
Parametrized error function based Banach space
valued univariate neural network approximation

George A. Anastassiou
Department of Mathematical Sciences

University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we research the univariate quantitative approximation of Banach
space valued continuous functions on a compact interval or all the real line
by quasi-interpolation Banach space valued neural network operators. We
perform also the related Banach space valued fractional approximation.
These approximations are derived by establishing Jackson type inequal-
ities involving the modulus of continuity of the engaged function or its
Banach space valued high order derivative or fractional derivaties. Our op-
erators are de�ned by using a density function induced by a parametrized
error function. The approximations are pointwise and with respect to
the uniform norm. The related Banach space valued feed-forward neural
networks are with one hidden layer. We �nish with a convergence analysis.
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1 Introduction

The author in [1] and [2], see Chapters 2-5, was the �rst to establish neural net-
work approximation to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliaguet-Euvrard and �Squashing�types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
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both the univariate and multivariate cases. The de�ning these operators �bell-
shaped�and �squashing�functions are assumed to be of compact suport. Also
in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chapters 4-5 there.
The author inspired by [15], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8].
In this article we are greatly inspired by the related works [16], [17].
Let h be a general sigmoid function with h (0) = 0, and y = �1 the horizontal

asymptotes. Of course h is strictly increasing over R. Let the parameter 0 <
r < 1 and x > 0. Then clearly �x < x and �x < �rx < rx < x, furthermore it
holds h (�x) < h (�rx) < h (rx) < h (x). Consequently the sigmoid y = h (rx)

has a graph inside the graph of y = h (x), of course with the same asymptotes
y = �1. Therefore h (rx) has derivatives (gradients) at more points x than
h (x) has di¤erent than zero or not as close to zero, thus killing less number of
neurons! And of course h (rx) is more distant from y = �1, than h (x) it is. A
highly desired fact in Neural Networks theory.
Di¤erent activation functions allow for di¤erent non-linearities which might

work better for solving a speci�c function. So the need to use neural networks
with various activation functions is vivid. Thus, performing neural network
approximations using di¤erent activation functions is not only necessary but
fully justi�ed.
The author here performs parametrized error function based neural network

approximations to continuous functions over compact intervals of the real line
or over the whole R with values to an arbitrary Banach space (X; k�k). Finally
he treats completely the related X-valued fractional approximation. All con-
vergences here are with rates expressed via the modulus of continuity of the
involved function or its X-valued high order derivative, or X-valued fractional
derivatives and given by very tight Jackson type inequalities.
Our compact intervals are not necessarily symmetric to the origin. Some of

our upper bounds to error quantity are very �exible and general. In preparation
to prove our results we establish important properties of the basic density func-
tion de�ning our operators which is induced by a parametrized error function.
Feed-forward X-valued neural networks (FNNs) with one hidden layer, the

only type of networks we deal with in this article, are mathematically expressed
as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) , x 2 Rs, s 2 N;
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where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 X are the coe¢ cients, haj � xi is the inner product of aj and x, and
� is the activation function of the network. Here we work for a parametrized
error function. About neural networks in general read [18], [19], [21]. See also [9]
for a complete study of real valued approximation by neural network operators.

2 Basics

We consider here the parametrized (Gauss) error special function

erf�z =
2p
�

Z �z

0

e�t
2

dt; � > 0, z 2 R; (1)

which is a sigmoidal type function and a strictly increasing function. It is acting
here as an activation function.
Of special interest in neural network theory is when 0 < � < 1, see 1.

Introduction.
It has the basic properties

erf (�0) = 0; erf (��x) = �erf (�x) ;

erf (� (+1)) = 1, erf (� (�1)) = �1;
(2)

and

(erf (�x))
0
=
2�p
�
e�(�x)

2

, x 2 R: (3)

We consider the function

� (x) =
1

4
(erf (� (x+ 1))� erf (� (x� 1))) , x 2 R; (4)

and we notice that

� (�x) = 1

4
(erf (� (�x+ 1))� erf (� (�x� 1))) =

1

4
(erf (�� (x� 1))� erf (�� (x+ 1))) =

1

4
(�erf (� (x� 1)) + erf (� (x+ 1))) =

1

4
(erf (� (x+ 1))� erf (� (x� 1))) = � (x) : (5)

Thus � is an even function.
Since x + 1 > x � 1, then erf (� (x+ 1)) > erf (� (x� 1)), and � (x) > 0,

all x 2 R.
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We see

� (0) =
erf�

2
: (6)

Let x > 0, we have that

�0 (x) =
1

4

�
(erf (� (x+ 1)))

0 � (erf (� (x� 1)))0
�
=

1

4

2�p
�

�
e��

2(x+1)2 � e��
2(x�1)2

�
=

�

2
p
�

�
1

e�
2(x+1)2

� 1

e�
2(x�1)2

�
(7)

�

2
p
�

 
e�

2(x�1)2 � e�2(x+1)2

e�
2(x+1)2e�

2(x�1)2

!
< 0;

proving �0 (x) < 0, for x > 0. That is � is strictly decreasing on [0;1) and it is
strictly increasing on (�1; 0], and �0 (0) = 0:
Clearly, the x-axis is the horizontal asymptote of �.
Conclusion, � is a bell symmetric function with maximum

� (0) =
erf�

2
:

Let h : R ! [�1; 1] be a general sigmoid function, such that it is strictly
increasing, h (0) = 0, h (�x) = �h (x), h (+1) = 1, h (�1) = �1. Also h
is strictly convex over (�1; 0] and strictly concave over [0;+1), with h(2) 2
C (R), see [14].
So erf�x is a special case of h. Furthermore � (x) is a special case of the

following general function

 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (8)

see [14].
We have

Theorem 1 ([14]) It holds

1X
i=�1

 (x� i) = 1, 8 x 2 R: (9)

Thus

Corollary 2 It holds

1X
i=�1

� (x� i) = 1, 8 x 2 R: (10)

We have
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Theorem 3 ([14]) It holds Z 1

�1
 (x) dx = 1: (11)

Thus

Corollary 4 We have that Z 1

�1
� (x) dx = 1: (12)

Hence � (x) is a density function on R:
We need

Theorem 5 ([14]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 (nx� k) <
�
1� h

�
n1�� � 2

��
2

; (13)

with

lim
n!+1

�
1� h

�
n1�� � 2

��
2

= 0:

Thus we obtain

Corollary 6 Let 0 < � < 1, and n 2 N with n1�� > 2, � > 0. It holds
1X

8<:k = �1: jnx� kj � n1��

� (nx� k) <
�
1� erf

�
�
�
n1�� � 2

���
2

; (14)

with

lim
n!+1

�
1� erf

�
�
�
n1�� � 2

���
2

= 0:

Denote by b�c the integral part and by d�e the ceiling of a number.
Furthermore we need

Theorem 7 ([14]) Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  (nx� k)

<
1

 (1)
; 8 x 2 [a; b] : (15)

Therefore we derive
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Corollary 8 Let x 2 [a; b] � R, � > 0 and n 2 N so that dnae � bnbc. Then

1Pbnbc
k=dnae � (nx� k)

<
1

� (1)
=

4

erf (2�)
: (16)

Remark 9 As in [14], we have that

lim
n!1

bnbcX
k=dnae

� (nx� k) 6= 1: (17)

Note 10 For large enough n we always obtain dnae � bnbc. Also a � k
n � b,

i¤ dnae � k � bnbc. As in [14], we obtain that

bnbcX
k=dnae

� (nx� k) � 1: (18)

Let (X; k�k) be a Banach space.

De�nition 11 Let f 2 C ([a; b] ; X) and n 2 N : dnae � bnbc. We introduce
and de�ne the X-valued linear neural network operators

An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
� (nx� k)Pbnbc

k=dnae � (nx� k)
; x 2 [a; b] : (19)

Clearly here An (f; x) 2 C ([a; b] ; X). For convenience we use the same An
for real valued function when needed. We study here the pointwise and uniform
convergence of An (f; x) to f (x) with rates.
For convenience also we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
� (nx� k) ; (20)

(similarly A�n can be de�ned for real valued function) that is

An (f; x) =
A�n (f; x)Pbnbc

k=dnae � (nx� k)
: (21)

So that

An (f; x)� f (x) =
A�n (f; x)Pbnbc

k=dnae � (nx� k)
� f (x)

=
A�n (f; x)� f (x)

�Pbnbc
k=dnae � (nx� k)

�
Pbnbc

k=dnae � (nx� k)
: (22)
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Consequently we derive

kAn (f; x)� f (x)k �
4

erf (2�)







A�n (f; x)� f (x)
0@ bnbcX
k=dnae

� (nx� k)

1A





 : (23)
That is

kAn (f; x)� f (x)k �
4

erf (2�)








bnbcX

k=dnae

�
f

�
k

n

�
� f (x)

�
� (nx� k)







 : (24)

We will estimate the right hand side of (24).
For that we need, for f 2 C ([a; b] ; X) the �rst modulus of continuity

!1 (f; �)[a;b] := !1 (f; �) := sup

x; y 2 [a; b]
jx� yj � �

kf (x)� f (y)k ; � > 0: (25)

Similarly, it is de�ned !1 for f 2 CuB (R; X) (uniformly continuous and bounded
functions from R into X), for f 2 CB (R; X) (continuous and bounded X-
valued) and for f 2 Cu (R; X) (uniformly continuous).
The fact f 2 C ([a; b] ; X) or f 2 Cu (R; X), is equivalent to lim

�!0
!1 (f; �) = 0,

see [11].

De�nition 12 When f 2 CuB (R; X), or f 2 CB (R; X), we de�ne

An (f; x) :=
1X

k=�1
f

�
k

n

�
� (nx� k) , n 2 N; x 2 R; (26)

the X-valued quasi-interpolation neural network operator.

Remark 13 We have that



f �kn
�



 � kfk1;R < +1,

and 



f �kn
�



� (nx� k) � kfk1;R � (nx� k) ; (27)

and
�X

k=��





f �kn
�



� (nx� k) � kfk1;R

 
�X

k=��
� (nx� k)

!
;

and �nally
1X

k=�1





f �kn
�



� (nx� k) � kfk1;R ; (28)

a convergent in R series.
So the series

P1
k=�1 f

�
k
n

�
� (nx� k) is absolutely convergent in X, hence

it is convergent in X and An (f; x) 2 X.
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We denote by kfk1 := sup
x2[a;b]

kf (x)k, for f 2 C ([a; b] ; X), similarly is

de�ned for f 2 CB (R; X) :

3 Main Results

We present a series of X-valued neural network approximations to a function
given with rates.
We �rst give

Theorem 14 Let f 2 C ([a; b] ; X), 0 < � < 1, n 2 N : n1�� > 2, � > 0;

x 2 [a; b] : Then
i)

kAn (f; x)� f (x)k �
4

erf (2�)

�
!1

�
f;
1

n�

�
+
�
1� erf�

�
n1�� � 2

��
kfk1

�
=: �;

(29)
and
ii)

kAn (f)� fk1 � �: (30)

We notice lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� erf�

�
n1�� � 2

���
:

Proof. As similar to [13], p. 293 is omitted.
Next we give

Theorem 15 Let f 2 CB (R; X), 0 < � < 1, n 2 N : n1�� > 2, � > 0; x 2 R:
Then
i)



An (f; x)� f (x)

 � !1

�
f;
1

n�

�
+
�
1� erf�

�
n1�� � 2

��
kfk1 =: �; (31)

and
ii) 

An (f)� f

1 � �: (32)

For f 2 CuB (R; X) we get lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� erf�

�
n1�� � 2

���
:

Proof. As similar to [13], p. 294 is omitted.
In the next we discuss high order neural network X-valued approximation

by using the smoothness of f .
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Theorem 16 Let f 2 CN ([a; b] ; X), n;N 2 N, 0 < � < 1, � > 0; x 2 [a; b]
and n1�� > 2. Then
i)

kAn (f; x)� f (x)k �

4

erf (2�)

8<:
NX
j=1



f (j) (x)


j!

"
1

n�j
+

�
1� erf�

�
n1�� � 2

��
2

(b� a)j
#
+ (33)

"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� erf�

�
n1�� � 2

�� 

f (N)

1 (b� a)N
N !

#)
ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

kAn (f; x0)� f (x0)k �
4

erf (2�)(
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� erf�

�
n1�� � 2

�� 

f (N)

1 (b� a)N
N !

)
; (34)

and
iii)

kAn (f)� fk1 � 4

erf (2�)

8<:
NX
j=1



f (j)

1
j!

"
1

n�j
+

�
1� erf�

�
n1�� � 2

��
2

(b� a)j
#
+

"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� erf�

�
n1�� � 2

�� 

f (N)

1 (b� a)N
N !

#)
:

(35)
Again we obtain lim

n!1
An (f) = f , pointwise and uniformly.

Proof. As similar to [13], pp. 296-301 is omitted.
All integrals from now on are of Bochner type [20].
We need

De�nition 17 ([12]) Let [a; b] � R, X be a Banach space, � > 0; m = d�e 2 N,
(d�e is the ceiling of the number), f : [a; b] ! X. We assume that f (m) 2
L1 ([a; b] ; X). We call the Caputo-Bochner left fractional derivative of order �:

(D�
�af) (x) :=

1

� (m� �)

Z x

a

(x� t)m���1 f (m) (t) dt; 8 x 2 [a; b] : (36)

If � 2 N, we set D�
�af := f (m) the ordinary X-valued derivative (de�ned similar

to numerical one, see [22], p. 83), and also set D0
�af := f:
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By [12], (D�
�af) (x) exists almost everywhere in x 2 [a; b] and D�

�af 2
L1 ([a; b] ; X).
If


f (m)



L1([a;b];X)
<1, then by [12],D�

�af 2 C ([a; b] ; X) ; hence kD�
�afk 2

C ([a; b]) :

We mention

Lemma 18 ([11]) Let � > 0, � =2 N, m = d�e, f 2 Cm�1 ([a; b] ; X) and
f (m) 2 L1 ([a; b] ; X). Then D�

�af (a) = 0.

We mention

De�nition 19 ([10]) Let [a; b] � R, X be a Banach space, � > 0, m := d�e.
We assume that f (m) 2 L1 ([a; b] ; X), where f : [a; b]! X. We call the Caputo-
Bochner right fractional derivative of order �:

�
D�
b�f

�
(x) :=

(�1)m

� (m� �)

Z b

x

(z � x)m���1 f (m) (z) dz; 8 x 2 [a; b] : (37)

We observe that
�
Dm
b�f

�
(x) = (�1)m f (m) (x) ; for m 2 N, and

�
D0
b�f

�
(x) =

f (x) :

By [10],
�
D�
b�f

�
(x) exists almost everywhere on [a; b] and

�
D�
b�f

�
2 L1 ([a; b] ; X).

If


f (m)



L1([a;b];X)
< 1, and � =2 N; by [10], D�

b�f 2 C ([a; b] ; X) ; hence

D�
b�f



 2 C ([a; b]) :
We need

Lemma 20 ([11]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m = d�e,
� > 0, � =2 N. Then D�

b�f (b) = 0.

Convention 21 We assume that

D�
�x0f (x) = 0, for x < x0; (38)

and
D�
x0�f (x) = 0, for x > x0; (39)

for all x; x0 2 [a; b] :

We mention

Proposition 22 ([11]) Let f 2 Cn ([a; b] ; X), n = d�e, � > 0. Then D�
�af (x)

is continuous in x 2 [a; b].

Proposition 23 ([11]) Let f 2 Cm ([a; b] ; X), m = d�e, � > 0. Then D�
b�f (x)

is continuous in x 2 [a; b].
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We also mention

Proposition 24 ([11]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m =

d�e, � > 0 and

D�
�x0f (x) =

1

� (m� �)

Z x

x0

(x� t)m���1 f (m) (t) dt; (40)

for all x; x0 2 [a; b] : x � x0:

Then D�
�x0f (x) is continuous in x0.

Proposition 25 ([11]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m =

d�e, � > 0 and

D�
x0�f (x) =

(�1)m

� (m� �)

Z x0

x

(� � x)m���1 f (m) (�) d�; (41)

for all x; x0 2 [a; b] : x0 � x:

Then D�
x0�f (x) is continuous in x0.

Corollary 26 ([11]) Let f 2 Cm ([a; b] ; X), m = d�e, � > 0, x; x0 2 [a; b].
Then Da

�x0f (x) ; D
a
x0�f (x) are jointly continuous functions in (x; x0) from

[a; b]
2 into X, X is a Banach space.

We need

Theorem 27 ([11]) Let f : [a; b]2 ! X be jointly continuous, X is a Banach
space. Consider

G (x) = !1 (f (�; x) ; �; [x; b]) ; (42)

� > 0, x 2 [a; b] :
Then G is continuous on [a; b] :

Theorem 28 ([11]) Let f : [a; b]2 ! X be jointly continuous, X is a Banach
space. Then

H (x) = !1 (f (�; x) ; �; [a; x]) ; (43)

x 2 [a; b], is continuous in x 2 [a; b], � > 0.

We present the following X-valued fractional approximation result by erf�
based neural networks.

Theorem 29 Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b] ; X), 0 < � < 1,
� > 0; x 2 [a; b], n 2 N : n1�� > 2: Then
i) 





An (f; x)�

N�1X
j=1

f (j) (x)

j!
An

�
(� � x)j

�
(x)� f (x)







 �
11



4

erf (2�) � (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� erf�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(44)
ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

kAn (f; x)� f (x)k �
4

� (�+ 1) erf (2�)8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� erf�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(45)
iii)

kAn (f; x)� f (x)k �

4

erf (2�)

8<:
N�1X
j=1



f (j) (x)


j!

(
1

n�j
+ (b� a)j

 
1� erf�

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� erf�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�))

;

(46)
8 x 2 [a; b] ;
and
iv)

kAnf � fk1 �

4

erf (2�)

8<:
N�1X
j=1



f (j)

1
j!

(
1

n�j
+ (b� a)j

 
1� erf�

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

12



 
1� erf�

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
:

(47)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain X-valued fractionally type pointwise and uniform
convergence with rates of An ! I the unit operator, as n!1:

Proof. It is very lengthy, as similar to [13], pp. 305-316, is omitted.
Next we apply Theorem 29 for N = 1:

Theorem 30 Let 0 < �; � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2,
� > 0: Then
i)

kAn (f; x)� f (x)k �

4

erf (2�) � (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� erf�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(48)
and
ii)

kAnf � fk1 � 4

� (�+ 1) erf (2�)8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

 
1� erf�

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!)
:

(49)

When � = 1
2 we derive

Corollary 31 Let 0 < � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2,
� > 0: Then
i)

kAn (f; x)� f (x)k �

13



8

erf (2�)
p
�

8>><>>:
�
!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ !1

�
D

1
2�xf;

1
n�

�
[x;b]

�
n
�
2

+

 
1� erf�

�
n1�� � 2

�
2

!�


D 1
2
x�f





1;[a;x]

p
(x� a) +




D 1
2�xf




1;[x;b]

p
(b� x)

�)
;

(50)
and
ii)

kAnf � fk1 � 8

erf (2�)
p
�8>>>><>>>>:

 
sup
x2[a;b]

!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1

�
D

1
2�xf;

1
n�

�
[x;b]

!
n
�
2

+

 
1� erf�

�
n1�� � 2

�
2

!p
(b� a)

 
sup
x2[a;b]




D 1
2
x�f





1;[a;x]

+ sup
x2[a;b]




D 1
2�xf




1;[x;b]

!)
<1:

(51)

We �nish with

Remark 32 Some convergence analysis follows:
Let 0 < � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2, � > 0: We

elaborate on (51). Assume that

!1

�
D

1
2
x�f;

1

n�

�
[a;x]

� K1

n�
; (52)

and

!1

�
D

1
2�xf;

1

n�

�
[x;b]

� K2

n�
; (53)

8 x 2 [a; b], 8 n 2 N, where K1;K2 > 0.
Then it holds"

sup
x2[a;b]

!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1

�
D

1
2�xf;

1
n�

�
[x;b]

#
n
�
2

�

(K1+K2)
n�

n
�
2

=
(K1 +K2)

n
3�
2

=
K

n
3�
2

; (54)

where K := K1 +K2 > 0:

14



The other summand of the right hand side of (51), for large enough n, con-

verges to zero at the speed
�
1�erf�(n1���2)

2

�
:

Then, for large enough n 2 N, by (51) and (54) and the last comment, we
obtain that

kAnf � fk1 �M max

 
1

n
3�
2

;

 
1� erf�

�
n1�� � 2

�
2

!!
; (55)

where M > 0:

If 1

n
3�
2

�
�
1�erf�(n1���2)

2

�
, then 1

n�
�
�
1�erf�(n1���2)

2

�
, and conse-

quently kAnf � fk1 in (55) converges to zero faster than in Theorem 14. This
because the di¤erentiability of f .
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