Fuzzy ordinary and fractional general sigmoid function activated neural network approximation

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we research the univariate fuzzy ordinary and fractional quantitative approximation of fuzzy real valued functions on a compact interval by quasi-interpolation general sigmoid activation function relied fuzzy neural network operators. These approximations are derived by establishing fuzzy Jackson type inequalities involving the fuzzy moduli of continuity of the function, or of the right and left Caputo fuzzy fractional derivatives of the involved function. The approximations are fuzzy pointwise and fuzzy uniform. The related feed-forward fuzzy neural networks are with one hidden layer. We study in particular the fuzzy integer derivative and just fuzzy continuous cases. Our fuzzy fractional approximation result using higher order fuzzy differentiation converges better than in the fuzzy just continuous case.

2020 AMS Mathematics Subject Classification: 26A33, 26E50, 41A17, $41 \mathrm{~A} 25,41 \mathrm{~A} 30,41 \mathrm{~A} 36,47 \mathrm{~S} 40$.

Keywords and Phrases: general sigmoid activation function, neural network fuzzy fractional approximation, fuzzy quasi-interpolation operator, fuzzy modulus of continuity, fuzzy derivative and fuzzy fractional derivative.

1 Introduction

The author in [1] and [2], see chapters 2-5, was the first to derive quantitative neural network approximations to continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-Euvrard and "Squashing" types, by employing the modulus of continuity of the engaged function or

1
its high order derivative, and producing very tight Jackson type inequalities. He studied there both the univariate and multivariate cases. The defining these operators "bell-shaped" and "squashing" function are assumed to be of compact support.

The author inspired by [23], continued his studies on neural networks approximation by introducing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted into [10], [13] - [22], by treating both the univariate and multivariate cases.

Continuation of the author's works ([17], [18] and [19], Chapter 20) is this article where fuzzy neural network approximation based on a general sigmoid activation function is taken at the fractional and ordinary levels resulting into higher rates of approximation. We involve the fuzzy ordinary derivatives and the right and left Caputo fuzzy fractional derivatives of the fuzzy function under approximation and we establish tight fuzzy Jackson type inequalities. An extensive background is given on fuzzyness, fractional calculus and neural networks, all needed to present our work.

Our fuzzy feed-forward neural networks (FFNNs) are with one hidden layer. About neural networks in general study [29], [32], [33].

2 Fuzzy Fractional Mathematical Analysis Basics

(see also [19], pp. 432-444)
We need the following basic background
Definition 1 (see [36]) Let $\mu: \mathbb{R} \rightarrow[0,1]$ with the following properties:
(i) is normal, i.e., $\exists x_{0} \in \mathbb{R} ; \mu\left(x_{0}\right)=1$.
(ii) $\mu(\lambda x+(1-\lambda) y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in[0,1]$ (μ is called a convex fuzzy subset).
(iii) μ is upper semicontinuous on \mathbb{R}, i.e. $\forall x_{0} \in \mathbb{R}$ and $\forall \varepsilon>0$, \exists neighborhood $V\left(x_{0}\right): \mu(x) \leq \mu\left(x_{0}\right)+\varepsilon, \forall x \in V\left(x_{0}\right)$.
(iv) The set $\operatorname{supp}(\mu)$ is compact in $\mathbb{R}($ where $\operatorname{supp}(\mu):=\{x \in \mathbb{R}: \mu(x)>0\})$.

We call μ a fuzzy real number. Denote the set of all μ with $\mathbb{R}_{\mathcal{F}}$.
E.g. $\chi_{\left\{x_{0}\right\}} \in \mathbb{R}_{\mathcal{F}}$, for any $x_{0} \in \mathbb{R}$, where $\chi_{\left\{x_{0}\right\}}$ is the characteristic function at x_{0}.

For $0<r \leq 1$ and $\mu \in \mathbb{R}_{\mathcal{F}}$ define

$$
[\mu]^{r}:=\{x \in \mathbb{R}: \mu(x) \geq r\}
$$

and

$$
[\mu]^{0}:=\overline{\{x \in \mathbb{R}: \mu(x) \geq 0\}}
$$

Then it is well known that for each $r \in[0,1],[\mu]^{r}$ is a closed and bounded interval on \mathbb{R} ([28]).

For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$
[u \oplus v]^{r}=[u]^{r}+[v]^{r}, \quad[\lambda \odot u]^{r}=\lambda[u]^{r}, \quad \forall r \in[0,1]
$$

where
$[u]^{r}+[v]^{r}$ means the usual addition of two intervals (as substes of \mathbb{R}) and
$\lambda[u]^{r}$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g. [36]).

Notice $1 \odot u=u$ and it holds

$$
u \oplus v=v \oplus u, \lambda \odot u=u \odot \lambda
$$

If $0 \leq r_{1} \leq r_{2} \leq 1$ then

$$
[u]^{r_{2}} \subseteq[u]^{r_{1}}
$$

Actually $[u]^{r}=\left[u_{-}^{(r)}, u_{+}^{(r)}\right]$, where $u_{-}^{(r)} \leq u_{+}^{(r)}, u_{-}^{(r)}, u_{+}^{(r)} \in \mathbb{R}, \forall r \in[0,1]$.
For $\lambda>0$ one has $\lambda u_{ \pm}^{(r)}=(\lambda \odot u)_{ \pm}^{(r)}$, respectively.
Define $D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \rightarrow \mathbb{R}_{\mathcal{F}}$ by

$$
D(u, v):=\sup _{r \in[0,1]} \max \left\{\left|u_{-}^{(r)}-v_{-}^{(r)}\right|,\left|u_{+}^{(r)}-v_{+}^{(r)}\right|\right\}
$$

where

$$
[v]^{r}=\left[v_{-}^{(r)}, v_{+}^{(r)}\right] ; u, v \in \mathbb{R}_{\mathcal{F}}
$$

We have that D is a metric on $\mathbb{R}_{\mathcal{F}}$.
Then $\left(\mathbb{R}_{\mathcal{F}}, D\right)$ is a complete metric space, see $[36],[37]$.
Here \sum^{*} stands for fuzzy summation and $\widetilde{o}:=\chi_{\{0\}} \in \mathbb{R}_{\mathcal{F}}$ is the neural element with respect to \oplus, i.e.,

$$
u \oplus \widetilde{0}=\widetilde{0} \oplus u=u, \quad \forall u \in \mathbb{R}_{\mathcal{F}}
$$

Denote

$$
D^{*}(f, g)=\sup _{x \in X \subseteq \mathbb{R}} D(f, g)
$$

where $f, g: X \rightarrow \mathbb{R}_{\mathcal{F}}$.
We mention
Definition 2 Let $f: X \subseteq \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$, X interval, we define the (first) fuzzy modulus of continuity of f by

$$
\omega_{1}^{(\mathcal{F})}(f, \delta)_{X}=\sup _{x, y \in X,|x-y| \leq \delta} D(f(x), f(y)), \quad \delta>0
$$

When $g: X \subseteq \mathbb{R} \rightarrow \mathbb{R}$, we define

$$
\omega_{1}(g, \delta)=\omega_{1}(g, \delta)_{X}=\sup _{x, y \in X,|x-y| \leq \delta}|g(x)-g(y)|
$$

We define by $C_{\mathcal{F}}^{U}(\mathbb{R})$ the space of fuzzy uniformly continuous functions from $\mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$, also $C_{\mathcal{F}}(\mathbb{R})$ is the space of fuzzy continuous functions on \mathbb{R}, and $C_{b}\left(\mathbb{R}, \mathbb{R}_{\mathcal{F}}\right)$ is the fuzzy continuous and bounded functions.

We mention
Proposition 3 ([5]) Let $f \in C_{\mathcal{F}}^{U}(X)$. Then $\omega_{1}^{(\mathcal{F})}(f, \delta)_{X}<\infty$, for any $\delta>0$.
By [9], p. 129 we have that $C_{\mathcal{F}}^{U}([a, b])=C_{\mathcal{F}}([a, b])$, fuzzy continuous functions on $[a, b] \subset \mathbb{R}$.

Proposition 4 ([5]) It holds

$$
\lim _{\delta \rightarrow 0} \omega_{1}^{(\mathcal{F})}(f, \delta)_{X}=\omega_{1}^{(\mathcal{F})}(f, 0)_{X}=0
$$

iff $f \in C_{\mathcal{F}}^{U}(X)$, where X is a compact interval.
Proposition 5 ([5]) Here $[f]^{r}=\left[f_{-}^{(r)}, f_{+}^{(r)}\right]$, $r \in[0,1]$. Let $f \in C_{\mathcal{F}}(\mathbb{R})$. Then $f_{ \pm}^{(r)}$ are equicontinuous with respect to $r \in[0,1]$ over \mathbb{R}, respectively in \pm.

Note 6 It is clear by Propositions 4, 5, that if $f \in C_{\mathcal{F}}^{U}(\mathbb{R})$, then $f_{ \pm}^{(r)} \in C_{U}(\mathbb{R})$ (uniformly continuous on \mathbb{R}). Also if $f \in C_{b}\left(\mathbb{R}, \mathbb{R}_{\mathcal{F}}\right)$ implies $f_{ \pm}^{(r)} \in C_{b}(\mathbb{R})$ (continuous and bounded functions on \mathbb{R}).

Proposition 7 Let $f: \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$. Assume that $\omega_{1}^{\mathcal{F}}(f, \delta)_{X}, \omega_{1}\left(f_{-}^{(r)}, \delta\right)_{X}$, $\omega_{1}\left(f_{+}^{(r)}, \delta\right)_{X}$ are finite for any $\delta>0, r \in[0,1]$, where X any interval of \mathbb{R}.

Then

$$
\omega_{1}^{(\mathcal{F})}(f, \delta)_{X}=\sup _{r \in[0,1]} \max \left\{\omega_{1}\left(f_{-}^{(r)}, \delta\right)_{X}, \omega_{1}\left(f_{+}^{(r)}, \delta\right)_{X}\right\}
$$

Proof. Similar to Proposition 14.15, p. 246 of [9].
We need
Remark 8 ([3]). Here $r \in[0,1], x_{i}^{(r)}, y_{i}^{(r)} \in \mathbb{R}, i=1, \ldots, m \in \mathbb{N}$. Suppose that

$$
\sup _{r \in[0,1]} \max \left(x_{i}^{(r)}, y_{i}^{(r)}\right) \in \mathbb{R}, \text { for } i=1, \ldots, m
$$

Then one sees easily that

$$
\begin{equation*}
\sup _{r \in[0,1]} \max \left(\sum_{i=1}^{m} x_{i}^{(r)}, \sum_{i=1}^{m} y_{i}^{(r)}\right) \leq \sum_{i=1}^{m} \sup _{r \in[0,1]} \max \left(x_{i}^{(r)}, y_{i}^{(r)}\right) . \tag{1}
\end{equation*}
$$

We need
Definition 9 Let $x, y \in \mathbb{R}_{\mathcal{F}}$. If there exists $z \in \mathbb{R}_{\mathcal{F}}: x=y \oplus z$, then we call z the H-difference on x and y, denoted $x-y$.

Definition 10 ([35]) Let $T:=\left[x_{0}, x_{0}+\beta\right] \subset \mathbb{R}$, with $\beta>0$. A function $f:$ $T \rightarrow \mathbb{R}_{\mathcal{F}}$ is H-differentiable at $x \in T$ if there exists an $f^{\prime}(x) \in \mathbb{R}_{\mathcal{F}}$ such that the limits (with respect to D)

$$
\begin{equation*}
\lim _{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h}, \lim _{h \rightarrow 0+} \frac{f(x)-f(x-h)}{h} \tag{2}
\end{equation*}
$$

exist and are equal to $f^{\prime}(x)$.
We call f^{\prime} the H-derivative or fuzzy derivative of f at x.
Above is assumed that the H-differences $f(x+h)-f(x), f(x)-f(x-h)$ exists in $\mathbb{R}_{\mathcal{F}}$ in a neighborhood of x.

Higher order H-fuzzy derivatives are defined the obvious way, like in the real case.

We denote by $C_{\mathcal{F}}^{N}(\mathbb{R}), N \geq 1$, the space of all N-times continuously H fuzzy differentiable functions from \mathbb{R} into $\mathbb{R}_{\mathcal{F}}$, similarly is defined $C_{\mathcal{F}}^{N}([a, b])$, $[a, b] \subset \mathbb{R}$.

We mention
Theorem 11 ([30]) Let $f: \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$ be H-fuzzy differentiable. Let $t \in \mathbb{R}$, $0 \leq r \leq 1$. Clearly

$$
[f(t)]^{r}=\left[f(t)_{-}^{(r)}, f(t)_{+}^{(r)}\right] \subseteq \mathbb{R}
$$

Then $(f(t))_{ \pm}^{(r)}$ are differentiable and

$$
\left[f^{\prime}(t)\right]^{r}=\left[\left(f(t)_{-}^{(r)}\right)^{\prime},\left(f(t)_{+}^{(r)}\right)^{\prime}\right]
$$

I.e.

$$
\left(f^{\prime}\right)_{ \pm}^{(r)}=\left(f_{ \pm}^{(r)}\right)^{\prime}, \quad \forall r \in[0,1]
$$

Remark 12 ([4]) Let $f \in C_{\mathcal{F}}^{N}(\mathbb{R}), N \geq 1$. Then by Theorem 11 we obtain

$$
\left[f^{(i)}(t)\right]^{r}=\left[\left(f(t)_{-}^{(r)}\right)^{(i)},\left(f(t)_{+}^{(r)}\right)^{(i)}\right]
$$

for $i=0,1,2, \ldots, N$, and in particular we have that

$$
\left(f^{(i)}\right)_{ \pm}^{(r)}=\left(f_{ \pm}^{(r)}\right)^{(i)}
$$

for any $r \in[0,1]$, all $i=0,1,2, \ldots, N$.

Note 13 ([4]) Let $f \in C_{\mathcal{F}}^{N}(\mathbb{R}), N \geq 1$. Then by Theorem 11 we have $f_{ \pm}^{(r)} \in$ $C^{N}(\mathbb{R})$, for any $r \in[0,1]$.

Items 11-13 are valid also on $[a, b]$.
By [9], p. 131, if $f \in C_{\mathcal{F}}([a, b])$, then f is a fuzzy bounded function.
We need also a particular case of the Fuzzy Henstock integral $\left(\delta(x)=\frac{\delta}{2}\right)$, see [36].

Definition 14 ([27], p. 644) Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$. We say that f is FuzzyRiemann integrable to $I \in \mathbb{R}_{\mathcal{F}}$ if for any $\varepsilon>0$, there exists $\delta>0$ such that for any division $P=\{[u, v] ; \xi\}$ of $[a, b]$ with the norms $\Delta(P)<\delta$, we have

$$
D\left(\sum_{P}^{*}(v-u) \odot f(\xi), I\right)<\varepsilon
$$

We write

$$
\begin{equation*}
I:=(F R) \int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

We mention
Theorem 15 ([28]) Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy continuous. Then

$$
(F R) \int_{a}^{b} f(x) d x
$$

exists and belongs to $\mathbb{R}_{\mathcal{F}}$, furthermore it holds

$$
\left[(F R) \int_{a}^{b} f(x) d x\right]^{r}=\left[\int_{a}^{b}(f)_{-}^{(r)}(x) d x, \int_{a}^{b}(f)_{+}^{(r)}(x) d x\right]
$$

$\forall r \in[0,1]$.
For the definition of general fuzzy integral we follow [31] next.
Definition 16 Let (Ω, Σ, μ) be a complete σ-finite measure space. We call F : $\Omega \rightarrow R_{\mathcal{F}}$ measurable iff \forall closed $B \subseteq \mathbb{R}$ the function $F^{-1}(B): \Omega \rightarrow[0,1]$ defined by

$$
F^{-1}(B)(w):=\sup _{x \in B} F(w)(x), \text { all } w \in \Omega
$$

is measurable, see [31].
Theorem 17 ([31]) For $F: \Omega \rightarrow \mathbb{R}_{\mathcal{F}}$,

$$
F(w)=\left\{\left(F_{-}^{(r)}(w), F_{+}^{(r)}(w)\right) \mid 0 \leq r \leq 1\right\}
$$

the following are equivalent
(1) F is measurable,
(2) $\forall r \in[0,1], F_{-}^{(r)}, F_{+}^{(r)}$ are measurable.

Following [31], given that for each $r \in[0,1], F_{-}^{(r)}, F_{+}^{(r)}$ are integrable we have that the parametrized representation

$$
\begin{equation*}
\left\{\left(\int_{A} F_{-}^{(r)} d \mu, \int_{A} F_{+}^{(r)} d \mu\right) \mid 0 \leq r \leq 1\right\} \tag{4}
\end{equation*}
$$

is a fuzzy real number for each $A \in \Sigma$.
The last fact leads to
Definition 18 ([31]) A measurable function $F: \Omega \rightarrow \mathbb{R}_{\mathcal{F}}$,

$$
F(w)=\left\{\left(F_{-}^{(r)}(w), F_{+}^{(r)}(w)\right) \mid 0 \leq r \leq 1\right\}
$$

is integrable if for each $r \in[0,1], F_{ \pm}^{(r)}$ are integrable, or equivalently, if $F_{ \pm}^{(0)}$ are integrable.

In this case, the fuzzy integral of F over $A \in \Sigma$ is defined by

$$
\int_{A} F d \mu:=\left\{\left(\int_{A} F_{-}^{(r)} d \mu, \int_{A} F_{+}^{(r)} d \mu\right) \mid 0 \leq r \leq 1\right\}
$$

By [31], F is integrable iff $w \rightarrow\|F(w)\|_{\mathcal{F}}$ is real-valued integrable.
Here denote

$$
\|u\|_{\mathcal{F}}:=D(u, \widetilde{0}), \quad \forall u \in \mathbb{R}_{\mathcal{F}}
$$

We need also
Theorem 19 ([31]) Let $F, G: \Omega \rightarrow \mathbb{R}_{\mathcal{F}}$ be integrable. Then
(1) Let $a, b \in \mathbb{R}$, then $a F+b G$ is integrable and for each $A \in \Sigma$,

$$
\int_{A}(a F+b G) d \mu=a \int_{A} F d \mu+b \int_{A} G d \mu
$$

(2) $D(F, G)$ is a real- valued integrable function and for each $A \in \Sigma$,

$$
D\left(\int_{A} F d \mu, \int_{A} G d \mu\right) \leq \int_{A} D(F, G) d \mu
$$

In particular,

$$
\left\|\int_{A} F d \mu\right\|_{\mathcal{F}} \leq \int_{A}\|F\|_{\mathcal{F}} d \mu
$$

Above μ could be the Lebesgue measure, with all the basic properties valid here too.

Basically here we have

$$
\begin{equation*}
\left[\int_{A} F d \mu\right]^{r}=\left[\int_{A} F_{-}^{(r)} d \mu, \int_{A} F_{+}^{(r)} d \mu\right] \tag{5}
\end{equation*}
$$

i.e.

$$
\left(\int_{A} F d \mu\right)_{ \pm}^{(r)}=\int_{A} F_{ \pm}^{(r)} d \mu, \quad \forall r \in[0,1]
$$

We need
Definition 20 Let $\nu \geq 0, n=\lceil\nu\rceil(\lceil\cdot\rceil$ is the ceiling of the number), $f \in$ $A C^{n}([a, b])$ (space of functions f with $f^{(n-1)} \in A C([a, b])$, absolutely continuous functions). We call left Caputo fractional derivative (see [24], pp. 49-52, [26], [34]) the function

$$
\begin{equation*}
D_{* a}^{\nu} f(x)=\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1} f^{(n)}(t) d t \tag{6}
\end{equation*}
$$

$\forall x \in[a, b]$, where Γ is the gamma function $\Gamma(\nu)=\int_{0}^{\infty} e^{-t} t^{\nu-1} d t, \nu>0$.
Notice $D_{* a}^{\nu} f \in L_{1}([a, b])$ and $D_{* a}^{\nu} f$ exists a.e. on $[a, b]$.
We set $D_{* a}^{0} f(x)=f(x), \forall x \in[a, b]$.
Lemma 21 ([8]) Let $\nu>0, \nu \notin \mathbb{N}, n=\lceil\nu\rceil, f \in C^{n-1}([a, b])$ and $f^{(n)} \in$ $L_{\infty}([a, b])$. Then $D_{* a}^{\nu} f(a)=0$.

Definition 22 (see also [6], [25], [26]) Let $f \in A C^{m}([a, b]), m=\lceil\beta\rceil, \beta>0$. The right Caputo fractional derivative of order $\beta>0$ is given by

$$
\begin{equation*}
D_{b-}^{\beta} f(x)=\frac{(-1)^{m}}{\Gamma(m-\beta)} \int_{x}^{b}(\zeta-x)^{m-\beta-1} f^{(m)}(\zeta) d \zeta \tag{7}
\end{equation*}
$$

$\forall x \in[a, b]$. We set $D_{b-}^{0} f(x)=f(x)$. Notice that $D_{b-}^{\beta} f \in L_{1}([a, b])$ and $D_{b-}^{\beta} f$ exists a.e. on $[a, b]$.

Lemma 23 ([8]) Let $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\beta\rceil, \beta>0$, $\beta \notin \mathbb{N}$. Then $D_{b-}^{\beta} f(b)=0$.

Convention 24 We assume that

$$
\begin{equation*}
D_{* x_{0}}^{\beta} f(x)=0, \text { for } x<x_{0} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{x_{0}-}^{\beta} f(x)=0, \text { for } x>x_{0} \tag{9}
\end{equation*}
$$

for all $x, x_{0} \in[a, b]$.
We mention
Proposition 25 ([8]) Let $f \in C^{n}([a, b]), n=\lceil\nu\rceil, \nu>0$. Then $D_{* a}^{\nu} f(x)$ is continuous in $x \in[a, b]$.

Also we have
Proposition 26 ([8]) Let $f \in C^{m}([a, b]), m=\lceil\beta\rceil, \beta>0$. Then $D_{b-}^{\beta} f(x)$ is continuous in $x \in[a, b]$.

We further mention
Proposition 27 ([8]) Let $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\beta\rceil$, $\beta>0$ and

$$
\begin{equation*}
D_{* x_{0}}^{\beta} f(x)=\frac{1}{\Gamma(m-\beta)} \int_{x_{0}}^{x}(x-t)^{m-\beta-1} f^{(m)}(t) d t \tag{10}
\end{equation*}
$$

for all $x, x_{0} \in[a, b]: x \geq x_{0}$.
Then $D_{* x_{0}}^{\beta} f(x)$ is continuous in x_{0}.
Proposition 28 ([8]) Let $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\beta\rceil$, $\beta>0$ and

$$
\begin{equation*}
D_{x_{0}-}^{\beta} f(x)=\frac{(-1)^{m}}{\Gamma(m-\beta)} \int_{x}^{x_{0}}(\zeta-x)^{m-\beta-1} f^{(m)}(\zeta) d \zeta \tag{11}
\end{equation*}
$$

for all $x, x_{0} \in[a, b]: x \leq x_{0}$.
Then $D_{x_{0}-}^{\beta} f(x)$ is continuous in x_{0}.
We need
Proposition 29 ([8]) Let $g \in C([a, b]), 0<c<1, x, x_{0} \in[a, b]$. Define

$$
\begin{equation*}
L\left(x, x_{0}\right)=\int_{x_{0}}^{x}(x-t)^{c-1} g(t) d t, \text { for } x \geq x_{0} \tag{12}
\end{equation*}
$$

and $L\left(x, x_{0}\right)=0$, for $x<x_{0}$.
Then L is jointly continuous in $\left(x, x_{0}\right)$ on $[a, b]^{2}$.
We mention

Proposition 30 ([8]) Let $g \in C([a, b]), 0<c<1, x, x_{0} \in[a, b]$. Define

$$
\begin{equation*}
K\left(x, x_{0}\right)=\int_{x_{0}}^{x}(\zeta-x)^{c-1} g(\zeta) d \zeta, \text { for } x \leq x_{0} \tag{13}
\end{equation*}
$$

and $K\left(x, x_{0}\right)=0$, for $x>x_{0}$.
Then $K\left(x, x_{0}\right)$ is jointly continuous from $[a, b]^{2}$ into \mathbb{R}.

Based on Propositions 29, 30 we derive

Corollary 31 ([8]) Let $f \in C^{m}([a, b]), m=\lceil\beta\rceil, \beta>0, \beta \notin \mathbb{N}, x, x_{0} \in$ $[a, b]$. Then $D_{* x_{0}}^{\beta} f(x), D_{x_{0}-}^{\beta} f(x)$ are jointly continuous functions in $\left(x, x_{0}\right)$ from $[a, b]^{2}$ into \mathbb{R}.

We need
Theorem 32 ([8]) Let $f:[a, b]^{2} \rightarrow \mathbb{R}$ be jointly continous. Consider

$$
\begin{equation*}
G(x)=\omega_{1}(f(\cdot, x), \delta)_{[x, b]}, \tag{14}
\end{equation*}
$$

$\delta>0, x \in[a, b]$.
Then G is continuous in $x \in[a, b]$.
Also it holds
Theorem 33 ([8]) Let $f:[a, b]^{2} \rightarrow \mathbb{R}$ be jointly continous. Then

$$
\begin{equation*}
H(x)=\omega_{1}(f(\cdot, x), \delta)_{[a, x]}, \tag{15}
\end{equation*}
$$

$x \in[a, b]$, is continuous in $x \in[a, b], \delta>0$.
So that for $f \in C^{m}([a, b]), m=\lceil\beta\rceil, \beta>0, \beta \notin \mathbb{N}, x, x_{0} \in[a, b]$, we have that $\omega_{1}\left(D_{* x}^{\beta} f, h\right)_{[x, b]}, \omega_{1}\left(D_{x-}^{\beta} f, h\right)_{[a, x]}$ are continuous functions in $x \in[a, b]$, $h>0$ is fixed.

We make
Remark 34 ([8]) Let $f \in C^{n-1}([a, b]), f^{(n)} \in L_{\infty}([a, b]), n=\lceil\nu\rceil, \nu>0$, $\nu \notin \mathbb{N}$. Then we have

$$
\begin{equation*}
\left|D_{* a}^{\nu} f(x)\right| \leq \frac{\left\|f^{(n)}\right\|_{\infty}}{\Gamma(n-\nu+1)}(x-a)^{n-\nu}, \quad \forall x \in[a, b] . \tag{16}
\end{equation*}
$$

Thus we observe

$$
\begin{gather*}
\omega_{1}\left(D_{* a}^{\nu} f, \delta\right)=\sup _{\substack{x, y \in[a, b] \\
|x-y| \leq \delta}}\left|D_{* a}^{\nu} f(x)-D_{* a}^{\nu} f(y)\right| \tag{17}\\
\leq \sup _{\substack{x, y \in[a, b] \\
|x-y| \leq \delta}}\left(\frac{\left\|f^{(n)}\right\|_{\infty}}{\Gamma(n-\nu+1)}(x-a)^{n-\nu}+\frac{\left\|f^{(n)}\right\|_{\infty}}{\Gamma(n-\nu+1)}(y-a)^{n-\nu}\right) \\
\leq \frac{2\left\|f^{(n)}\right\|_{\infty}}{\Gamma(n-\nu+1)}(b-a)^{n-\nu} \tag{18}
\end{gather*}
$$

Consequently

$$
\begin{equation*}
\omega_{1}\left(D_{* a}^{\nu} f, \delta\right) \leq \frac{2\left\|f^{(n)}\right\|_{\infty}}{\Gamma(n-\nu+1)}(b-a)^{n-\nu} \tag{19}
\end{equation*}
$$

Similarly, let $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\beta\rceil, \beta>0, \beta \notin \mathbb{N}$, then

$$
\begin{equation*}
\omega_{1}\left(D_{b-}^{\beta} f, \delta\right) \leq \frac{2\left\|f^{(m)}\right\|_{\infty}}{\Gamma(m-\beta+1)}(b-a)^{m-\beta} \tag{20}
\end{equation*}
$$

So for $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\beta\rceil, \beta>0, \beta \notin \mathbb{N}$, we find

$$
\begin{equation*}
\sup _{x_{0} \in[a, b]} \omega_{1}\left(D_{* x_{0}}^{\beta} f, \delta\right)_{\left[x_{0}, b\right]} \leq \frac{2\left\|f^{(m)}\right\|_{\infty}}{\Gamma(m-\beta+1)}(b-a)^{m-\beta} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x_{0} \in[a, b]} \omega_{1}\left(D_{x_{0}-}^{\beta} f, \delta\right)_{\left[a, x_{0}\right]} \leq \frac{2\left\|f^{(m)}\right\|_{\infty}}{\Gamma(m-\beta+1)}(b-a)^{m-\beta} \tag{22}
\end{equation*}
$$

By Proposition 15.114, p. 388 of [7], we get here that $D_{* x_{0}}^{\beta} f \in C\left(\left[x_{0}, b\right]\right)$, and by [12] we obtain that $D_{x_{0}-}^{\beta} f \in C\left(\left[a, x_{0}\right]\right)$.

We need
Definition 35 ([11]) Let $f \in C_{\mathcal{F}}([a, b])$ (fuzzy continuous on $\left.[a, b] \subset \mathbb{R}\right)$, $\nu>$ 0 .

We define the Fuzzy Fractional left Riemann-Liouville operator as

$$
\begin{gather*}
J_{a}^{\nu} f(x):=\frac{1}{\Gamma(\nu)} \odot \int_{a}^{x}(x-t)^{\nu-1} \odot f(t) d t, \quad x \in[a, b] \tag{23}\\
J_{a}^{0} f:=f
\end{gather*}
$$

Also, we define the Fuzzy Fractional right Riemann-Liouville operator as

$$
\begin{gather*}
I_{b-}^{\nu} f(x):=\frac{1}{\Gamma(\nu)} \odot \int_{x}^{b}(t-x)^{\nu-1} \odot f(t) d t, \quad x \in[a, b] \tag{24}\\
I_{b-}^{0} f:=f
\end{gather*}
$$

We mention
Definition 36 ([11]) Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ is called fuzzy absolutely continuous iff $\forall \epsilon>0, \exists \delta>0$ for every finite, pairwise disjoint, family

$$
\left(c_{k}, d_{k}\right)_{k=1}^{n} \subseteq(a, b) \quad \text { with } \quad \sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta
$$

we get

$$
\begin{equation*}
\sum_{k=1}^{n} D\left(f\left(d_{k}\right), f\left(c_{k}\right)\right)<\epsilon \tag{25}
\end{equation*}
$$

We denote the related space of functions by $A C_{\mathcal{F}}([a, b])$.
If $f \in A C_{\mathcal{F}}([a, b])$, then $f \in C_{\mathcal{F}}([a, b])$.

It holds
Proposition 37 ([11]) $f \in A C_{\mathcal{F}}([a, b]) \Leftrightarrow f_{ \pm}^{(r)} \in A E C([a, b]), \forall r \in[0,1]$ (absolutely equicontinuous).

We need
Definition 38 ([11]) We define the Fuzzy Fractional left Caputo derivative, $x \in[a, b]$.

Let $f \in C_{\mathcal{F}}^{n}([a, b]), n=\lceil\nu\rceil, \nu>0(\lceil\cdot\rceil$ denotes the ceiling $)$. We define

$$
\begin{align*}
& D_{* a}^{\nu \mathcal{F}} f(x):=\frac{1}{\Gamma(n-\nu)} \odot \int_{a}^{x}(x-t)^{n-\nu-1} \odot f^{(n)}(t) d t \tag{26}\\
& \quad=\left\{\left(\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f^{(n)}\right)_{-}^{(r)}(t) d t\right.\right. \\
& \left.\left.\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f^{(n)}\right)_{+}^{(r)}(t) d t\right) \mid 0 \leq r \leq 1\right\}= \\
& \quad=\left\{\left(\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f_{-}^{(r)}\right)^{(n)}(t) d t\right.\right. \\
& \left.\left.\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f_{+}^{(r)}\right)^{(n)}(t) d t\right) \mid 0 \leq r \leq 1\right\} \tag{27}
\end{align*}
$$

So, we get

$$
\begin{gather*}
{\left[D_{* a}^{\nu \mathcal{F}} f(x)\right]^{r}=\left[\left(\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f_{-}^{(r)}\right)^{(n)}(t) d t\right.\right.} \\
\left.\left.\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f_{+}^{(r)}\right)^{(n)}(t) d t\right)\right], \quad 0 \leq r \leq 1 \tag{28}
\end{gather*}
$$

That is
$\left(D_{* a}^{\nu \mathcal{F}} f(x)\right)_{ \pm}^{(r)}=\frac{1}{\Gamma(n-\nu)} \int_{a}^{x}(x-t)^{n-\nu-1}\left(f_{ \pm}^{(r)}\right)^{(n)}(t) d t=\left(D_{* a}^{\nu}\left(f_{ \pm}^{(r)}\right)\right)(x)$,
see [7], [24].
I.e. we get that

$$
\begin{equation*}
\left(D_{* a}^{\nu \mathcal{F}} f(x)\right)_{ \pm}^{(r)}=\left(D_{* a}^{\nu}\left(f_{ \pm}^{(r)}\right)\right)(x) \tag{29}
\end{equation*}
$$

$\forall x \in[a, b]$, in short

$$
\begin{equation*}
\left(D_{* a}^{\nu \mathcal{F}} f\right)_{ \pm}^{(r)}=D_{* a}^{\nu}\left(f_{ \pm}^{(r)}\right), \quad \forall r \in[0,1] \tag{30}
\end{equation*}
$$

We need

Lemma 39 ([11]) $D_{* a}^{\nu \mathcal{F}} f(x)$ is fuzzy continuous in $x \in[a, b]$.
We need
Definition 40 ([11]) We define the Fuzzy Fractional right Caputo derivative, $x \in[a, b]$.

Let $f \in C_{\mathcal{F}}^{n}([a, b]), n=\lceil\nu\rceil, \nu>0$. We define

$$
\begin{align*}
& D_{b-}^{\nu \mathcal{F}} f(x):=\frac{(-1)^{n}}{\Gamma(n-\nu)} \odot \int_{x}^{b}(t-x)^{n-\nu-1} \odot f^{(n)}(t) d t \\
& =\left\{\left(\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f^{(n)}\right)_{-}^{(r)}(t) d t\right.\right. \\
& \left.\left.\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f^{(n)}\right)_{+}^{(r)}(t) d t\right) \mid 0 \leq r \leq 1\right\} \tag{31}\\
& =\left\{\left(\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f_{-}^{(r)}\right)^{(n)}(t) d t\right.\right. \\
& \left.\left.\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f_{+}^{(r)}\right)^{(n)}(t) d t\right) \mid 0 \leq r \leq 1\right\}
\end{align*}
$$

We get

$$
\begin{gathered}
{\left[D_{b-}^{\nu \mathcal{F}} f(x)\right]^{r}=\left[\left(\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f_{-}^{(r)}\right)^{(n)}(t) d t\right.\right.} \\
\left.\left.\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f_{+}^{(r)}\right)^{(n)}(t) d t\right)\right], \quad 0 \leq r \leq 1
\end{gathered}
$$

That is
$\left(D_{b-}^{\nu \mathcal{F}} f(x)\right)_{ \pm}^{(r)}=\frac{(-1)^{n}}{\Gamma(n-\nu)} \int_{x}^{b}(t-x)^{n-\nu-1}\left(f_{ \pm}^{(r)}\right)^{(n)}(t) d t=\left(D_{b-}^{\nu}\left(f_{ \pm}^{(r)}\right)\right)(x)$, see [6].
I.e. we get that

$$
\begin{equation*}
\left(D_{b-}^{\nu \mathcal{F}} f(x)\right)_{ \pm}^{(r)}=\left(D_{b-}^{\nu}\left(f_{ \pm}^{(r)}\right)\right)(x) \tag{32}
\end{equation*}
$$

$\forall x \in[a, b]$, in short

$$
\begin{equation*}
\left(D_{b-}^{\nu \mathcal{F}} f\right)_{ \pm}^{(r)}=D_{b-}^{\nu}\left(f_{ \pm}^{(r)}\right), \quad \forall r \in[0,1] \tag{33}
\end{equation*}
$$

Clearly,

$$
D_{b-}^{\nu}\left(f_{-}^{(r)}\right) \leq D_{b-}^{\nu}\left(f_{+}^{(r)}\right), \quad \forall r \in[0,1]
$$

We need
Lemma 41 ([11]) $D_{b-}^{\nu \mathcal{F}} f(x)$ is fuzzy continuous in $x \in[a, b]$.

3 Real neural network approximation

Here we follow [22].
Let $h: \mathbb{R} \rightarrow[-1,1]$ be a general sigmoid function, such that it is strictly increasing, $h(0)=0, h(-x)=-h(x), h(+\infty)=1, h(-\infty)=-1$. Also h is strictly convex over $(-\infty, 0]$ and strictly concave over $[0,+\infty)$, with $h^{(2)} \in$ $C(\mathbb{R})$.

We consider the activation function

$$
\begin{equation*}
\psi(x):=\frac{1}{4}(h(x+1)-h(x-1)), x \in \mathbb{R} \tag{34}
\end{equation*}
$$

As in [21], p. 45, we get that $\psi(-x)=\psi(x)$, thus ψ is an even function. Since $x+1>x-1$, then $h(x+1)>h(x-1)$, and $\psi(x)>0$, all $x \in \mathbb{R}$.

We see that

$$
\begin{equation*}
\psi(0)=\frac{h(1)}{2} . \tag{35}
\end{equation*}
$$

Let $x>1$, we have that

$$
\psi^{\prime}(x)=\frac{1}{4}\left(h^{\prime}(x+1)-h^{\prime}(x-1)\right)<0
$$

by h^{\prime} being strictly decreasing over $[0,+\infty)$.
Let now $0<x<1$, then $1-x>0$ and $0<1-x<1+x$. It holds $h^{\prime}(x-1)=h^{\prime}(1-x)>h^{\prime}(x+1)$, so that again $\psi^{\prime}(x)<0$. Consequently ψ is stritly decreasing on $(0,+\infty)$.

Clearly, ψ is strictly increasing on $(-\infty, 0)$, and $\psi^{\prime}(0)=0$.
See that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \psi(x)=\frac{1}{4}(h(+\infty)-h(+\infty))=0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \psi(x)=\frac{1}{4}(h(-\infty)-h(-\infty))=0 \tag{37}
\end{equation*}
$$

That is the x-axis is the horizontal asymptote on ψ.
Conclusion, ψ is a bell symmetric function with maximum

$$
\psi(0)=\frac{h(1)}{2}
$$

We need
Theorem 42 ([22]) We have that

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \psi(x-i)=1, \quad \forall x \in \mathbb{R} \tag{38}
\end{equation*}
$$

Theorem 43 ([22]) It holds

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi(x) d x=1 \tag{39}
\end{equation*}
$$

Thus $\psi(x)$ is a density function on \mathbb{R}.
We give
Theorem 44 ([22]) Let $0<\alpha<1$, and $n \in \mathbb{N}$ with $n^{1-\alpha}>2$. It holds

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty} \psi(n x-k)<\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)}{2} . \tag{40}\\
& :|n x-k| \geq n^{1-\alpha}
\end{align*}
$$

Notice that

$$
\lim _{n \rightarrow+\infty} \frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)}{2}=0
$$

Denote by $\lfloor\cdot\rfloor$ the integral part of the number and by $\lceil\cdot\rceil$ the ceiling of the number.

We further give
Theorem 45 ([22]) Let $x \in[a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil n a\rceil \leq\lfloor n b\rfloor$. It holds

$$
\begin{equation*}
\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}<\frac{1}{\psi(1)}, \quad \forall x \in[a, b] \tag{41}
\end{equation*}
$$

Remark 46 ([22]) i) We have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k) \neq 1 \tag{42}
\end{equation*}
$$

for at least some $x \in[a, b]$.
ii) For large enough $n \in \mathbb{N}$ we always obtain $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq\lfloor n b\rfloor$.

In general, by Theorem 42, it holds

$$
\begin{equation*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k) \leq 1 \tag{43}
\end{equation*}
$$

We give
Definition 47 ([22]) Let $f \in C([a, b])$ and $n \in \mathbb{N}:\lceil n a\rceil \leq\lfloor n b\rfloor$. We introduce and define the linear neural network operator

$$
\begin{equation*}
A_{n}(f, x):=\frac{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f\left(\frac{k}{n}\right) \psi(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}, \quad x \in[a, b] . \tag{44}
\end{equation*}
$$

Clearly here $A_{n}(f, x) \in C([a, b])$. We present results for the pointwise and uniform convergence of $A_{n}(f, x)$ to $f(x)$ with rates.

We first give
Theorem 48 ([22]) Let $f \in C([a, b]), 0<\alpha<1, n \in \mathbb{N}: n^{1-\alpha}>2, x \in[a, b]$. Then
i)

$$
\begin{equation*}
\left|A_{n}(f, x)-f(x)\right| \leq \frac{1}{\psi(1)}\left[\omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)+\left(1-h\left(n^{1-\alpha}-2\right)\right)\|f\|_{\infty}\right]=: \rho \tag{45}
\end{equation*}
$$

and
ii)

$$
\begin{equation*}
\left\|A_{n}(f)-f\right\|_{\infty} \leq \rho \tag{46}
\end{equation*}
$$

We notice $\lim _{n \rightarrow \infty} A_{n}(f)=f$, pointwise and uniformly.
The speed of convergence is $\max \left(\frac{1}{n^{\alpha}},\left(1-h\left(n^{1-\alpha}-2\right)\right)\right)$.
In the next we discuss high order neural network approximation by using the smoothness of f.

Theorem 49 ([22]) Let $f \in C^{N}([a, b]), n, N \in \mathbb{N}, 0<\alpha<1$, $x \in[a, b]$ and $n^{1-\alpha}>2$. Then
i)

$$
\left|A_{n}(f, x)-f(x)\right| \leq \frac{1}{\psi(1)}\left\{\sum_{j=1}^{N} \frac{\left\|f^{(j)}(x)\right\|}{j!}\left[\frac{1}{n^{\alpha j}}+\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)}{2}(b-a)^{j}\right]+\right.
$$

$$
\begin{equation*}
\left.\left[\omega_{1}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)\left\|f^{(N)}\right\|_{\infty}(b-a)^{N}}{N!}\right]\right\} \tag{47}
\end{equation*}
$$

ii) assume further $f^{(j)}\left(x_{0}\right)=0, j=1, \ldots, N$, for some $x_{0} \in[a, b]$, it holds

$$
\begin{gather*}
\left|A_{n}\left(f, x_{0}\right)-f\left(x_{0}\right)\right| \leq \frac{1}{\psi(1)} \\
\left\{\omega_{1}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)\left\|f^{(N)}\right\|_{\infty}(b-a)^{N}}{N!}\right\} \tag{48}
\end{gather*}
$$

and
iii)
$\left\|A_{n}(f)-f\right\|_{\infty} \leq \frac{1}{\psi(1)}\left\{\sum_{j=1}^{N} \frac{\left\|f^{(j)}\right\|_{\infty}}{j!}\left[\frac{1}{n^{\alpha j}}+\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)}{2}(b-a)^{j}\right]+\right.$

$$
\begin{equation*}
\left.\left[\omega_{1}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)\left\|f^{(N)}\right\|_{\infty}(b-a)^{N}}{N!}\right]\right\} . \tag{49}
\end{equation*}
$$

Again we obtain $\lim _{n \rightarrow \infty} A_{n}(f)=f$, pointwise and uniformly.
We present the following fractional approximation result by neural networks.
Theorem 50 ([22]) Let $\alpha>0, N=\lceil\alpha\rceil, \alpha \notin \mathbb{N}, f \in C^{N}([a, b]), 0<\beta<1$, $x \in[a, b], n \in \mathbb{N}: n^{1-\beta}>2$. Then

$$
\begin{gather*}
\left|A_{n}(f, x)-\sum_{j=1}^{N-1} \frac{f^{(j)}(x)}{j!} A_{n}\left((\cdot-x)^{j}\right)(x)-f(x)\right| \leq \\
\frac{(\psi(1))^{-1}}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[x, b]}\right)}{n^{\alpha \beta}}+\right. \\
\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left(\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}, \tag{50}
\end{gather*}
$$

ii) if $f^{(j)}(x)=0$, for $j=1, \ldots, N-1$, we have

$$
\begin{gather*}
\left|A_{n}(f, x)-f(x)\right| \leq \frac{(\psi(1))^{-1}}{\Gamma(\alpha+1)} \\
\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[x, b]}\right)}{n^{\alpha \beta}}+\right. \\
\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left(\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}, \tag{51}
\end{gather*}
$$

iii)

$$
\begin{gather*}
\left|A_{n}(f, x)-f(x)\right| \leq(\psi(1))^{-1} \\
\left\{\sum_{j=1}^{N-1} \frac{\left\|f^{(j)}(x)\right\|}{j!}\left\{\frac{1}{n^{\beta j}}+(b-a)^{j}\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\right\}+\right. \\
\frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[x, b]}\right)}{n^{\alpha \beta}}+\right. \\
\left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left(\left\|D_{x-f}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}\right\}, \tag{52}
\end{gather*}
$$

$$
\begin{align*}
& \forall x \in[a, b], \\
& \text { and } \\
& \text { iv) } \\
& \qquad\left\{\sum_{j=1}^{N-1} \frac{\left\|f^{(j)}\right\|_{\infty}}{j!}\left\{\frac{1}{n^{\beta j}}+(b-a)^{j}\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\right\}+\right. \\
& \frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left(\sup _{x \in[a, b]} \omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta}}\right)_{[x, b]}\right)}{n^{\alpha \beta}}+\right. \\
& \left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{\alpha}\left(\sup _{x \in[a, b]}\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}+\sup _{x \in[a, b]}\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}\right)\right\}\right\} .
\end{align*}
$$

Above, when $N=1$ the sum $\sum_{j=1}^{N-1} \cdot=0$.
As we see here we obtain fractionally type pointwise and uniform convergence with rates of $A_{n} \rightarrow I$ the unit operator, as $n \rightarrow \infty$.

4 Main Results: Approximation by general Fuzzy Neural Network Operators

Let $f \in C_{\mathcal{F}}([a, b])$ (fuzzy continuous functions on $[a, b] \subset \mathbb{R}$), $n \in \mathbb{N}$. We define the following Fuzzy Quasi-Interpolation Neural Network operator

$$
\begin{equation*}
A_{n}^{\mathcal{F}}(f, x)=\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor *} f\left(\frac{k}{n}\right) \odot \frac{\psi(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}, \tag{54}
\end{equation*}
$$

$\forall x \in[a, b]$, see also (44).
The fuzzy sum in (54) is finite.
Let $r \in[0,1]$, we observe that

$$
\left[A_{n}^{\mathcal{F}}(f, x)\right]^{r}=\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left[f\left(\frac{k}{n}\right)\right]^{r}\left(\frac{\psi(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}\right)=
$$

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left[f_{-}^{(r)}\left(\frac{k}{n}\right), f_{+}^{(r)}\left(\frac{k}{n}\right)\right]\left(\frac{\psi(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}\right)= \\
{\left[\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f_{-}^{(r)}\left(\frac{k}{n}\right)\left(\frac{\psi(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}\right), \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f_{+}^{(r)}\left(\frac{k}{n}\right)\left(\frac{\psi(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}\right)\right]} \tag{55}\\
=\left[A_{n}\left(f_{-}^{(r)}, x\right), A_{n}\left(f_{+}^{(r)}, x\right)\right] .
\end{gather*}
$$

We have proved that

$$
\begin{equation*}
\left(A_{n}^{\mathcal{F}}(f, x)\right)_{ \pm}^{(r)}=A_{n}\left(f_{ \pm}^{(r)}, x\right) \tag{56}
\end{equation*}
$$

respectively, $\forall r \in[0,1], \forall x \in[a, b]$.
Therefore we get

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right)= \\
\sup _{r \in[0,1]} \max \left\{\left|A_{n}\left(f_{-}^{(r)}, x\right)-f_{-}^{(r)}(x)\right|,\left|A_{n}\left(f_{+}^{(r)}, x\right)-f_{+}^{(r)}(x)\right|\right\} \tag{57}
\end{gather*}
$$

$\forall x \in[a, b]$.
We present our first fuzzy neural network approximation result.
Theorem 51 Let $f \in C_{\mathcal{F}}([a, b]), 0<\alpha<1, x \in[a, b], n \in \mathbb{N}$ with $n^{1-\alpha}>2$. Then
1)
$D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \frac{1}{\psi(1)}\left[\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\alpha}}\right)+\left(1-h\left(n^{1-\alpha}-2\right)\right) D^{*}(f, \widetilde{o})\right]=: T_{n}$,
and
2)

$$
\begin{equation*}
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq T_{n} \tag{59}
\end{equation*}
$$

We notice that $\lim _{n \rightarrow \infty}\left(A_{n}^{\mathcal{F}}(f)\right)(x) \xrightarrow{D} f(x), \lim _{n \rightarrow \infty} A_{n}^{\mathcal{F}}(f) \xrightarrow{D^{*}} f$, pointwise and uniformly.

Proof. We have that $f_{ \pm}^{(r)} \in C([a, b]), \forall r \in[0,1]$. Hence by (45), we obtain $\left|A_{n}\left(f_{ \pm}^{(r)}, x\right)-f_{ \pm}^{(r)}(x)\right| \leq \frac{1}{\psi(1)}\left[\omega_{1}\left(f_{ \pm}^{(r)}, \frac{1}{n^{\alpha}}\right)+\left(1-h\left(n^{1-\alpha}-2\right)\right)\left\|f_{ \pm}^{(r)}\right\|_{\infty}\right]$
(by Proposition 7 and $\left\|f_{ \pm}^{(r)}\right\|_{\infty} \leq D^{*}(f, \widetilde{o})$)

$$
\begin{equation*}
\leq \frac{1}{\psi(1)}\left[\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\alpha}}\right)+\left(1-h\left(n^{1-\alpha}-2\right)\right) D^{*}(f, \widetilde{o})\right] \tag{61}
\end{equation*}
$$

Taking into account (57) the theorem is proved.
We also give
Theorem 52 Let $f \in C_{\mathcal{F}}^{N}([a, b]), N \in \mathbb{N}, 0<\alpha<1, x \in[a, b], n \in \mathbb{N}$ with $n^{1-\alpha}>2$. Then
1)

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \frac{1}{\psi(1)} \\
\left\{\sum_{j_{*}=1}^{N} \frac{D\left(f^{\left(j_{*}\right)}(x), \widetilde{o}\right)}{j_{*}!}\left[\frac{1}{n^{\alpha j_{*}}}+\left(\frac{1-h\left(n^{1-\alpha}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
\left.\left[\omega_{1}^{(\mathcal{F})}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\left(1-h\left(n^{1-\alpha}-2\right)\right) D^{*}\left(f^{(N)}, \widetilde{o}\right) \frac{(b-a)^{N}}{N!}\right]\right\}, \tag{62}
\end{gather*}
$$

2) assume further that $f^{\left(j_{*}\right)}\left(x_{0}\right)=\widetilde{o}, j_{*}=1, \ldots, N$, for some $x_{0} \in[a, b]$, it holds

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}\left(f, x_{0}\right), f\left(x_{0}\right)\right) \leq \\
\frac{1}{\psi(1)}\left[\omega_{1}^{(\mathcal{F})}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\left(1-h\left(n^{1-\alpha}-2\right)\right) D^{*}\left(f^{(N)}, \widetilde{o}\right) \frac{(b-a)^{N}}{N!}\right] \tag{63}
\end{gather*}
$$

notice here the extremely high rate of convergence $n^{-(N+1) \alpha}$,
3)

$$
\begin{gather*}
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq \frac{1}{\psi(1)} \\
\left\{\sum_{j_{*}=1}^{N} \frac{D^{*}\left(f^{\left(j_{*}\right)}, \widetilde{o}\right)}{j_{*}!}\left[\frac{1}{n^{\alpha j_{*}}}+\left(\frac{1-h\left(n^{1-\alpha}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
\left.\left[\omega_{1}^{(\mathcal{F})}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\left(1-h\left(n^{1-\alpha}-2\right)\right) D^{*}\left(f^{(N)}, \widetilde{o}\right) \frac{(b-a)^{N}}{N!}\right]\right\} . \tag{64}
\end{gather*}
$$

Proof. Since $f \in C_{\mathcal{F}}^{N}([a, b]), N \geq 1$, we have that $f_{ \pm}^{(r)} \in C^{N}([a, b]), \forall$ $r \in[0,1]$. Using (47), we get

$$
\begin{equation*}
\left|A_{n}\left(f_{ \pm}^{(r)}, x\right)-f_{ \pm}^{(r)}(x)\right| \leq \frac{1}{\psi(1)} \tag{65}
\end{equation*}
$$

$$
\begin{gather*}
\left\{\sum_{j_{*}=1}^{N} \frac{\left|\left(f_{ \pm}^{(r)}\right)^{\left(j_{*}\right)}(x)\right|}{j_{*}!}\left[\frac{1}{n^{\alpha j_{*}}}+\left(\frac{1-h\left(n^{1-\alpha}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
\left.\left[\omega_{1}\left(\left(f_{ \pm}^{(r)}\right)^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\left(1-h\left(n^{1-\alpha}-2\right)\right)\left\|\left(f_{ \pm}^{(r)}\right)^{(N)}\right\|_{\infty} \frac{(b-a)^{N}}{N!}\right]\right\} \tag{66}
\end{gather*}
$$

(by Remark 12)

$$
\begin{align*}
& \quad=\frac{1}{\psi(1)}\left\{\sum_{j_{*}=1}^{N} \frac{\left|\left(f^{\left(j_{*}\right)}\right)_{ \pm}^{(r)}(x)\right|}{j_{*}!}\left[\frac{1}{n^{\alpha j_{*}}}+\left(\frac{1-h\left(n^{1-\alpha}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
& \left.\left[\omega_{1}\left(\left(f^{(N)}\right)_{ \pm}^{(r)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\left(1-h\left(n^{1-\alpha}-2\right)\right)\left\|\left(f^{(N)}\right)_{ \pm}^{(r)}\right\|_{\infty} \frac{(b-a)^{N}}{N!}\right]\right\} \leq \\
& \quad \frac{1}{\psi(1)}\left\{\sum_{j_{*}=1}^{N} \frac{D\left(f^{\left(j_{*}\right)}(x), \widetilde{o}\right)}{j_{*}!}\left[\frac{1}{n^{\alpha j_{*}}}+\left(\frac{1-h\left(n^{1-\alpha}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
& \left.\quad\left[\omega_{1}^{(\mathcal{F})}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\left(1-h\left(n^{1-\alpha}-2\right)\right) D^{*}\left(f^{(N)}, \widetilde{o}\right) \frac{(b-a)^{N}}{N!}\right]\right\}, \tag{67}
\end{align*}
$$

by Proposition $7,\left\|\left(f^{(N)}\right)_{ \pm}^{(r)}\right\|_{\infty} \leq D^{*}\left(f^{(N)}, \widetilde{o}\right)$ and apply (57).
The theorem is proved.
Next we present
Theorem 53 Let $\alpha>0, N=\lceil\alpha\rceil, \alpha \notin \mathbb{N}, f \in C_{\mathcal{F}}^{N}([a, b]), 0<\beta<1$, $x \in[a, b], n \in \mathbb{N}, n^{1-\beta}>2$. Then

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \frac{1}{\psi(1)} \\
\left\{\sum_{j_{*}=1}^{N-1} \frac{D\left(f^{\left(j_{*}\right)}(x), \widetilde{o}\right)}{j_{*}!}\left[\frac{1}{n^{\beta j_{*}}}+\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
\frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left[\omega_{1}^{(\mathcal{F})}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]}\right]}{n^{\alpha \beta}}+\right. \tag{68}\\
\left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left[D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]}(x-a)^{\alpha}+D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]}(b-x)^{\alpha}\right]\right\}\right\}
\end{gather*}
$$

ii) if $f^{(j)}\left(x_{0}\right)=0, j=1, \ldots, N-1$, for some $x_{0} \in[a, b]$, we have

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}\left(f, x_{0}\right), f\left(x_{0}\right)\right) \leq \\
\frac{(\psi(1))^{-1}}{\Gamma(\alpha+1)}\left\{\frac{\left[\omega_{1}^{(\mathcal{F})}\left(\left(D_{x_{0}-}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{\left[a, x_{0}\right]}+\omega_{1}^{(\mathcal{F})}\left(\left(D_{* x_{0}}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{\left[x_{0}, b\right]}\right]}{n^{\alpha \beta}}+\right. \tag{69}\\
\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left[D^{*}\left(\left(D_{x_{0}-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{\left[a, x_{0}\right]}\left(x_{0}-a\right)^{\alpha}+D^{*}\left(\left(D_{* x_{0}}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{\left[x_{0}, b\right]}\left(b-x_{0}\right)^{\alpha}\right]\right\}
\end{gather*}
$$

when $\alpha>1$ notice here the extremely high rate of convergence at $n^{-(\alpha+1) \beta}$,
and
iii)

$$
\begin{gathered}
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq \\
\frac{1}{\psi(1)}\left\{\sum_{j_{*}=1}^{N-1} \frac{D^{*}\left(f^{\left(j_{*}\right)}, \widetilde{o}\right)}{j_{*}!}\left[\frac{1}{n^{\beta j_{*}}}+\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{j_{*}}\right]+\right. \\
\frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left[\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]}\right]}{n^{\alpha \beta}}+\right. \\
\left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{\alpha}\left[\sup _{x \in[a, b]} D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]}+\sup _{x \in[a, b]} D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]}\right]\right\}\right\}
\end{gathered}
$$

above, when $N=1$ the sum $\sum_{j=1}^{N-1} \cdot=0$.
As we see here we obtain fractionally the fuzzy pointwise and uniform convergence with rates of $A_{n}^{\mathcal{F}} \rightarrow I$ the unit operator, as $n \rightarrow \infty$.

Proof. Here $f_{ \pm}^{(r)} \in C^{N}([a, b]), \forall r \in[0,1]$, and $D_{x-}^{\alpha \mathcal{F}} f, D_{* x}^{\alpha \mathcal{F}} f$ are fuzzy continuous over $[a, b], \forall x \in[a, b]$, so that $\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)},\left(D_{* x}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)} \in C([a, b]), \forall$ $r \in[0,1], \forall x \in[a, b]$.

We observe by (52), $\forall x \in[a, b]$, that (respectively in \pm)

$$
\begin{gather*}
\left|A_{n}\left(f_{ \pm}^{(r)}, x\right)-f_{ \pm}^{(r)}(x)\right| \leq \frac{1}{\psi(1)} \\
\left\{\sum_{j_{*}=1}^{N-1} \frac{\left|\left(f_{ \pm}^{(r)}\right)^{\left(j_{*}\right)}(x)\right|}{j_{*}!}\left\{\frac{1}{n^{\beta j_{*}}}+\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{j_{*}}\right\}+\right. \tag{71}
\end{gather*}
$$

$$
\begin{gathered}
\frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha}\left(f_{ \pm}^{(r)}\right), \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha}\left(f_{ \pm}^{(r)}\right), \frac{1}{n^{\beta}}\right)_{[x, b]}\right)}{n^{\alpha \beta}}+\right. \\
\left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left(\left\|D_{x-}^{\alpha}\left(f_{ \pm}^{(r)}\right)\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha}\left(f_{ \pm}^{(r)}\right)\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}\right\}=
\end{gathered}
$$

(by Remark 12, (30), (33))

$$
\begin{aligned}
& \frac{1}{\psi(1)}\left\{\sum_{j_{*}=1}^{N-1} \frac{\left|\left(f^{\left(j_{*}\right)}(x)\right)_{ \pm}^{(r)}\right|}{j_{*}!}\left\{\frac{1}{n^{\beta_{*}}}+\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{j_{*}}\right\}+\right. \\
& \frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}, \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}, \frac{1}{n^{\beta}}\right)_{[x, b]}\right)}{n^{\alpha \beta}}+(72)\right. \\
& \left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left(\left\|\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|\left(D_{* x}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}\right\} \leq \\
& \frac{1}{\psi(1)}\left\{\sum_{j_{*}=1}^{N-1} \frac{D\left(f^{\left(j_{*}\right)}(x), \widetilde{o}\right)}{j_{*}!}\left\{\frac{1}{n^{\beta j_{*}}}+\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{j_{*}}\right\}+\right. \\
& \frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left[\omega_{1}^{(\mathcal{F})}\left(\left(D_{x-\mathcal{F}}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]}+\omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]}\right]}{n^{\alpha \beta}}+\right. \\
& \left.\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)\left[D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]}(x-a)^{\alpha}+D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]}(b-x)^{\alpha}\right]\right\}\right\},
\end{aligned}
$$

along with (57) proving all inequalities of theorem.
Here we notice that

$$
\begin{gathered}
\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}(t)=\left(D_{x-}^{\alpha}\left(f_{ \pm}^{(r)}\right)\right)(t) \\
=\frac{(-1)^{N}}{\Gamma(N-\alpha)} \int_{t}^{x}(s-t)^{N-\alpha-1}\left(f_{ \pm}^{(r)}\right)^{(N)}(s) d s,
\end{gathered}
$$

where $a \leq t \leq x$.
Hence

$$
\begin{aligned}
& \left|\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}(t)\right| \leq \frac{1}{\Gamma(N-\alpha)} \int_{t}^{x}(s-t)^{N-\alpha-1}\left|\left(f_{ \pm}^{(r)}\right)^{(N)}(s)\right| d s \\
& \quad \leq \frac{\left\|\left(f^{(N)}\right)_{ \pm}^{(r)}\right\|_{\infty}}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha} .
\end{aligned}
$$

So we have

$$
\left|\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}(t)\right| \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}
$$

all $a \leq t \leq x$.
And it holds

$$
\begin{equation*}
\left\|\left(D_{x-}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}\right\|_{\infty,[a, x]} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha} \tag{74}
\end{equation*}
$$

that is

$$
D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}
$$

and

$$
\begin{equation*}
\sup _{x \in[a, b]} D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}<\infty . \tag{75}
\end{equation*}
$$

Similarly we have

$$
\begin{gathered}
\left(D_{* x}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}(t)=\left(D_{* x}^{\alpha}\left(f_{ \pm}^{(r)}\right)\right)(t) \\
=\frac{1}{\Gamma(N-\alpha)} \int_{x}^{t}(t-s)^{N-\alpha-1}\left(f_{ \pm}^{(r)}\right)^{(N)}(s) d s
\end{gathered}
$$

where $x \leq t \leq b$.
Hence

$$
\begin{gathered}
\left|\left(D_{* x}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}(t)\right| \leq \frac{1}{\Gamma(N-\alpha)} \int_{x}^{t}(t-s)^{N-\alpha-1}\left|\left(f^{(N)}\right)_{ \pm}^{(r)}(s)\right| d s \leq \\
\frac{\left\|\left(f^{(N)}\right)_{ \pm}^{(r)}\right\|_{\infty}}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}
\end{gathered}
$$

$x \leq t \leq b$.
So we have

$$
\begin{equation*}
\left\|\left(D_{* x}^{\alpha \mathcal{F}} f\right)_{ \pm}^{(r)}\right\|_{\infty,[x, b]} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha} \tag{76}
\end{equation*}
$$

that is

$$
D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}
$$

and

$$
\begin{equation*}
\sup _{x \in[a, b]} D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]} \leq \frac{D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}<+\infty . \tag{77}
\end{equation*}
$$

Furthermore we notice

$$
\omega_{1}^{(\mathcal{F})}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]}=\sup _{\substack{s, t \in[a, x] \\|s-t| \leq \frac{1}{n^{\beta}}}} D\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right)(s),\left(D_{x-}^{\alpha \mathcal{F}} f\right)(t)\right) \leq
$$

$$
\begin{gathered}
\sup _{\substack{s, t \in[a, x] \\
|s-t| \leq \frac{1}{n^{\mathcal{\beta}}}}}\left\{D\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right)(s), \widetilde{o}\right)+D\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right)(t), \widetilde{o}\right)\right\} \leq 2 D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]} \\
\leq \frac{2 D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}
\end{gathered}
$$

Therefore it holds

$$
\begin{equation*}
\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]} \leq \frac{2 D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}<+\infty \tag{78}
\end{equation*}
$$

Similarly we observe

$$
\begin{gathered}
\omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]}=\sup _{\substack{s, t \in[x, b] \\
|s-t| \leq \frac{1}{n^{\beta}}}} D\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right)(s),\left(D_{* x}^{\alpha \mathcal{F}} f\right)(t)\right) \leq \\
2 D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]} \leq \frac{2 D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}
\end{gathered}
$$

Consequently it holds

$$
\begin{equation*}
\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]} \leq \frac{2 D^{*}\left(f^{(N)}, \widetilde{o}\right)}{\Gamma(N-\alpha+1)}(b-a)^{N-\alpha}<+\infty \tag{79}
\end{equation*}
$$

So everything in the statements of the theorem makes sense.
The proof of the theorem is now completed.
Corollary 54 (to Theorem 53, $N=1$ case) Let $0<\alpha, \beta<1, f \in C_{\mathcal{F}}^{1}([a, b])$, $n \in \mathbb{N}, n^{1-\beta}>2$. Then

$$
\begin{gathered}
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq \\
\frac{(\psi(1))^{-1}}{\Gamma(\alpha+1)}\left\{\frac{\left[\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]}\right]}{n^{\alpha \beta}}+\right. \\
\left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right)(b-a)^{\alpha}\left[\sup _{x \in[a, b]} D^{*}\left(\left(D_{x-}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]}+\sup _{x \in[a, b]} D^{*}\left(\left(D_{* x}^{\alpha \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]}\right]\right\} .
\end{gathered}
$$

Proof. By (70).
Finally we specialize to $\alpha=\frac{1}{2}$.
Corollary 55 (to Theorem 53) Let $0<\beta<1, f \in C_{\mathcal{F}}^{1}([a, b]), n \in \mathbb{N}, n^{1-\beta}>$
2. Then

$$
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq
$$

$$
\begin{aligned}
& \frac{2(\psi(1))^{-1}}{\sqrt{\pi}}\left\{\frac{\left[\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{x-}^{\frac{1}{2} \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}^{(\mathcal{F})}\left(\left(D_{* x}^{\frac{1}{2} \mathcal{F}} f\right), \frac{1}{n^{\beta}}\right)_{[x, b]}\right]}{n^{\frac{\beta}{2}}}+\right. \\
& \left.\left(\frac{1-h\left(n^{1-\beta}-2\right)}{2}\right) \sqrt{b-a}\left[\sup _{x \in[a, b]} D^{*}\left(\left(D_{x-}^{\frac{1}{2} \mathcal{F}} f\right), \widetilde{o}\right)_{[a, x]}+\sup _{x \in[a, b]} D^{*}\left(\left(D_{* x}^{\frac{1}{2} \mathcal{F}} f\right), \widetilde{o}\right)_{[x, b]}\right]\right\} .
\end{aligned}
$$

Proof. By (80).
Conclusion 56 We have extended to the fuzzy setting all the main approximation theorems of Section 3.

References

[1] G.A. Anastassiou, Rate of convergence of some neural network operators to the unit-univariate case, Journal of Mathematical Analysis and Application, Vol. 212 (1997), 237-262.
[2] G.A. Anastassiou, Quantitative Approximation, Chapmann and Hall/CRC, Boca Raton, New York, 2001.
[3] G.A. Anastassiou, Fuzzy Approximation by Fuzzy Convolution type Operators, Computers and Mathematics, 48(2004), 1369-1386.
[4] G.A. Anastassiou, Higher order Fuzzy Korovkin Theory via inequalities, Communications in Applied Analysis, 10(2006), No. 2, 359-392.
[5] G.A. Anastassiou, Fuzzy Korovkin Theorems and Inequalities, Journal of Fuzzy Mathematics, 15(2007), No. 1, 169-205.
[6] G.A. Anastassiou, On Right Fractional Calculus, Chaos, solitons and fractals, 42 (2009), 365-376.
[7] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer, New York, 2009.
[8] G.A. Anastassiou, Fractional Korovkin theory, Chaos, Solitons \& Fractals, Vol. 42, No. 4 (2009), 2080-2094.
[9] G.A. Anastassiou, Fuzzy Mathematics: Approximation Theory, Springer, Heildelberg, New York, 2010.
[10] G.A. Anastassiou, Intelligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems Reference Library, Vol. 19, Springer, Heidelberg, 2011.
[11] G.A. Anastassiou, Fuzzy fractional Calculus and Ostrowski inequality, J. Fuzzy Math. 19 (2011), no. 3, 577-590.
[12] G.A. Anastassiou, Fractional representation formulae aand right fractional inequalities, Mathematical and Computer Modelling, Vol. 54, no. 11-12 (2011), 3098-3115.
[13] G.A. Anastassiou, Univariate hyperbolic tangent neural network approximation, Mathematics and Computer Modelling, 53(2011), 1111-1132.
[14] G.A. Anastassiou, Multivariate hyperbolic tangent neural network approximation, Computers and Mathematics 61(2011), 809-821.
[15] G.A. Anastassiou, Multivariate sigmoidal neural network approximation, Neural Networks 24(2011), 378-386.
[16] G.A. Anastassiou, Univariate sigmoidal neural network approximation, J. of Computational Analysis and Applications, Vol. 14(4), (2012), 659-690.
[17] G.A. Anastassiou, Fractional neural network approximation, Computers and Mathematics with Applications, 64 (6) (2012), 1655-1676.
[18] G. A. Anastassiou, Fuzzy fractional neural network approximation by fuzzy quasi-interpolation operators, J. of Applied Nonlinear Dynamics, 2 (3) (2013), 235-259.
[19] G.A. Anastassiou, Intelligent Systems II: Complete Approximation by Neural Network Operators, Springer, Heidelberg, New York, 2016.
[20] G.A. Anastassiou, Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg, New York, 2018.
[21] G.A. Anastassiou, Banach Space Valued Neural Network, Springer, Heidelberg, New York, 2023.
[22] G.A. Anastassiou, General sigmoid based Banach space valued neural network approximation, J. Computational Analysis and Applications, 31 (4) (2023), 520-534.
[23] Z. Chen and F. Cao, The approximation operators with sigmoidal functions, Computers and Mathematics with Applications, 58 (2009), 758-765.
[24] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics 2004, Springer-Verlag, Berlin, Heidelberg, 2010.
[25] A.M.A. El-Sayed and M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81-95.
[26] G.S. Frederico and D.F.M. Torres, Fractional Optimal Control in the sense of Caputo and the fractional Noether's theorem, International Mathematical Forum, Vol. 3, No. 10 (2008), 479-493.
[27] S. Gal, Approximation Theory in Fuzzy Setting, Chapter 13 in Handbook of Analytic-Computational Methods in Applied Mathematics, 617-666, edited by G. Anastassiou, Chapman \& Hall/CRC, Boca Raton, New York, 2000.
[28] R. Goetschel Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18(1986), 31-43.
[29] S. Haykin, Neural Networks: A Comprehensive Foundation (2 ed.), Prentice Hall, New York, 1998.
[30] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24(1987), 301-317.
[31] Y.K. Kim, B.M. Ghil, Integrals of fuzzy-number-valued functions, Fuzzy Sets and Systems, 86(1997), 213-222.
[32] W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 7 (1943), 115-133.
[33] T.M. Mitchell, Machine Learning, WCB-McGraw-Hill, New York, 1997.
[34] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)].
[35] Wu Congxin, Gong Zengtai, On Henstock integrals of interval-valued functions and fuzzy valued functions, Fuzzy Sets and Systems, Vol. 115, No. 3, 2000, 377-391.
[36] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120, No. 3, (2001), 523-532.
[37] C. Wu, M. Ma, On embedding problem of fuzzy numer spaces: Part 1, Fuzzy Sets and Systems, 44 (1991), 33-38.

