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Abstract

Here we describe multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN ; N 2 N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We treat also the case of ap-
proximation by iterated operators of the last four types, these correspond
to hidden multi-layer neural networks. The approximations are derived
by establishing multidimensional Jackson type inequalities involving the
multivariate modulus of continuity of the engaged function or its high
order partial derivatives. Our multivariate operators are de�ned by us-
ing a multidimensional density function induced by a parametrized error
function. The approximations are pointwise and uniform. The related
feed-forward neural network starts with one hidden layer.
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the �rst to establish neural net-
work approximations to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliaguet-Euvrard and �Squashing�types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The de�ning these operators
�bell-shaped� and �squashing� functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.
For this article the author is motivated by the article [14] of Z. Chen and F.

Cao, also by [4] - [12], [15], [16].
Let h be a general sigmoid function with h (0) = 0, and y = �1 the horizontal

asymptotes. Of course h is strictly increasing over R. Let the parameter 0 <
r < 1 and x > 0. Then clearly �x < x and �x < �rx < rx < x, furthermore it
holds h (�x) < h (�rx) < h (rx) < h (x). Consequently the sigmoid y = h (rx)

has a graph inside the graph of y = h (x), of course with the same asymptotes
y = �1. Therefore h (rx) has derivatives (gradients) at more points x than
h (x) has di¤erent than zero or not as close to zero, thus killing less number of
neurons! And of course h (rx) is more distant from y = �1, than h (x) it is. A
highly desired fact in Neural Networks theory.
Di¤erent activation functions allow for di¤erent non-linearities which might

work better for solving a speci�c function. So the need to use neural networks
with various activation functions is vivid. Thus, performing neural network
approximations using di¤erent activation functions is not only necessary but
fully justi�ed.
The author here performs multivariate parametrized error sigmoid function

based neural network approximations to continuous functions over boxes or over
the whole RN , N 2 N. Also he does iterated hidden multi layer neural network
approximation. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its high order partial
derivative and given by very tight multidimensional Jackson type inequalities.
The author here comes up with the �right� precisely de�ned multivariate

normalized, quasi-interpolation neural network operators related to boxes or
RN , as well as Kantorovich type and quadrature type related operators on RN .
Our boxes are not necessarily symmetric to the origin. In preparation to prove
our results we establish important properties of the basic multivariate density
function induced by a parametrized error sigmoid function and de�ning our
operators.
Feed-forward neural networks (FNNs) with one hidden layer, the starting

type of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
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weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x, and
� is the activation function of the network. In many fundamental network mod-
els, the activation function is an error sigmoid function. About approximation
theory see [1], and about neural networks read [17], [18], [19].

2 Basics

We consider here the parametrized (Gauss) error special function

erf�z =
2p
�

Z �z

0

e�t
2

dt; � > 0, z 2 R; (1)

which is a sigmoidal type function and a strictly increasing function. It is acting
here as an activation function.
Of special interest in neural network theory is when 0 < � < 1, see 1.

Introduction.
It has the basic properties

erf (�0) = 0; erf (��x) = �erf (�x) ;

erf (� (+1)) = 1, erf (� (�1)) = �1;
(2)

and

(erf (�x))
0
=
2�p
�
e�(�x)

2

, x 2 R: (3)

We consider the function

� (x) =
1

4
(erf (� (x+ 1))� erf (� (x� 1))) , x 2 R; (4)

and we notice that

� (�x) = 1

4
(erf (� (�x+ 1))� erf (� (�x� 1))) =

1

4
(erf (�� (x� 1))� erf (�� (x+ 1))) =

1

4
(�erf (� (x� 1)) + erf (� (x+ 1))) =

1

4
(erf (� (x+ 1))� erf (� (x� 1))) = � (x) : (5)

Thus � is an even function.
Since x + 1 > x � 1, then erf (� (x+ 1)) > erf (� (x� 1)), and � (x) > 0,

all x 2 R.
We see

� (0) =
erf�

2
: (6)
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Let x > 0, we have that

�0 (x) =
1

4

�
(erf (� (x+ 1)))

0 � (erf (� (x� 1)))0
�
=

1

4

2�p
�

�
e��

2(x+1)2 � e��
2(x�1)2

�
=

�

2
p
�

�
1

e�
2(x+1)2

� 1

e�
2(x�1)2

�
(7)

�

2
p
�

 
e�

2(x�1)2 � e�2(x+1)2

e�
2(x+1)2e�

2(x�1)2

!
< 0;

proving �0 (x) < 0, for x > 0. That is � is strictly decreasing on [0;1) and it is
strictly increasing on (�1; 0], and �0 (0) = 0:
Clearly, the x-axis is the horizontal asymptote of �.
Conclusion, � is a bell symmetric function with maximum

� (0) =
erf�

2
:

Let h : R ! [�1; 1] be a general sigmoid function, such that it is strictly
increasing, h (0) = 0, h (�x) = �h (x), h (+1) = 1, h (�1) = �1. Also h
is strictly convex over (�1; 0] and strictly concave over [0;+1), with h(2) 2
C (R), see [13].
So erf�x is a special case of h. Furthermore � (x) is a special case of the

following general function

 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (8)

see [13].
We have

Theorem 1 ([13]) It holds

1X
i=�1

 (x� i) = 1, 8 x 2 R: (9)

Thus

Corollary 2 It holds
1X

i=�1
� (x� i) = 1, 8 x 2 R: (10)

We have

Theorem 3 ([13]) It holds Z 1

�1
 (x) dx = 1: (11)
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Thus

Corollary 4 We have that Z 1

�1
� (x) dx = 1: (12)

Hence � (x) is a density function on R:
We need

Theorem 5 ([13]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 (nx� k) <
�
1� h

�
n1�� � 2

��
2

; (13)

with

lim
n!+1

�
1� h

�
n1�� � 2

��
2

= 0:

Thus we obtain

Corollary 6 Let 0 < � < 1, and n 2 N with n1�� > 2, � > 0. It holds
1X

8<:k = �1: jnx� kj � n1��

� (nx� k) <
�
1� erf

�
�
�
n1�� � 2

���
2

; (14)

with

lim
n!+1

�
1� erf

�
�
�
n1�� � 2

���
2

= 0:

Denote by b�c the integral part and by d�e the ceiling of a number.
Furthermore we need

Theorem 7 ([13]) Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  (nx� k)

<
1

 (1)
; 8 x 2 [a; b] : (15)

Therefore we derive

Corollary 8 Let x 2 [a; b] � R, � > 0 and n 2 N so that dnae � bnbc. Then

1Pbnbc
k=dnae � (nx� k)

<
1

� (1)
=

4

erf (2�)
: (16)
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Remark 9 As in [13], we have that

lim
n!1

bnbcX
k=dnae

� (nx� k) 6= 1: (17)

Note 10 For large enough n we always obtain dnae � bnbc. Also a � k
n � b,

i¤ dnae � k � bnbc. As in [13], we obtain that

bnbcX
k=dnae

� (nx� k) � 1: (18)

We introduce

Z (x1; :::; xN ) := Z (x) :=
NY
i=1

� (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (19)

It has the properties:
(i) Z (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z (x1 � k1; :::; xN � kN ) = 1; (20)

where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z (nx� k) = 1; (21)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z (x) dx = 1; (22)

that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(23)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :

6



We obviously see that

bnbcX
k=dnae

Z (nx� k) =
bnbcX

k=dnae

 
NY
i=1

� (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

� (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

� (nxi � ki)

1A : (24)

For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z (nx� k) =

bnbcX
8<: k = dnae

 k

n � x



1 � 1

n�

Z (nx� k) +
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n�

Z (nx� k) : (25)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition



 k
n � x




1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :
(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae

 k

n � x



1 > 1

n�

Z (nx� k)
(7)
<
1� erf�

�
n1�� � 2

�
2

, 0 < � < 1; (26)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :

(vi) By Corollary 8 we get that

0 <
1Pbnbc

k=dnae Z (nx� k)
<

�
4

erf (2�)

�N
; (27)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z (nx� k) <
1� erf�

�
n1�� � 2

�
2

; (28)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN :
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Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z (nx� k) 6= 1; (29)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k


�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1 � (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie � (nxi � ki)

� : (30)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When g 2 C

�QN
i=1 [ai; bi]

�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
: (31)

Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k
 �
Pbnbc

k=dnae


f � kn�


 Z (nx� k)Pbnbc

k=dnae Z (nx� k)
= eAn �kfk
 ; x� ; (32)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk
 2 C
�QN

i=1 [ai; bi]
�
:
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So, we have that

kAn (f; x)k
 � eAn �kfk
 ; x� ; (33)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (34)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (35)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

� (nxi � ki)
!
; (36)

8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z (nx� k)
; (37)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z (nx� k)

�
Pbnbc

k=dnae Z (nx� k)
: (38)

Consequently we derive

kAn (f; x)� f (x)k

(27)
�
�

4

erf (2�)

�N 





A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k)











;

(39)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (39).
For the last and others we need
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De�nition 11 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k


�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k
 , 0 < � � diam (M) : (40)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (41)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 12 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),

where M is a convex compact subset of
�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (40). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Z (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

� (nxi � ki)
!
; (42)

n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

� (nxi � ki)
!
; (43)
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n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=
�X
r=0

wrf

�
k

n
+

r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+

r1
n�1

;
k2
n
+

r2
n�2

; :::;
kN
n
+

rN
n�N

�
; (44)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z (nx� k) = (45)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

� (nxi � ki)
!
;

8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate general sigmoid Neural Network
Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 13 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, � > 0; x 2

�QN
i=1 [ai; bi]

�
;

N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k
 ��
4

erf (2�)

�N �
!1

�
f;
1

n�

�
+
�
1� erf�

�
n1�� � 2

�� 


kfk



1
�
=: �1 (n) ; (46)
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and
2) 


kAn (f)� fk



1 � �1 (n) : (47)

We notice that lim
n!1

An (f)
k�k

= f , pointwise and uniformly.

Above !1 is with respect to p =1 and the speed of convergnece is
max

�
1
n�
;
�
1� erf�

�
n1�� � 2

���
:

Proof. As similar to [12] is omitted.
We continue with

Theorem 14 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, � > 0; x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k
 � !1

�
f;
1

n�

�
+
�
1� erf�

�
n1�� � 2

�� 


kfk



1 =: �2 (n) ;

(48)
2) 


kBn (f)� fk



1 � �2 (n) : (49)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly. The speed of convergence above is max
�
1
n�
;
�
1� erf�

�
n1�� � 2

���
:

Proof. As similar to [12] is omitted.
We give

Theorem 15 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, � > 0; x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
�
1� erf�

�
n1�� � 2

�� 


kfk



1 =: �3 (n) ;

(50)
2) 


kCn (f)� fk



1 � �3 (n) : (51)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.

Proof. As similar to [12] is omitted.
We also present
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Theorem 16 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, � > 0; x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
�
1� erf�

�
n1�� � 2

�� 


kfk



1 = �4 (n) ;

(52)
2) 


kDn (f)� fk






1
� �4 (n) : (53)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. As similar to [12] is omitted.
Let f 2 Cm

�QN
i=1 [ai; bi]

�
, m;N 2 N. Here f� denotes a partial derivative

of f , � := (�1; :::; �N ), �i 2 Z+, i = 1; :::; N , and j�j :=
PN

i=1 �i = l; where
l = 0; 1; :::;m. We write also f� :=

@�f
@x� and we say it is of order l.

We denote
!max1;m (f�; h) := max

�:j�j=m
!1 (f�; h) : (54)

Call also
kf�kmax1;m := max

j�j=m
fkf�k1g ; (55)

k�k1 is the supremum norm.
In the next we discuss high order of approximation by using the smoothness

of f .
We give

Theorem 17 Let f 2 Cm
�QN

i=1 [ai; bi]
�
, 0 < � < 1, n;m;N 2 N, n1�� � 2;

� > 0; x 2
�QN

i=1 [ai; bi]
�
. Then

i)������An (f; x)� f (x)�
mX
j=1

0@X
j�j=j

 
f� (x)QN
i=1 �i!

!
An

 
NY
i=1

(� � xi)�i ; x
!1A������ � (56)

�
4

erf (2�)

�N �
Nm

m!nm�
!max1;m

�
f�;

1

n�

�
+ 

kb� akm1 kf�k
max
1;mN

m

m!

!�
1� erf�

�
n1�� � 2

��)
;

ii)

jAn (f; x)� f (x)j �
�

4

erf (2�)

�N
� (57)
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8<:
mX
j=1

0@X
j�j=j

 
jf� (x)jQN
i=1 �i!

!"
1

n�j
+

 
NY
i=1

(bi � ai)�i
!
�

 
1� erf�

�
n1�� � 2

�
2

!#!
+

Nm

m!nm�
!max1;m

�
f�;

1

n�

�

+

 
kb� akm1 kf�k

max
1;mN

m

m!

!�
1� erf�

�
n1�� � 2

��)
;

iii)

kAn (f)� fk1 �
�

4

erf (2�)

�N
� (58)8<:

mX
j=1

0@X
j�j=j

 
kf�k1QN
i=1 �i!

!"
1

n�j
+

 
NY
i=1

(bi � ai)�i
!
�

 
1� erf�

�
n1�� � 2

�
2

!#!
+

Nm

m!nm�
!max1;m

�
f�;

1

n�

�

+

 
kb� akm1 kf�k

max
1;mN

m

m!

!�
1� erf�

�
n1�� � 2

��)
;

iv) assume f� (x0) = 0, for all � : j�j = 1; :::;m; x0 2
�QN

i=1 [ai; bi]
�
, then

jAn (f; x0)� f (x0)j �
�

4

erf (2�)

�N �
Nm

m!nm�
!max1

�
f�;

1

n�

�
+ (59)

 
kb� akm1 kf�k

max
1;mN

m

m!

!�
1� erf�

�
n1�� � 2

��)
;

notice in the last the extremely high rate of convergence at n��(m+1):

Proof. As similar to [10], pp. 389-396, it is omitted.
We make

De�nition 18 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k


�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(60)
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Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k
 �


kfk



1 :

Hence Fn (f) is a bounded linear operator with



kFn (f)k



1 �




kfk



1.
We need

Theorem 19 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Very lengthy and as similar to [10], pp. 396-400, it is omitted.

Remark 20 By (30) it is obvious that



kAn (f)k



1 �




kfk



1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:

Clearly then




L2n (f)





1 =



kLn (Ln (f))k



1 �




kLn (f)k



1 �



kfk



1 ; (61)

etc.
Therefore we get




Lkn (f)





1 �




kfk



1 , 8 k 2 N, (62)

the contraction property.
Also we see that




Lkn (f)





1 �






Lk�1n (f)










1
� ::: �




kLn (f)k



1 �



kfk



1 : (63)

Here Lkn are bounded linear operators.

Notation 21 Here N 2 N, 0 < � < 1: Denote by

cN :=

8<:
�

4
erf(2�)

�N
, if Ln = An;

1, if Ln = Bn; Cn; Dn;
(64)

' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(65)


 :=

8<:C

�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(66)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:

(67)
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We give the condensed

Theorem 22 Let f 2 
, 0 < � < 1, x 2 Y ; n; N 2 N with n1�� > 2, � > 0.
Then
(i)

kLn (f; x)� f (x)k
 � cN

h
!1 (f; ' (n)) +

�
1� erf�

�
n1�� � 2

�� 


kfk



1i =: � (n) ;
(68)

where !1 is for p =1;
and
(ii) 


kLn (f)� fk



1 � � (n)! 0, as n!1: (69)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.

Proof. By Theorems 13, 14, 15, 16.
Next we do iterated neural network approximation (see also [9]).
We make

Remark 23 Let r 2 N and Ln as above. We observe that

Lrnf � f =
�
Lrnf � Lr�1n f

�
+
�
Lr�1n f � Lr�2n f

�
+�

Lr�2n f � Lr�3n f
�
+ :::+

�
L2nf � Lnf

�
+ (Lnf � f) :

Then


kLrnf � fk



1 �





Lrnf � Lr�1n f











1
+





Lr�1n f � Lr�2n f











1
+




Lr�2n f � Lr�3n f











1
+ :::+






L2nf � Lnf





1 +



kLnf � fk



1 =




Lr�1n (Lnf � f)











1
+





Lr�2n (Lnf � f)











1
+





Lr�3n (Lnf � f)











1

+:::+



kLn (Lnf � f)k



1 +




kLnf � fk



1 � r



kLnf � fk



1 : (70)

That is 


kLrnf � fk



1 � r



kLnf � fk



1 : (71)

We give
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Theorem 24 All here as in Theorem 22 and r 2 N, � (n) as in (68). Then


kLrnf � fk



1 � r� (n) : (72)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. By (71) and (68).
We make

Remark 25 Let m1; :::;mr 2 N : m1 � m2 � ::: � mr, 0 < � < 1, f 2 
.
Then ' (m1) � ' (m2) � ::: � ' (mr), ' as in (65).
Therefore

!1 (f; ' (m1)) � !1 (f; ' (m2)) � ::: � !1 (f; ' (mr)) : (73)

Assume further that m1��
i > 2, i = 1; :::; r. Then

1� erf�
�
m1��
1 � 2

�
2

�
1� erf�

�
m1��
2 � 2

�
2

� ::: �
1� erf�

�
m1��
r � 2

�
2

:

(74)
Let Lmi as above, i = 1; :::; r; all of the same kind.
We write

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f =

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� Lmr

�
Lmr�1 (:::Lm2

f)
�
+

Lmr

�
Lmr�1 (:::Lm2f)

�
� Lmr

�
Lmr�1 (:::Lm3f)

�
+

Lmr

�
Lmr�1 (:::Lm3

f)
�
� Lmr

�
Lmr�1 (:::Lm4

f)
�
+ :::+ (75)

Lmr

�
Lmr�1f

�
� Lmr

f + Lmr
f � f =

Lmr

�
Lmr�1 (:::Lm2)

�
(Lm1f � f) + Lmr

�
Lmr�1 (:::Lm3)

�
(Lm2f � f)+

Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f) + :::+ Lmr

�
Lmr�1f � f

�
+ Lmr

f � f:

Hence by the triangle inequality property of



k�k



1 we get




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�




Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f)










1
+




Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)










1
+




Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f)










1
+ :::+
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Lmr

�
Lmr�1f � f

�









1
+



kLmr

f � fk





1

(repeatedly applying (61))

�



kLm1f � fk






1
+



kLm2

f � fk





1
+



kLm3

f � fk





1
+ :::+






Lmr�1f � f










1
+



kLmrf � fk






1
=

rX
i=1




kLmif � fk





1
: (76)

That is, we proved




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmi
f � fk






1
: (77)

We give

Theorem 26 Let f 2 
; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1

; :::; Lmr
) as (Am1

; :::; Amr
)

or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p =1: Then

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
(x)� f (x)






�




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmi
f � fk






1
�

cN

rX
i=1

h
!1 (f; ' (mi)) +

�
1� erf�

�
m1��
i � 2

��


kfk



1i �
rcN

h
!1 (f; ' (m1)) +

�
1� erf�

�
m1��
1 � 2

��


kfk



1i : (78)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1

:

Proof. Using (77), (73), (74) and (68), (69).
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