obtained in [11]

$$
\begin{equation*}
\omega^{r}\left(A^{\alpha} X B^{\alpha}\right) \leq\|X\|^{r}\left\|\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right\|^{\alpha} \tag{3.10}
\end{equation*}
$$

for $A, B \geq 0, X \in \mathbb{B}(\mathcal{H}), 0 \leq \alpha \leq 1, r \geq 0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 2$.

Then

$$
\begin{aligned}
\omega^{r}\left(T_{V}\right) & =\omega^{r}(V|T|)=\omega^{r}\left(I^{\alpha} V\left(|T|^{\frac{1}{\alpha}}\right)^{\alpha}\right) \\
& \leq\|V\|^{r}\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\alpha} \leq\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{q r}{\alpha}}\right\|^{\alpha},
\end{aligned}
$$

which proves the first part of (3.7).
Also,

$$
\begin{aligned}
\omega^{r}\left(\widehat{T}_{V}\right) & =\omega(|T| V)=\omega\left(\left(|T|^{\frac{1}{\alpha}}\right)^{\alpha} V I^{\alpha}\right) \\
& \leq\|V\|^{r}\left\|\frac{1}{p}\left(|T|^{\frac{1}{\alpha}}\right)^{p r}+\frac{1}{q} I\right\|^{\alpha} \leq\left\|\frac{1}{p}\left(|T|^{\frac{1}{\alpha}}\right)^{p r}+\frac{1}{q} I\right\|^{\alpha}
\end{aligned}
$$

which, by replacing p with q, gives the second part of (3.7).
Now, if T is invertible, then $|T|$ is invertible and we have for $t \in[0,1]$ that

$$
\begin{aligned}
\omega^{r}\left(T_{V}\right) & =\omega^{r}(V|T|)=\omega^{r}\left(|T|^{-t}|T|^{t} V|T|^{1-t}|T|^{t}\right) \\
& =\omega^{r}\left(\left(|T|^{-\frac{t}{\alpha}}\right)^{\alpha}|T|^{t} V|T|^{1-t}\left(|T|^{\frac{t}{\alpha}}\right)^{\alpha}\right) \\
& \leq\left\||T|^{t} V|T|^{1-t}\right\|^{r}\left\|\frac{1}{p}\left(|T|^{-\frac{t}{\alpha}}\right)^{p r}+\frac{1}{q}\left(|T|^{\frac{t}{\alpha}}\right)^{q r}\right\|^{\alpha} \\
& =\left\|\Delta_{t, V}(T)\right\|^{r}\left\|\frac{1}{p}|T|^{-\frac{t p r}{\alpha}}+\frac{1}{q}|T|^{\frac{t q r}{\alpha}}\right\|^{\alpha}
\end{aligned}
$$

which gives (3.8).
Also,

$$
\begin{aligned}
\omega^{r}\left(\widehat{T}_{V}\right) & =\omega(|T| V)=\omega\left(|T|^{1-t}|T|^{t} V|T|^{1-t}|T|^{-(1-t)}\right) \\
& =\omega\left(\left(|T|^{\frac{1-t}{\alpha}}\right)^{\alpha}|T|^{t} V|T|^{1-t}\left(|T|^{-\frac{1-t}{\alpha}}\right)^{\alpha}\right) \\
& \leq\left\||T|^{t} V|T|^{1-t}\right\|^{r}\left\|\frac{1}{p}\left(|T|^{\frac{1-t}{\alpha}}\right)^{p r}+\frac{1}{q}\left(|T|^{-\frac{1-t}{\alpha}}\right)^{q r}\right\|^{\alpha} \\
& =\left\|\Delta_{t, V}(T)\right\|^{r}\left\|\frac{1}{p}|T|^{\frac{(1-t) p r}{\alpha}}+\frac{1}{q}|T|^{-\frac{(1-t) q r}{\alpha}}\right\|^{\alpha}
\end{aligned}
$$

which proves (3.9).
Remark 3. One can state several similar inequalities for the usual generalized Aluthge transform $\Delta_{t}(T)$ or for the transforms

$$
\Delta_{t, \frac{V^{*} V \pm V V^{*}}{2}}(T), \Delta_{t, \operatorname{Im}(V)}(T) \text { and } \Delta_{t, \operatorname{Re}(V)}(T)
$$

defined in the introduction for any contraction V, any operator $T \in \mathcal{B}(H)$ and a parameter $t \in[0,1]$.

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia, S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] P. Bhunia, K. Feki and K. Paul, Numerical radius inequalities for products and sums of semi-Hilberian space operators, Filomat Vol 36 (2022), No. 4.
[6] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[7] Silvestru Sever Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[9] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[10] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
[11] M. Sattari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 470(1), 216-227 (2015)
[12] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand, , Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dugal transform, Contractions, Partial isometrie, Numerical radius.

