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Abstract

Here we research the univariate fuzzy ordinary and fractional quan-
titative approximation of fuzzy real valued functions on a compact in-
terval by quasi-interpolation general sigmoid activation function relied
fuzzy neural network operators. These approximations are derived by es-
tablishing fuzzy Jackson type inequalities involving the fuzzy moduli of
continuity of the function, or of the right and left Caputo fuzzy fractional
derivatives of the involved function. The approximations are fuzzy point-
wise and fuzzy uniform. The related feed-forward fuzzy neural networks
are with one hidden layer. We study in particular the fuzzy integer deriv-
ative and just fuzzy continuous cases. Our fuzzy fractional approximation
result using higher order fuzzy di¤erentiation converges better than in the
fuzzy just continuous case.

2020 AMSMathematics Subject Classi�cation: 26A33, 26E50, 41A17,
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Keywords and Phrases: general sigmoid activation function, neural net-
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1 Introduction

The author in [1] and [2], see chapters 2-5, was the �rst to derive quantitative
neural network approximations to continuous functions with rates by very specif-
ically de�ned neural network operators of Cardaliaguet-Euvrard and �Squash-
ing�types, by employing the modulus of continuity of the engaged function or
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its high order derivative, and producing very tight Jackson type inequalities.
He studied there both the univariate and multivariate cases. The de�ning these
operators �bell-shaped�and �squashing�function are assumed to be of compact
support.
The author inspired by [23], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [10], [13] - [22], by
treating both the univariate and multivariate cases.
Continuation of the author�s works ([17], [18] and [19], Chapter 20) is this

article where fuzzy neural network approximation based on a general sigmoid
activation function is taken at the fractional and ordinary levels resulting into
higher rates of approximation. We involve the fuzzy ordinary derivatives and
the right and left Caputo fuzzy fractional derivatives of the fuzzy function under
approximation and we establish tight fuzzy Jackson type inequalities. An exten-
sive background is given on fuzzyness, fractional calculus and neural networks,
all needed to present our work.
Our fuzzy feed-forward neural networks (FFNNs) are with one hidden layer.

About neural networks in general study [29], [32], [33].

2 Fuzzy Fractional Mathematical Analysis Ba-
sics

(see also [19], pp. 432-444)
We need the following basic background

De�nition 1 (see [36]) Let � : R! [0; 1] with the following properties:
(i) is normal, i.e., 9 x0 2 R; � (x0) = 1:
(ii) � (�x+ (1� �) y) � minf� (x) ; � (y)g, 8 x; y 2 R, 8 � 2 [0; 1] (� is

called a convex fuzzy subset).
(iii) � is upper semicontinuous on R, i.e. 8 x0 2 R and 8 " > 0, 9 neigh-

borhood V (x0) : � (x) � � (x0) + ", 8 x 2 V (x0) :
(iv) The set supp (�) is compact in R (where supp(�) := fx 2 R : � (x) > 0g).
We call � a fuzzy real number. Denote the set of all � with RF .
E.g. �fx0g 2 RF , for any x0 2 R, where �fx0g is the characteristic function

at x0.
For 0 < r � 1 and � 2 RF de�ne

[�]
r
:= fx 2 R : � (x) � rg

and
[�]

0
:= fx 2 R : � (x) � 0g:
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Then it is well known that for each r 2 [0; 1], [�]r is a closed and bounded
interval on R ([28]).

For u; v 2 RF and � 2 R, we de�ne uniquely the sum u� v and the product
�� u by

[u� v]r = [u]r + [v]r , [�� u]r = � [u]
r , 8 r 2 [0; 1] ;

where
[u]

r
+ [v]

r means the usual addition of two intervals (as substes of R) and
� [u]

r means the usual product between a scalar and a subset of R (see, e.g.
[36]).
Notice 1� u = u and it holds

u� v = v � u, �� u = u� �:

If 0 � r1 � r2 � 1 then
[u]

r2 � [u]r1 :

Actually [u]r =
h
u
(r)
� ; u

(r)
+

i
, where u(r)� � u

(r)
+ , u

(r)
� , u

(r)
+ 2 R, 8 r 2 [0; 1].

For � > 0 one has �u(r)� = (�� u)(r)� , respectively.
De�ne D : RF � RF ! RF by

D (u; v) := sup
r2[0;1]

max
n���u(r)� � v(r)�

��� ; ���u(r)+ � v(r)+
���o ;

where
[v]

r
=
h
v
(r)
� ; v

(r)
+

i
; u; v 2 RF :

We have that D is a metric on RF :
Then (RF ; D) is a complete metric space, see [36], [37].

Here
�P
stands for fuzzy summation and eo := �f0g 2 RF is the neural

element with respect to �, i.e.,

u� e0 = e0� u = u, 8 u 2 RF :

Denote
D� (f; g) = sup

x2X�R
D (f; g) ;

where f; g : X ! RF :
We mention

De�nition 2 Let f : X � R! RF , X interval, we de�ne the (�rst) fuzzy
modulus of continuity of f by

!
(F)
1 (f; �)X = sup

x;y2X, jx�yj��
D (f (x) ; f (y)) , � > 0:
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When g : X � R! R, we de�ne

!1 (g; �) = !1 (g; �)X = sup
x;y2X, jx�yj��

jg (x)� g (y)j :

We de�ne by CUF (R) the space of fuzzy uniformly continuous functions from
R ! RF , also CF (R) is the space of fuzzy continuous functions on R, and
Cb (R;RF ) is the fuzzy continuous and bounded functions.
We mention

Proposition 3 ([5]) Let f 2 CUF (X) : Then !
(F)
1 (f; �)X <1, for any � > 0.

By [9], p. 129 we have that CUF ([a; b]) = CF ([a; b]), fuzzy continuous func-
tions on [a; b] � R:

Proposition 4 ([5]) It holds

lim
�!0

!
(F)
1 (f; �)X = !

(F)
1 (f; 0)X = 0;

i¤ f 2 CUF (X), where X is a compact interval.

Proposition 5 ([5]) Here [f ]r =
h
f
(r)
� ; f

(r)
+

i
, r 2 [0; 1] : Let f 2 CF (R). Then

f
(r)
� are equicontinuous with respect to r 2 [0; 1] over R, respectively in �:

Note 6 It is clear by Propositions 4, 5, that if f 2 CUF (R), then f
(r)
� 2 CU (R)

(uniformly continuous on R). Also if f 2 Cb (R;RF ) implies f
(r)
� 2 Cb (R)

(continuous and bounded functions on R).

Proposition 7 Let f : R ! RF . Assume that !F1 (f; �)X , !1
�
f
(r)
� ; �

�
X
,

!1

�
f
(r)
+ ; �

�
X
are �nite for any � > 0, r 2 [0; 1] ; where X any interval of

R:
Then

!
(F)
1 (f; �)X = sup

r2[0;1]
max

n
!1

�
f
(r)
� ; �

�
X
; !1

�
f
(r)
+ ; �

�
X

o
:

Proof. Similar to Proposition 14.15, p. 246 of [9].
We need

Remark 8 ([3]). Here r 2 [0; 1], x(r)i ; y
(r)
i 2 R, i = 1; :::;m 2 N. Suppose that

sup
r2[0;1]

max
�
x
(r)
i ; y

(r)
i

�
2 R, for i = 1; :::;m:

Then one sees easily that

sup
r2[0;1]

max

 
mX
i=1

x
(r)
i ;

mX
i=1

y
(r)
i

!
�

mX
i=1

sup
r2[0;1]

max
�
x
(r)
i ; y

(r)
i

�
: (1)
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We need

De�nition 9 Let x; y 2 RF . If there exists z 2 RF : x = y � z, then we call z
the H-di¤erence on x and y, denoted x� y.

De�nition 10 ([35]) Let T := [x0; x0 + �] � R, with � > 0. A function f :
T ! RF is H-di¤erentiable at x 2 T if there exists an f 0 (x) 2 RF such that
the limits (with respect to D)

lim
h!0+

f (x+ h)� f (x)
h

, lim
h!0+

f (x)� f (x� h)
h

(2)

exist and are equal to f 0 (x) :
We call f 0 the H-derivative or fuzzy derivative of f at x.

Above is assumed that the H-di¤erences f (x+ h)� f (x), f (x)� f (x� h)
exists in RF in a neighborhood of x:
Higher order H-fuzzy derivatives are de�ned the obvious way, like in the real

case.
We denote by CNF (R), N � 1, the space of all N -times continuously H-

fuzzy di¤erentiable functions from R into RF ; similarly is de�ned CNF ([a; b]),
[a; b] � R:
We mention

Theorem 11 ([30]) Let f : R ! RF be H-fuzzy di¤erentiable. Let t 2 R,
0 � r � 1. Clearly

[f (t)]
r
=
h
f (t)

(r)
� ; f (t)

(r)
+

i
� R:

Then (f (t))(r)� are di¤erentiable and

[f 0 (t)]
r
=

��
f (t)

(r)
�

�0
;
�
f (t)

(r)
+

�0�
:

I.e.
(f 0)

(r)
� =

�
f
(r)
�

�0
, 8 r 2 [0; 1] :

Remark 12 ([4]) Let f 2 CNF (R), N � 1. Then by Theorem 11 we obtainh
f (i) (t)

ir
=

��
f (t)

(r)
�

�(i)
;
�
f (t)

(r)
+

�(i)�
;

for i = 0; 1; 2; :::; N; and in particular we have that�
f (i)
�(r)
�
=
�
f
(r)
�

�(i)
,

for any r 2 [0; 1] ; all i = 0; 1; 2; :::; N:
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Note 13 ([4]) Let f 2 CNF (R), N � 1. Then by Theorem 11 we have f (r)� 2
CN (R), for any r 2 [0; 1] :

Items 11-13 are valid also on [a; b].
By [9], p. 131, if f 2 CF ([a; b]), then f is a fuzzy bounded function.
We need also a particular case of the Fuzzy Henstock integral (� (x) = �

2 ),
see [36].

De�nition 14 ([27], p. 644) Let f : [a; b] ! RF . We say that f is Fuzzy-
Riemann integrable to I 2 RF if for any " > 0, there exists � > 0 such that for
any division P = f[u; v] ; �g of [a; b] with the norms �(P ) < �, we have

D

 �X
P

(v � u)� f (�) ; I
!
< ":

We write

I := (FR)

Z b

a

f (x) dx: (3)

We mention

Theorem 15 ([28]) Let f : [a; b]! RF be fuzzy continuous. Then

(FR)

Z b

a

f (x) dx

exists and belongs to RF , furthermore it holds"
(FR)

Z b

a

f (x) dx

#r
=

"Z b

a

(f)
(r)
� (x) dx;

Z b

a

(f)
(r)
+ (x) dx

#
;

8 r 2 [0; 1] :

For the de�nition of general fuzzy integral we follow [31] next.

De�nition 16 Let (
;�; �) be a complete �-�nite measure space. We call F :

! RF measurable i¤ 8 closed B � R the function F�1 (B) : 
! [0; 1] de�ned
by

F�1 (B) (w) := sup
x2B

F (w) (x) , all w 2 


is measurable, see [31].

Theorem 17 ([31]) For F : 
! RF ,

F (w) =
n�
F
(r)
� (w) ; F

(r)
+ (w)

�
j0 � r � 1

o
;

the following are equivalent
(1) F is measurable,
(2) 8 r 2 [0; 1], F (r)� ; F

(r)
+ are measurable.
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Following [31], given that for each r 2 [0; 1], F (r)� ; F
(r)
+ are integrable we

have that the parametrized representation��Z
A

F
(r)
� d�;

Z
A

F
(r)
+ d�

�
j0 � r � 1

�
(4)

is a fuzzy real number for each A 2 �:
The last fact leads to

De�nition 18 ([31]) A measurable function F : 
! RF ,

F (w) =
n�
F
(r)
� (w) ; F

(r)
+ (w)

�
j0 � r � 1

o
is integrable if for each r 2 [0; 1], F (r)� are integrable, or equivalently, if F (0)� are
integrable.

In this case, the fuzzy integral of F over A 2 � is de�ned byZ
A

Fd� :=

��Z
A

F
(r)
� d�;

Z
A

F
(r)
+ d�

�
j0 � r � 1

�
:

By [31], F is integrable i¤ w ! kF (w)kF is real-valued integrable.
Here denote

kukF := D
�
u;e0� , 8 u 2 RF :

We need also

Theorem 19 ([31]) Let F;G : 
! RF be integrable. Then
(1) Let a; b 2 R, then aF + bG is integrable and for each A 2 �,Z

A

(aF + bG) d� = a

Z
A

Fd�+ b

Z
A

Gd�;

(2) D (F;G) is a real- valued integrable function and for each A 2 �,

D

�Z
A

Fd�;

Z
A

Gd�

�
�
Z
A

D (F;G) d�:

In particular, Z
A

Fd�


F
�
Z
A

kFkF d�:

Above � could be the Lebesgue measure, with all the basic properties valid
here too.
Basically here we have�Z

A

Fd�

�r
=

�Z
A

F
(r)
� d�;

Z
A

F
(r)
+ d�

�
; (5)
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i.e. �Z
A

Fd�

�(r)
�
=

Z
A

F
(r)
� d�; 8 r 2 [0; 1] :

We need

De�nition 20 Let � � 0, n = d�e (d�e is the ceiling of the number), f 2
ACn ([a; b]) (space of functions f with f (n�1) 2 AC ([a; b]), absolutely continu-
ous functions). We call left Caputo fractional derivative (see [24], pp. 49-52,
[26], [34]) the function

D�
�af (x) =

1

� (n� �)

Z x

a

(x� t)n���1 f (n) (t) dt; (6)

8 x 2 [a; b], where � is the gamma function � (�) =
R1
0
e�tt��1dt; � > 0.

Notice D�
�af 2 L1 ([a; b]) and D�

�af exists a.e. on [a; b].
We set D0

�af (x) = f (x), 8 x 2 [a; b] :

Lemma 21 ([8]) Let � > 0, � =2 N, n = d�e, f 2 Cn�1 ([a; b]) and f (n) 2
L1 ([a; b]) : Then D�

�af (a) = 0:

De�nition 22 (see also [6], [25], [26]) Let f 2 ACm ([a; b]), m = d�e, � > 0.
The right Caputo fractional derivative of order � > 0 is given by

D�
b�f (x) =

(�1)m

� (m� �)

Z b

x

(� � x)m���1 f (m) (�) d�; (7)

8 x 2 [a; b]. We set D0
b�f (x) = f (x) : Notice that D�

b�f 2 L1 ([a; b]) and D
�
b�f

exists a.e. on [a; b] :

Lemma 23 ([8]) Let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]), m = d�e, � > 0;

� =2 N. Then D�
b�f (b) = 0:

Convention 24 We assume that

D�
�x0f (x) = 0, for x < x0; (8)

and
D�
x0�f (x) = 0, for x > x0; (9)

for all x; x0 2 [a; b]:

We mention

Proposition 25 ([8]) Let f 2 Cn ([a; b]), n = d�e, � > 0. Then D�
�af (x) is

continuous in x 2 [a; b] :
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Also we have

Proposition 26 ([8]) Let f 2 Cm ([a; b]), m = d�e, � > 0. Then D�
b�f (x) is

continuous in x 2 [a; b] :

We further mention

Proposition 27 ([8]) Let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]), m = d�e,
� > 0 and

D�
�x0f (x) =

1

� (m� �)

Z x

x0

(x� t)m���1 f (m) (t) dt; (10)

for all x; x0 2 [a; b] : x � x0:

Then D�
�x0f (x) is continuous in x0:

Proposition 28 ([8]) Let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]) ; m = d�e,
� > 0 and

D�
x0�f (x) =

(�1)m

� (m� �)

Z x0

x

(� � x)m���1 f (m) (�) d�; (11)

for all x; x0 2 [a; b] : x � x0:

Then D�
x0�f (x) is continuous in x0:

We need

Proposition 29 ([8]) Let g 2 C ([a; b]), 0 < c < 1, x; x0 2 [a; b]. De�ne

L (x; x0) =

Z x

x0

(x� t)c�1 g (t) dt, for x � x0; (12)

and L (x; x0) = 0, for x < x0:

Then L is jointly continuous in (x; x0) on [a; b]
2
:

We mention

Proposition 30 ([8]) Let g 2 C ([a; b]), 0 < c < 1, x; x0 2 [a; b]. De�ne

K (x; x0) =

Z x

x0

(� � x)c�1 g (�) d�, for x � x0; (13)

and K (x; x0) = 0, for x > x0:

Then K (x; x0) is jointly continuous from [a; b]
2 into R:

Based on Propositions 29, 30 we derive
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Corollary 31 ([8]) Let f 2 Cm ([a; b]), m = d�e, � > 0, � =2 N, x; x0 2
[a; b] : Then D�

�x0f (x), D
�
x0�f (x) are jointly continuous functions in (x; x0)

from [a; b]
2 into R:

We need

Theorem 32 ([8]) Let f : [a; b]2 ! R be jointly continous. Consider

G (x) = !1 (f (�; x) ; �)[x;b] ; (14)

� > 0, x 2 [a; b] :
Then G is continuous in x 2 [a; b] :

Also it holds

Theorem 33 ([8]) Let f : [a; b]2 ! R be jointly continous. Then

H (x) = !1 (f (�; x) ; �)[a;x] ; (15)

x 2 [a; b], is continuous in x 2 [a; b], � > 0:

So that for f 2 Cm ([a; b]), m = d�e, � > 0, � =2 N, x; x0 2 [a; b], we have
that !1

�
D�
�xf; h

�
[x;b]

, !1
�
D�
x�f; h

�
[a;x]

are continuous functions in x 2 [a; b],
h > 0 is �xed.
We make

Remark 34 ([8]) Let f 2 Cn�1 ([a; b]), f (n) 2 L1 ([a; b]) ; n = d�e, � > 0,
� =2 N: Then we have

jD�
�af (x)j �

f (n)1
� (n� � + 1) (x� a)

n�� , 8 x 2 [a; b] : (16)

Thus we observe

!1 (D
�
�af; �) = sup

x;y2[a;b]
jx�yj��

jD�
�af (x)�D�

�af (y)j (17)

� sup
x;y2[a;b]
jx�yj��

 f (n)1
� (n� � + 1) (x� a)

n��
+

f (n)1
� (n� � + 1) (y � a)

n��
!

�
2
f (n)1

� (n� � + 1) (b� a)
n��

: (18)

Consequently

!1 (D
�
�af; �) �

2
f (n)1

� (n� � + 1) (b� a)
n��

: (19)
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Similarly, let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]) ; m = d�e, � > 0, � =2 N;
then

!1

�
D�
b�f; �

�
�

2
f (m)1

� (m� � + 1) (b� a)
m��

: (20)

So for f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]) ; m = d�e, � > 0, � =2 N; we �nd

sup
x02[a;b]

!1
�
D�
�x0f; �

�
[x0;b]

�
2
f (m)1

� (m� � + 1) (b� a)
m��

; (21)

and

sup
x02[a;b]

!1

�
D�
x0�f; �

�
[a;x0]

�
2
f (m)1

� (m� � + 1) (b� a)
m��

: (22)

By Proposition 15.114, p. 388 of [7], we get here that D�
�x0f 2 C ([x0; b]), and

by [12] we obtain that D�
x0�f 2 C ([a; x0]).

We need

De�nition 35 ([11]) Let f 2 CF ([a; b]) (fuzzy continuous on [a; b] � R), � >
0.
We de�ne the Fuzzy Fractional left Riemann-Liouville operator as

J�a f (x) :=
1

� (�)
�
Z x

a

(x� t)��1 � f (t) dt; x 2 [a; b] ; (23)

J0af := f:

Also, we de�ne the Fuzzy Fractional right Riemann-Liouville operator as

I�b�f (x) :=
1

� (�)
�
Z b

x

(t� x)��1 � f (t) dt; x 2 [a; b] ; (24)

I0b�f := f:

We mention

De�nition 36 ([11]) Let f : [a; b] ! RF is called fuzzy absolutely continuous
i¤ 8 � > 0, 9 � > 0 for every �nite, pairwise disjoint, family

(ck; dk)
n
k=1 � (a; b) with

nX
k=1

(dk � ck) < �

we get
nX
k=1

D (f (dk) ; f (ck)) < �: (25)

We denote the related space of functions by ACF ([a; b]) :
If f 2 ACF ([a; b]), then f 2 CF ([a; b]) :
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It holds

Proposition 37 ([11]) f 2 ACF ([a; b]) , f
(r)
� 2 AEC ([a; b]), 8 r 2 [0; 1]

(absolutely equicontinuous).

We need

De�nition 38 ([11]) We de�ne the Fuzzy Fractional left Caputo derivative,
x 2 [a; b].
Let f 2 CnF ([a; b]), n = d�e, � > 0 (d�e denotes the ceiling). We de�ne

D�F
�a f (x) :=

1

� (n� �) �
Z x

a

(x� t)n���1 � f (n) (t) dt (26)

=

��
1

� (n� �)

Z x

a

(x� t)n���1
�
f (n)

�(r)
�
(t) dt;

1

� (n� �)

Z x

a

(x� t)n���1
�
f (n)

�(r)
+
(t) dt

�
j0 � r � 1

�
=

=

��
1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
�

�(n)
(t) dt;

1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
+

�(n)
(t) dt

�
j0 � r � 1

�
: (27)

So, we get

�
D�F
�a f (x)

�r
=

��
1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
�

�(n)
(t) dt;

1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
+

�(n)
(t) dt

��
; 0 � r � 1: (28)

That is�
D�F
�a f (x)

�(r)
� =

1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
�

�(n)
(t) dt =

�
D�
�a

�
f
(r)
�

��
(x) ;

see [7], [24].
I.e. we get that �

D�F
�a f (x)

�(r)
� =

�
D�
�a

�
f
(r)
�

��
(x) ; (29)

8 x 2 [a; b], in short�
D�F
�a f

�(r)
� = D�

�a

�
f
(r)
�

�
; 8 r 2 [0; 1] : (30)

We need

12



Lemma 39 ([11]) D�F
�a f (x) is fuzzy continuous in x 2 [a; b].

We need

De�nition 40 ([11]) We de�ne the Fuzzy Fractional right Caputo derivative,
x 2 [a; b].
Let f 2 CnF ([a; b]), n = d�e, � > 0. We de�ne

D�F
b� f (x) :=

(�1)n

� (n� �) �
Z b

x

(t� x)n���1 � f (n) (t) dt

=

( 
(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f (n)

�(r)
�
(t) dt;

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f (n)

�(r)
+
(t) dt

!
j0 � r � 1

)
(31)

=

( 
(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
�

�(n)
(t) dt;

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
+

�(n)
(t) dt

!
j0 � r � 1

)
:

We get �
D�F
b� f (x)

�r
=

" 
(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
�

�(n)
(t) dt;

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
+

�(n)
(t) dt

!#
; 0 � r � 1:

That is�
D�F
b� f (x)

�(r)
� =

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
�

�(n)
(t) dt =

�
D�
b�

�
f
(r)
�

��
(x) ;

see [6].
I.e. we get that �

D�F
b� f (x)

�(r)
� =

�
D�
b�

�
f
(r)
�

��
(x) ; (32)

8 x 2 [a; b], in short�
D�F
b� f

�(r)
� = D�

b�

�
f
(r)
�

�
; 8 r 2 [0; 1] : (33)

Clearly,

D�
b�

�
f
(r)
�

�
� D�

b�

�
f
(r)
+

�
; 8 r 2 [0; 1] :

We need

Lemma 41 ([11]) D�F
b� f (x) is fuzzy continuous in x 2 [a; b].

13



3 Real neural network approximation

Here we follow [22].
Let h : R ! [�1; 1] be a general sigmoid function, such that it is strictly

increasing, h (0) = 0, h (�x) = �h (x), h (+1) = 1, h (�1) = �1. Also h
is strictly convex over (�1; 0] and strictly concave over [0;+1), with h(2) 2
C (R).
We consider the activation function

 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (34)

As in [21], p. 45, we get that  (�x) =  (x) ; thus  is an even function. Since
x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  (x) > 0, all x 2 R.
We see that

 (0) =
h (1)

2
: (35)

Let x > 1, we have that

 0 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) < 0;

by h0 being strictly decreasing over [0;+1):
Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds

h0 (x� 1) = h0 (1� x) > h0 (x+ 1), so that again  0 (x) < 0: Consequently  is
stritly decreasing on (0;+1) :
Clearly,  is strictly increasing on (�1; 0), and  0 (0) = 0:
See that

lim
x!+1

 (x) =
1

4
(h (+1)� h (+1)) = 0; (36)

and
lim

x!�1
 (x) =

1

4
(h (�1)� h (�1)) = 0: (37)

That is the x-axis is the horizontal asymptote on  .
Conclusion,  is a bell symmetric function with maximum

 (0) =
h (1)

2
:

We need

Theorem 42 ([22]) We have that

1X
i=�1

 (x� i) = 1, 8 x 2 R: (38)

14



Theorem 43 ([22]) It holds Z 1

�1
 (x) dx = 1: (39)

Thus  (x) is a density function on R:
We give

Theorem 44 ([22]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 (nx� k) <
�
1� h

�
n1�� � 2

��
2

: (40)

Notice that

lim
n!+1

�
1� h

�
n1�� � 2

��
2

= 0:

Denote by b�c the integral part of the number and by d�e the ceiling of the
number.
We further give

Theorem 45 ([22]) Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds
1Pbnbc

k=dnae  (nx� k)
<

1

 (1)
; 8 x 2 [a; b] : (41)

Remark 46 ([22]) i) We have that

lim
n!1

bnbcX
k=dnae

 (nx� k) 6= 1; (42)

for at least some x 2 [a; b] :
ii) For large enough n 2 N we always obtain dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general, by Theorem 42, it holds

bnbcX
k=dnae

 (nx� k) � 1: (43)

We give

De�nition 47 ([22]) Let f 2 C ([a; b]) and n 2 N : dnae � bnbc. We introduce
and de�ne the linear neural network operator

An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
 (nx� k)Pbnbc

k=dnae  (nx� k)
; x 2 [a; b] : (44)

15



Clearly here An (f; x) 2 C ([a; b]). We present results for the pointwise and
uniform convergence of An (f; x) to f (x) with rates.
We �rst give

Theorem 48 ([22]) Let f 2 C ([a; b]), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b] :
Then
i)

jAn (f; x)� f (x)j �
1

 (1)

�
!1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

��
kfk1

�
=: �;

(45)
and
ii)

kAn (f)� fk1 � �: (46)

We notice lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� h

�
n1�� � 2

���
:

In the next we discuss high order neural network approximation by using
the smoothness of f .

Theorem 49 ([22]) Let f 2 CN ([a; b]), n;N 2 N, 0 < � < 1, x 2 [a; b] and
n1�� > 2. Then
i)

jAn (f; x)� f (x)j �
1

 (1)

8<:
NX
j=1

f (j) (x)
j!

"
1

n�j
+

�
1� h

�
n1�� � 2

��
2

(b� a)j
#
+

(47)"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h

�
n1�� � 2

�� f (N)1 (b� a)N
N !

#)
ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

jAn (f; x0)� f (x0)j �
1

 (1)(
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h

�
n1�� � 2

�� f (N)1 (b� a)N
N !

)
; (48)

and
iii)

kAn (f)� fk1 � 1

 (1)

8<:
NX
j=1

f (j)1
j!

"
1

n�j
+

�
1� h

�
n1�� � 2

��
2

(b� a)j
#
+

16



"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h

�
n1�� � 2

�� f (N)1 (b� a)N
N !

#)
: (49)

Again we obtain lim
n!1

An (f) = f , pointwise and uniformly.

We present the following fractional approximation result by neural networks.

Theorem 50 ([22]) Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b]), 0 < � < 1,
x 2 [a; b], n 2 N : n1�� > 2: Then
i) ������An (f; x)�

N�1X
j=1

f (j) (x)

j!
An

�
(� � x)j

�
(x)� f (x)

������ �
( (1))

�1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(50)
ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

jAn (f; x)� f (x)j �
( (1))

�1

� (�+ 1)8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(51)
iii)

jAn (f; x)� f (x)j � ( (1))�18<:
N�1X
j=1

f (j) (x)
j!

(
1

n�j
+ (b� a)j

 
1� h

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�))

;

(52)
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8 x 2 [a; b] ;
and
iv)

kAnf � fk1 � ( (1))�18<:
N�1X
j=1

f (j)1
j!

(
1

n�j
+ (b� a)j

 
1� h

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

 
1� h

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]

D�
x�f


1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
:

(53)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain fractionally type pointwise and uniform convergence
with rates of An ! I the unit operator, as n!1:

4 Main Results: Approximation by general Fuzzy
Neural Network Operators

Let f 2 CF ([a; b]) (fuzzy continuous functions on [a; b] � R), n 2 N. We de�ne
the following Fuzzy Quasi-Interpolation Neural Network operator

AFn (f; x) =

bnbc�X
k=dnae

f

�
k

n

�
�  (nx� k)

bnbcP
k=dnae

 (nx� k)
; (54)

8 x 2 [a; b], see also (44).
The fuzzy sum in (54) is �nite.
Let r 2 [0; 1], we observe that

�
AFn (f; x)

�r
=

bnbcX
k=dnae

�
f

�
k

n

��r
0BBBB@  (nx� k)

bnbcP
k=dnae

 (nx� k)

1CCCCA =

18



bnbcX
k=dnae

�
f
(r)
�

�
k

n

�
; f
(r)
+

�
k

n

��0BBBB@  (nx� k)
bnbcP

k=dnae
 (nx� k)

1CCCCA =

266664
bnbcX

k=dnae

f
(r)
�

�
k

n

�0BBBB@  (nx� k)
bnbcP

k=dnae
 (nx� k)

1CCCCA ;

bnbcX
k=dnae

f
(r)
+

�
k

n

�0BBBB@  (nx� k)
bnbcP

k=dnae
 (nx� k)

1CCCCA
377775

(55)

=
h
An

�
f
(r)
� ; x

�
; An

�
f
(r)
+ ; x

�i
:

We have proved that �
AFn (f; x)

�(r)
� = An

�
f
(r)
� ; x

�
; (56)

respectively, 8 r 2 [0; 1], 8 x 2 [a; b] :
Therefore we get

D
�
AFn (f; x) ; f (x)

�
=

sup
r2[0;1]

max
n���An �f (r)� ; x

�
� f (r)� (x)

��� ; ���An �f (r)+ ; x
�
� f (r)+ (x)

���o ; (57)

8 x 2 [a; b] :
We present our �rst fuzzy neural network approximation result.

Theorem 51 Let f 2 CF ([a; b]) ; 0 < � < 1, x 2 [a; b] ; n 2 N with n1�� > 2.
Then
1)

D
�
AFn (f; x) ; f (x)

�
� 1

 (1)

�
!
(F)
1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

��
D� (f; eo)� =: Tn;

(58)
and
2)

D� �AFn (f) ; f� � Tn: (59)

We notice that lim
n!1

�
AFn (f)

�
(x)

D! f (x) ; lim
n!1

AFn (f)
D�
! f , pointwise and

uniformly.

Proof. We have that f (r)� 2 C ([a; b]), 8 r 2 [0; 1]. Hence by (45), we obtain���An �f (r)� ; x
�
� f (r)� (x)

��� � 1

 (1)

�
!1

�
f
(r)
� ;

1

n�

�
+
�
1� h

�
n1�� � 2

�� f (r)�


1

�
(60)
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(by Proposition 7 and
f (r)�


1
� D� (f; eo))

� 1

 (1)

�
!
(F)
1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

��
D� (f; eo)� : (61)

Taking into account (57) the theorem is proved.
We also give

Theorem 52 Let f 2 CNF ([a; b]), N 2 N; 0 < � < 1, x 2 [a; b] ; n 2 N with
n1�� > 2. Then
1)

D
�
AFn (f; x) ; f (x)

�
� 1

 (1)8<:
NX

j�=1

D
�
f (j�) (x) ; eo�
j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

"
!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+
�
1� h

�
n1�� � 2

��
D�
�
f (N); eo� (b� a)N

N !

#)
;

(62)
2) assume further that f (j�) (x0) = eo, j� = 1; :::; N , for some x0 2 [a; b], it

holds
D
�
AFn (f; x0) ; f (x0)

�
�

1

 (1)

"
!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+
�
1� h

�
n1�� � 2

��
D�
�
f (N); eo� (b� a)N

N !

#
;

(63)
notice here the extremely high rate of convergence n�(N+1)�;
3)

D� �AFn (f) ; f� � 1

 (1)8<:
NX

j�=1

D� �f (j�); eo�
j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

"
!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+
�
1� h

�
n1�� � 2

��
D�
�
f (N); eo� (b� a)N

N !

#)
:

(64)

Proof. Since f 2 CNF ([a; b]), N � 1; we have that f (r)� 2 CN ([a; b]), 8
r 2 [0; 1]. Using (47), we get���An �f (r)� ; x

�
� f (r)� (x)

��� � 1

 (1)
(65)
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8>><>>:
NX

j�=1

�����f (r)�

�(j�)
(x)

����
j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

"
!1

��
f
(r)
�

�(N)
;
1

n�

�
1

n�NN !
+
�
1� h

�
n1�� � 2

�� �f (r)�

�(N)
1

(b� a)N

N !

#)
(66)

(by Remark 12)

=
1

 (1)

8<:
NX

j�=1

����f (j�)�(r)� (x)
���

j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

"
!1

��
f (N)

�(r)
�
;
1

n�

�
1

n�NN !
+
�
1� h

�
n1�� � 2

�� �f (N)�(r)�

1

(b� a)N

N !

#)
�

1

 (1)

8<:
NX

j�=1

D
�
f (j�) (x) ; eo�
j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

"
!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+
�
1� h

�
n1�� � 2

��
D�
�
f (N); eo� (b� a)N

N !

#)
;

(67)

by Proposition 7,
�f (N)�(r)� 1 � D� �f (N); eo� and apply (57).

The theorem is proved.
Next we present

Theorem 53 Let � > 0, N = d�e, � =2 N; f 2 CNF ([a; b]), 0 < � < 1,
x 2 [a; b], n 2 N, n1�� > 2. Then
i)

D
�
AFn (f; x) ; f (x)

�
� 1

 (1)8<:
N�1X
j�=1

D
�
f (j�) (x) ; eo�
j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

1

� (�+ 1)

8<:
h
!
(F)
1

��
D�F
x� f

�
; 1
n�

�
[a;x]

+ !
(F)
1

��
D�F
�x f

�
; 1
n�

�
[x;b]

i
n��

+ (68)

 
1� h

�
n1�� � 2

�
2

!h
D� ��D�F

x� f
�
; eo�

[a;x]
(x� a)� +D� ��D�F

�x f
�
; eo�

[x;b]
(b� x)�

i))
;
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ii) if f (j) (x0) = 0, j = 1; :::; N � 1, for some x0 2 [a; b] ; we have

D
�
AFn (f; x0) ; f (x0)

�
�

( (1))
�1

� (�+ 1)

8<:
h
!
(F)
1

��
D�F
x0�f

�
; 1
n�

�
[a;x0]

+ !
(F)
1

��
D�F
�x0f

�
; 1
n�

�
[x0;b]

i
n��

+ (69)

 
1� h

�
n1�� � 2

�
2

!h
D� ��D�F

x0�f
�
; eo�

[a;x0]
(x0 � a)� +D� ��D�F

�x0f
�
; eo�

[x0;b]
(b� x0)�

i)
;

when � > 1 notice here the extremely high rate of convergence at n�(�+1)� ;
and
iii)

D� �AFn (f) ; f� �
1

 (1)

8<:
N�1X
j�=1

D� �f (j�); eo�
j�!

"
1

n�j�
+

 
1� h

�
n1�� � 2

�
2

!
(b� a)j�

#
+

1

� (�+ 1)

8>>>><>>>>:

"
sup
x2[a;b]

!
(F)
1

��
D�F
x� f

�
; 1
n�

�
[a;x]

+ sup
x2[a;b]

!
(F)
1

��
D�F
�x f

�
; 1
n�

�
[x;b]

#
n��

+

(70) 
1� h

�
n1�� � 2

�
2

!
(b� a)�

"
sup
x2[a;b]

D� ��D�F
x� f

�
; eo�

[a;x]
+ sup
x2[a;b]

D� ��D�F
�x f

�
; eo�

[x;b]

#))
;

above, when N = 1 the sum
PN�1

j=1 � = 0:
As we see here we obtain fractionally the fuzzy pointwise and uniform con-

vergence with rates of AFn ! I the unit operator, as n!1:

Proof. Here f (r)� 2 CN ([a; b]), 8 r 2 [0; 1], and D�F
x� f , D

�F
�x f are fuzzy

continuous over [a; b], 8 x 2 [a; b], so that
�
D�F
x� f

�(r)
� ,

�
D�F
�x f

�(r)
� 2 C ([a; b]), 8

r 2 [0; 1], 8 x 2 [a; b] :
We observe by (52), 8 x 2 [a; b], that (respectively in �)���An �f (r)� ; x

�
� f (r)� (x)

��� � 1

 (1)8>><>>:
N�1X
j�=1

�����f (r)�

�(j�)
(x)

����
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(
1
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)
+ (71)
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�

�
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�
; 1
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�
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�

�
1;[a;x]

(x� a)� +
D�

�x

�
f
(r)
�

�
1;[x;b]

(b� x)�
�))

=

(by Remark 12, (30), (33))

1
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N�1X
j�=1

����f (j�) (x)�(r)� ���
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(
1
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1� h

�
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�
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)
+

1
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��
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x� f
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�
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+ !1

��
D�F
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�
[x;b]

�
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+ (72)
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�
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!��D�F
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�D�F

�x f
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�))

�

1
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N�1X
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D
�
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(
1
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!
(b� a)j�
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+

1
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h
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(F)
1
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D�F
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�
; 1
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+ !
(F)
1

��
D�F
�x f

�
; 1
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i
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+ (73)

 
1� h

�
n1�� � 2

�
2

!h
D� ��D�F

x� f
�
; eo�

[a;x]
(x� a)� +D� ��D�F

�x f
�
; eo�

[x;b]
(b� x)�

i))
;

along with (57) proving all inequalities of theorem.
Here we notice that�

D�F
x� f

�(r)
� (t) =

�
D�
x�

�
f
(r)
�

��
(t)

=
(�1)N

� (N � �)

Z x

t

(s� t)N���1
�
f
(r)
�

�(N)
(s) ds;

where a � t � x.
Hence����D�F

x� f
�(r)
� (t)

��� � 1

� (N � �)

Z x

t

(s� t)N���1
�����f (r)�

�(N)
(s)

���� ds
�

�f (N)�(r)� 1
� (N � �+ 1) (b� a)
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:
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So we have ����D�F
x� f

�(r)
� (t)

��� � D� �f (N); eo�
� (N � �+ 1) (b� a)

N��
;

all a � t � x:

And it holds�D�F
x� f

�(r)
�


1;[a;x]

�
D� �f (N); eo�
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N��
; (74)

that is
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Similarly we have �
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�
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(s) ds;

where x � t � b.
Hence����D�F
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�(r)
� (t)
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Z t

x

(t� s)N���1
�����f (N)�(r)� (s)

���� ds ��f (N)�(r)� 1
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x � t � b:

So we have �D�F
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< +1: (77)

Furthermore we notice

!
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�
;
1
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�
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D
��
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�
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�
(t)
�
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�
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�
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�
2D� �f (N); eo�
� (N � �+ 1) (b� a)

N��
:
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�
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N��
< +1: (78)

Similarly we observe

!
(F)
1
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D�F
�x f

�
;
1

n�

�
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= sup
s;t2[x;b]
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��
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2D� ��D�F
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�
2D� �f (N); eo�
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Consequently it holds

sup
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!
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1

��
D�F
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�
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�
2D� �f (N); eo�
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< +1: (79)

So everything in the statements of the theorem makes sense.
The proof of the theorem is now completed.

Corollary 54 (to Theorem 53, N = 1 case) Let 0 < �; � < 1; f 2 C1F ([a; b]),
n 2 N, n1�� > 2. Then

D� �AFn (f) ; f� �
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�1
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Proof. By (70).
Finally we specialize to � = 1

2 :

Corollary 55 (to Theorem 53) Let 0 < � < 1; f 2 C1F ([a; b]), n 2 N, n1�� >
2. Then

D� �AFn (f) ; f� �
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Proof. By (80).

Conclusion 56 We have extended to the fuzzy setting all the main approxima-
tion theorems of Section 3.
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