Multivariate Fuzzy Approximation by Neural Network Operators activated by a general sigmoid function

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here is studied in detail the multivariate fuzzy approximation to the multivariate unit by multivariate fuzzy neural network operators activated by a general sigmoid function. These operators are multivariate fuzzy analogs of earlier studied multivariate Banach space valued ones. The derived results generalize earlier Banach space valued ones into the fuzzy level. Here the high order multivariate fuzzy pointwise and uniform convergences with rates to the multivariate fuzzy unit operator are given through multivariate fuzzy Jackson type inequalities involving the multivariate fuzzy moduli of continuity of the m th order ($m \geq 0$) H-fuzzy partial derivatives, of the involved multivariate fuzzy number valued function. The treated operators are of averaged, quasi-interpolation, Kantorovich and quadrature types at the multivariate fuzzy setting.

AMS 2020 Mathematics Subject Classification: 26A15, 26E50, 41A17, 41A25, 41A99, 47S40.

Key words and phrases: general sigmoid activation function, multivariate fuzzy real analysis, multivariate fuzzy: quasi-interpolation, Kantorovich and Quadrature neural network operators, multivariate fuzzy modulus of continuity and multivariate Jackson type inequalities.

1 Introduction

The author in [1], [2] and [3], see chapters 2-5, was the first to derive neural network approximations to continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-Euvrard and "Squashing" types
[25], by employing the modulus of continuity of the engaged function or its high order derivative, and deriving very tight Jackson type inequalities. He treats there both the univariate and multivariate cases. The defining these operators "bell-shaped" and "squashing" function are assumed to be of compact support.

The author motivated by [26], continued his studies on neural networks approximation by introducing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted into [12] - [20], by treating both the univariate and multivariate cases.

Continuation of the author's works ([4] - [11], [22] and especially of [21], Ch. $21)$ is this article, where the multivariate fuzzy neural network approximation is based on a general sigmoid activation function, which among others, may result into higher rates of approximation. We involve the fuzzy partial derivatives of the multivariate fuzzy function under approximation or itself, and we establish tight multivariate fuzzy Jackson type inequalities. An extensive background is given on fuzzy multivariate analysis and real neural network approximation, all needed to present our results.

Our fuzzy multivariate feed-forward neural networks (FFNNs) are with one hidden layer. For neural networks in general you may read [29], [32], [33]. For the fractional aspect see [34].

2 Fuzzy Real Analysis background

See also [21], Ch. 21, pp. 466-473.
We need the following background
Definition 1 (see [36]) Let $\mu: \mathbb{R} \rightarrow[0,1]$ with the following properties
(i) is normal, i.e., $\exists x_{0} \in \mathbb{R} ; \mu\left(x_{0}\right)=1$.
(ii) $\mu(\lambda x+(1-\lambda) y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in[0,1]$ (μ is called a convex fuzzy subset).
(iii) μ is upper semicontinuous on \mathbb{R}, i.e. $\forall x_{0} \in \mathbb{R}$ and $\forall \varepsilon>0, \exists$ neighborhood $V\left(x_{0}\right): \mu(x) \leq \mu\left(x_{0}\right)+\varepsilon, \forall x \in V\left(x_{0}\right)$.
(iv) The set $\overline{\sup p(\mu)}$ is compact in \mathbb{R}, (where $\sup p(\mu):=\{x \in \mathbb{R}: \mu(x)>$ $0\}$).

We call μ a fuzzy real number. Denote the set of all μ with $\mathbb{R}_{\mathcal{F}}$.
E.g. $\chi_{\left\{x_{0}\right\}} \in \mathbb{R}_{\mathcal{F}}$, for any $x_{0} \in \mathbb{R}$, where $\chi_{\left\{x_{0}\right\}}$ is the characteristic function at x_{0}.

For $0<r \leq 1$ and $\mu \in \mathbb{R}_{\mathcal{F}}$ define

$$
\begin{equation*}
[\mu]^{r}:=\{x \in \mathbb{R}: \mu(x) \geq r\} \tag{1}
\end{equation*}
$$

and

$$
[\mu]^{0}:=\overline{\{x \in \mathbb{R}: \mu(x) \geq 0\}} .
$$

Then it is well known that for each $r \in[0,1],[\mu]^{r}$ is a closed and bounded interval on $\mathbb{R}([28])$.

For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$
[u \oplus v]^{r}=[u]^{r}+[v]^{r}, \quad[\lambda \odot u]^{r}=\lambda[u]^{r}, \quad \forall r \in[0,1],
$$

where $[u]^{r}+[v]^{r}$ means the usual addition of two intervals (as substes of \mathbb{R}) and $\lambda[u]^{r}$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g. [36]).

Notice $1 \odot u=u$ and it holds

$$
u \oplus v=v \oplus u, \lambda \odot u=u \odot \lambda
$$

If $0 \leq r_{1} \leq r_{2} \leq 1$ then

$$
[u]^{r_{2}} \subseteq[u]^{r_{1}} .
$$

Actually $[u]^{r}=\left[u_{-}^{(r)}, u_{+}^{(r)}\right]$, where $u_{-}^{(r)} \leq u_{+}^{(r)}, u_{-}^{(r)}, u_{+}^{(r)} \in \mathbb{R}, \forall r \in[0,1]$.
For $\lambda>0$ one has $\lambda u_{ \pm}^{(r)}=(\lambda \odot u)_{ \pm}^{(r)}$, respectively.
Define $D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \rightarrow \mathbb{R}_{\mathcal{F}}$ by

$$
\begin{equation*}
D(u, v):=\sup _{r \in[0,1]} \max \left\{\left|u_{-}^{(r)}-v_{-}^{(r)}\right|,\left|u_{+}^{(r)}-v_{+}^{(r)}\right|\right\} \tag{2}
\end{equation*}
$$

where

$$
[v]^{r}=\left[v_{-}^{(r)}, v_{+}^{(r)}\right] ; u, v \in \mathbb{R}_{\mathcal{F}}
$$

We have that D is a metric on $\mathbb{R}_{\mathcal{F}}$.
Then $\left(\mathbb{R}_{\mathcal{F}}, D\right)$ is a complete metric space, see [36], [37].
Let $f, g: W \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}_{\mathcal{F}}$. We define the distance

$$
D^{*}(f, g)=\sup _{x \in W} D(f(x), g(x)) .
$$

Remark 2 We determine and use

$$
\begin{gathered}
D^{*}(f, \widetilde{o})=\sup _{x \in W} D(f(x), \widetilde{o})= \\
\sup _{x \in W} \sup _{r \in[0,1]} \max \left\{\left|f_{-}^{(r)}(x)\right|,\left|f_{+}^{(r)}(x)\right|\right\} .
\end{gathered}
$$

By the principle of iterated suprema we find that

$$
\begin{equation*}
D^{*}(f, \widetilde{o})=\sup _{r \in[0,1]} \max \left\{\left\|f_{-}^{(r)}\right\|_{\infty},\left\|f_{+}^{(r)}\right\|_{\infty}\right\} \tag{3}
\end{equation*}
$$

under the assumption $D^{*}(f, \widetilde{o})<\infty$, that is f is a fuzzy bounded function.
Above $\|\cdot\|_{\infty}$ is the supremum norm of the function over $W \subseteq \mathbb{R}^{m}$.

Here Σ^{*} stands for fuzzy summation and $\widetilde{0}:=\chi_{\{0\}} \in \mathbb{R}_{\mathcal{F}}$ is the neutral element with respect to \oplus, i.e.,

$$
u \oplus \widetilde{0}=\widetilde{0} \oplus u=u, \quad \forall u \in \mathbb{R}_{\mathcal{F}}
$$

We need
Remark 3 ([5]). Here $r \in[0,1], x_{i}^{(r)}, y_{i}^{(r)} \in \mathbb{R}, i=1, \ldots, m \in \mathbb{N}$. Suppose that

$$
\sup _{r \in[0,1]} \max \left(x_{i}^{(r)}, y_{i}^{(r)}\right) \in \mathbb{R}, \text { for } i=1, \ldots, m
$$

Then one sees easily that

$$
\begin{equation*}
\sup _{r \in[0,1]} \max \left(\sum_{i=1}^{m} x_{i}^{(r)}, \sum_{i=1}^{m} y_{i}^{(r)}\right) \leq \sum_{i=1}^{m} \sup _{r \in[0,1]} \max \left(x_{i}^{(r)}, y_{i}^{(r)}\right) \tag{4}
\end{equation*}
$$

Definition 4 Let $f \in C(W)$, $W \subseteq \mathbb{R}^{m}$, $m \in \mathbb{N}$, which is bounded or uniformly continuous, we define ($h>0$)

$$
\begin{equation*}
\omega_{1}(f, h):=\sup _{x, y \in W,}^{\|x-y\|_{\infty} \leq h}{ }|f(x)-f(y)|, \tag{5}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right)$.
Definition 5 Let $f: W \rightarrow \mathbb{R}_{\mathcal{F}}, W \subseteq \mathbb{R}^{m}$, we define the fuzzy modulus of continuity of f by

$$
\begin{equation*}
\omega_{1}^{(\mathcal{F})}(f, h)=\sup _{x, y \in W,\|x-y\|_{\infty} \leq h} D(f(x), f(y)), \quad h>0 \tag{6}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right)$.
For $f: W \rightarrow \mathbb{R}_{\mathcal{F}}, W \subseteq \mathbb{R}^{m}$, we use

$$
\begin{equation*}
[f]^{r}=\left[f_{-}^{(r)}, f_{+}^{(r)}\right] \tag{7}
\end{equation*}
$$

where $f_{ \pm}^{(r)}: W \rightarrow \mathbb{R}, \forall r \in[0,1]$.
We need
Proposition 6 ([5]) Let $f: W \rightarrow \mathbb{R}_{\mathcal{F}}$. Assume that $\omega_{1}^{\mathcal{F}}(f, \delta), \omega_{1}\left(f_{-}^{(r)}, \delta\right)$, $\omega_{1}\left(f_{+}^{(r)}, \delta\right)$ are finite for any $\delta>0, r \in[0,1]$.

Then

$$
\begin{equation*}
\omega_{1}^{(\mathcal{F})}(f, \delta)=\sup _{r \in[0,1]} \max \left\{\omega_{1}\left(f_{-}^{(r)}, \delta\right), \omega_{1}\left(f_{+}^{(r)}, \delta\right)\right\} \tag{8}
\end{equation*}
$$

We denote by $C_{\mathcal{F}}^{U}(W)$ the space of fuzzy uniformly continuous functions from $W \rightarrow \mathbb{R}_{\mathcal{F}}$, also $C_{\mathcal{F}}(W)$ is the space of fuzzy continuous functions on $W \subseteq \mathbb{R}^{m}$, and $C_{B}\left(W, \mathbb{R}_{\mathcal{F}}\right)$ is the fuzzy continuous and bounded functions.

We mention
Proposition 7 ([y]) Let $f \in C_{\mathcal{F}}^{U}(W)$, where $W \subseteq \mathbb{R}^{m}$ is convex. Then $\omega_{1}^{(\mathcal{F})}(f, \delta)<\infty$, for any $\delta>0$.

Proposition 8 ([7]) It holds

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \omega_{1}^{(\mathcal{F})}(f, \delta)=\omega_{1}^{(\mathcal{F})}(f, 0)=0 \tag{9}
\end{equation*}
$$

iff $f \in C_{\mathcal{F}}^{U}(W), W \subseteq \mathbb{R}^{m}$, where W is convex and compact.
Proposition 9 ([7]) Let $f \in C_{\mathcal{F}}(W), W \subseteq \mathbb{R}^{m}$ open or compact. Then $f_{ \pm}^{(r)}$ are equicontinuous with respect to $r \in[0,1]$ over W, respectively in \pm.

Note 10 It is clear by Propositions 6, 8, that if $f \in C_{\mathcal{F}}^{U}(W)$, then $f_{ \pm}^{(r)} \in$ $C_{U}(W)$ (uniformly continuous on W). Also if $f \in C_{B}\left(W, \mathbb{R}_{\mathcal{F}}\right)$, it implies by (3) that $f_{ \pm}^{(r)} \in C_{B}(W)$ (continuous and bounded functions on W).

We need
Definition 11 Let $x, y \in \mathbb{R}_{\mathcal{F}}$. If there exists $z \in \mathbb{R}_{\mathcal{F}}: x=y \oplus z$, then we call z the H-difference on x and y, denoted $x-y$.

Definition 12 ([36]) Let $T:=\left[x_{0}, x_{0}+\beta\right] \subset \mathbb{R}$, with $\beta>0$. A function $f: T \rightarrow \mathbb{R}_{\mathcal{F}}$ is H-difference at $x \in T$ if there exists an $f^{\prime}(x) \in \mathbb{R}_{\mathcal{F}}$ such that the limits (with respect to D)

$$
\begin{equation*}
\lim _{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h}, \lim _{h \rightarrow 0+} \frac{f(x)-f(x-h)}{h} \tag{10}
\end{equation*}
$$

exist and are equal to $f^{\prime}(x)$.
We call f^{\prime} the H-derivative or fuzzy derivative of f at x.
Above is assumed that the H-differences $f(x+h)-f(x), f(x)-f(x-h)$ exists in $\mathbb{R}_{\mathcal{F}}$ in a neighborhood of x.

Definition 13 We denote by $C_{\mathcal{F}}^{N^{*}}(W), N^{*} \in \mathbb{N}$, the space of all N^{*}-times fuzzy continuously differentiable functions from W into $\mathbb{R}_{\mathcal{F}}, W \subseteq \mathbb{R}^{m}$ open or compact which is convex.

Here fuzzy partial derivatives are defined via Definition 12 in the obvious way as in the ordinary real case.

We mention

Theorem 14 ([30]) Let $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$ be H-fuzzy differentiable. Let $t \in[a, b], 0 \leq r \leq 1$. Clearly

$$
[f(t)]^{r}=\left[f(t)_{-}^{(r)}, f(t)_{+}^{(r)}\right] \subseteq \mathbb{R}
$$

Then $(f(t))_{ \pm}^{(r)}$ are differentiable and

$$
\left[f^{\prime}(t)\right]^{r}=\left[\left(f(t)_{-}^{(r)}\right)^{\prime},\left(f(t)_{+}^{(r)}\right)^{\prime}\right]
$$

I.e.

$$
\begin{equation*}
\left(f^{\prime}\right)_{ \pm}^{(r)}=\left(f_{ \pm}^{(r)}\right)^{\prime}, \quad \forall r \in[0,1] . \tag{11}
\end{equation*}
$$

Remark 15 (see also [6]) Let $f \in C^{N^{*}}\left([a, b], \mathbb{R}_{\mathcal{F}}\right), N^{*} \geq 1$. Then by Theorem 14 we obtain $f_{ \pm}^{(r)} \in C^{N^{*}}([a, b])$ and

$$
\left[f^{(i)}(t)\right]^{r}=\left[\left(f(t)_{-}^{(r)}\right)^{(i)},\left(f(t)_{+}^{(r)}\right)^{(i)}\right],
$$

for $i=0,1,2, \ldots, N^{*}$, and in particular we have

$$
\begin{equation*}
\left(f^{(i)}\right)_{ \pm}^{(r)}=\left(f_{ \pm}^{(r)}\right)^{(i)} \tag{12}
\end{equation*}
$$

for any $r \in[0,1]$.
Let $f \in C_{\mathcal{F}}^{N^{*}}(W), W \subseteq \mathbb{R}^{m}$, open or compact, which is convex, denote $f_{\widetilde{\alpha}}:=\frac{\partial^{\widetilde{\alpha} f}}{\partial x^{\alpha}}$, where $\widetilde{\alpha}:=\left(\widetilde{\alpha_{1}}, \ldots, \widetilde{\alpha_{m}}\right), \widetilde{\alpha_{i}} \in \mathbb{Z}^{+}, i=1, \ldots, m$ and

$$
0<|\widetilde{\alpha}|:=\sum_{i=1}^{m} \widetilde{\alpha_{i}} \leq N^{*}, \quad N^{*}>1
$$

Then by Theorem 14 we get that

$$
\begin{equation*}
\left(f_{ \pm}^{(r)}\right)_{\widetilde{\alpha}}=\left(f_{\widetilde{\alpha}}\right)_{ \pm}^{(r)}, \quad \forall r \in[0,1], \tag{13}
\end{equation*}
$$

and any $\widetilde{\alpha}:|\widetilde{\alpha}| \leq N^{*}$. Here $f_{ \pm}^{(r)} \in C^{N^{*}}(W)$.
Notation 16 We denote

$$
\begin{gather*}
\left(\sum_{i=1}^{2} D\left(\frac{\partial}{\partial x_{i}}, \widetilde{0}\right)\right)^{2} f(\vec{x}):= \tag{14}\\
D\left(\frac{\partial^{2} f\left(x_{1}, x_{2}\right)}{\partial x_{1}^{2}}, \widetilde{0}\right)+D\left(\frac{\partial^{2} f\left(x_{1}, x_{2}\right)}{\partial x_{2}^{2}}, \widetilde{0}\right)+2 D\left(\frac{\partial^{2} f\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}, \widetilde{0}\right) .
\end{gather*}
$$

In general we denote $\left(j=1, \ldots, N^{*}\right)$

$$
\begin{gather*}
\left(\sum_{i=1}^{m} D\left(\frac{\partial}{\partial x_{i}}, \widetilde{0}\right)\right)^{j} f(\vec{x}):= \tag{15}\\
\sum_{\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{Z}_{+}^{m}: \sum_{i=1}^{m} j_{i}=j} \frac{j!}{j_{1}!j_{2}!\ldots j_{m}!} D\left(\frac{\partial^{j} f\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}} \ldots \partial x_{m}^{j_{m}}}, \widetilde{0}\right) .
\end{gather*}
$$

We mention also a particular case of the Fuzzy Henstock integral $\left(\delta(x)=\frac{\delta}{2}\right)$, see [36].

Definition 17 ([27], p. 644) Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$. We say that f is FuzzyRiemann integrable to $I \in \mathbb{R}_{\mathcal{F}}$ if for any $\varepsilon>0$, there exists $\delta>0$ such that for any division $P=\{[u, v] ; \xi\}$ of $[a, b]$ with the norms $\Delta(P)<\delta$, we have

$$
D\left(\sum_{P}^{*}(v-u) \odot f(\xi), I\right)<\varepsilon .
$$

We write

$$
\begin{equation*}
I:=(F R) \int_{a}^{b} f(x) d x . \tag{16}
\end{equation*}
$$

We mention
Theorem 18 ([28]) Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy continuous. Then

$$
(F R) \int_{a}^{b} f(x) d x
$$

exists and belongs to $\mathbb{R}_{\mathcal{F}}$, furthermore it holds

$$
\left[(F R) \int_{a}^{b} f(x) d x\right]^{r}=\left[\int_{a}^{b}(f)_{-}^{(r)}(x) d x, \int_{a}^{b}(f)_{+}^{(r)}(x) d x\right],
$$

$\forall r \in[0,1]$.
For the definition of general fuzzy integral we follow [31] next.
Definition 19 Let (Ω, Σ, μ) be a complete σ-finite measure space. We call F : $\Omega \rightarrow R_{\mathcal{F}}$ measurable iff \forall closed $B \subseteq \mathbb{R}$ the function $F^{-1}(B): \Omega \rightarrow[0,1]$ defined by

$$
F^{-1}(B)(w):=\sup _{x \in B} F(w)(x), \text { all } w \in \Omega
$$

is measurable, see [31].

Theorem 20 ([31]) For $F: \Omega \rightarrow \mathbb{R}_{\mathcal{F}}$,

$$
F(w)=\left\{\left(F_{-}^{(r)}(w), F_{+}^{(r)}(w)\right) \mid 0 \leq r \leq 1\right\},
$$

the following are equivalent
(1) F is measurable,
(2) $\forall r \in[0,1], F_{-}^{(r)}, F_{+}^{(r)}$ are measurable.

Following [31], given that for each $r \in[0,1], F_{-}^{(r)}, F_{+}^{(r)}$ are integrable we have that the parametrized representation

$$
\begin{equation*}
\left\{\left(\int_{A} F_{-}^{(r)} d \mu, \int_{A} F_{+}^{(r)} d \mu\right) \mid 0 \leq r \leq 1\right\} \tag{17}
\end{equation*}
$$

is a fuzzy real number for each $A \in \Sigma$.
The last fact leads to
Definition 21 ([31]) A measurable function $F: \Omega \rightarrow \mathbb{R}_{\mathcal{F}}$,

$$
F(w)=\left\{\left(F_{-}^{(r)}(w), F_{+}^{(r)}(w)\right) \mid 0 \leq r \leq 1\right\}
$$

is integrable if for each $r \in[0,1], F_{ \pm}^{(r)}$ are integrable, or equivalently, if $F_{ \pm}^{(0)}$ are integrable.

In this case, the fuzzy integral of F over $A \in \Sigma$ is defined by

$$
\begin{equation*}
\int_{A} F d \mu:=\left\{\left(\int_{A} F_{-}^{(r)} d \mu, \int_{A} F_{+}^{(r)} d \mu\right) \mid 0 \leq r \leq 1\right\} . \tag{18}
\end{equation*}
$$

By [31], F is integrable iff $w \rightarrow\|F(w)\|_{\mathcal{F}}$ is real-valued integrable.
Here denote

$$
\|u\|_{\mathcal{F}}:=D(u, \widetilde{0}), \quad \forall u \in \mathbb{R}_{\mathcal{F}}
$$

We need also
Theorem 22 ([31]) Let $F, G: \Omega \rightarrow \mathbb{R}_{\mathcal{F}}$ be integrable. Then
(1) Let $a, b \in \mathbb{R}$, then $a F+b G$ is integrable and for each $A \in \Sigma$,

$$
\int_{A}(a F+b G) d \mu=a \int_{A} F d \mu+b \int_{A} G d \mu ;
$$

(2) $D(F, G)$ is a real- valued integrable function and for each $A \in \Sigma$,

$$
D\left(\int_{A} F d \mu, \int_{A} G d \mu\right) \leq \int_{A} D(F, G) d \mu .
$$

In particular,

$$
\left\|\int_{A} F d \mu\right\|_{\mathcal{F}} \leq \int_{A}\|F\|_{\mathcal{F}} d \mu .
$$

Above μ could be the multivariate Lebesgue measure, which we use in this article, with all the basic properties valid here too. Notice by [31], Fubini's theorem is valid for fuzzy integral (18).

Basically here we have that

$$
\begin{equation*}
\left[\int_{A} F d \mu\right]^{r}=\left[\int_{A} F_{-}^{(r)} d \mu, \int_{A} F_{+}^{(r)} d \mu\right], \tag{19}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left(\int_{A} F d \mu\right)_{ \pm}^{(r)}=\int_{A} F_{ \pm}^{(r)} d \mu, \quad \forall r \in[0,1] . \tag{20}
\end{equation*}
$$

3 About real neural networks background

Here we follow [24].
Let $h: \mathbb{R} \rightarrow[-1,1]$ be a general sigmoid function, such that it is strictly increasing, $h(0)=0, h(-x)=-h(x), h(+\infty)=1, h(-\infty)=-1$. Also h is strictly convex over $(-\infty, 0]$ and strictly concave over $[0,+\infty)$, with $h^{(2)} \in$ $C(\mathbb{R})$.

We consider the activation function

$$
\begin{equation*}
\psi(x):=\frac{1}{4}(h(x+1)-h(x-1)), x \in \mathbb{R} \tag{21}
\end{equation*}
$$

As in [23], p. 88, we get that $\psi(-x)=\psi(x)$, thus ψ is an even function. Since $x+1>x-1$, then $h(x+1)>h(x-1)$, and $\psi(x)>0$, all $x \in \mathbb{R}$.

We see that

$$
\begin{equation*}
\psi(0)=\frac{h(1)}{2} . \tag{22}
\end{equation*}
$$

Let $x>1$, we have that

$$
\psi^{\prime}(x)=\frac{1}{4}\left(h^{\prime}(x+1)-h^{\prime}(x-1)\right)<0
$$

by h^{\prime} being strictly decreasing over $[0,+\infty)$.
Let now $0<x<1$, then $1-x>0$ and $0<1-x<1+x$. It holds $h^{\prime}(x-1)=h^{\prime}(1-x)>h^{\prime}(x+1)$, so that again $\psi^{\prime}(x)<0$. Consequently ψ is stritly decreasing on $(0,+\infty)$.

Clearly, ψ is strictly increasing on $(-\infty, 0)$, and $\psi^{\prime}(0)=0$.
See that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \psi(x)=\frac{1}{4}(h(+\infty)-h(+\infty))=0 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \psi(x)=\frac{1}{4}(h(-\infty)-h(-\infty))=0 . \tag{24}
\end{equation*}
$$

That is the x-axis is the horizontal asymptote on ψ.

Conclusion, ψ is a bell symmetric function with maximum

$$
\psi(0)=\frac{h(1)}{2} .
$$

We need
Theorem 23 ([24]) We have that

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \psi(x-i)=1, \quad \forall x \in \mathbb{R} \tag{25}
\end{equation*}
$$

Theorem 24 ([24]) It holds

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi(x) d x=1 \tag{26}
\end{equation*}
$$

Thus $\psi(x)$ is a density function on \mathbb{R}.
We give
Theorem 25 ([24]) Let $0<\alpha<1$, and $n \in \mathbb{N}$ with $n^{1-\alpha}>2$. It holds

$$
\left\{\begin{array}{l}
k=-\infty \tag{27}\\
:|n x-k| \geq n^{1-\alpha}
\end{array} \psi(n x-k)<\frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)}{2} .\right.
$$

Notice that

$$
\lim _{n \rightarrow+\infty} \frac{\left(1-h\left(n^{1-\alpha}-2\right)\right)}{2}=0
$$

Denote by $\lfloor\cdot\rfloor$ the integral part of the number and by $\lceil\cdot\rceil$ the ceiling of the number.

We further give
Theorem 26 ([24]) Let $x \in[a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil n a\rceil \leq\lfloor n b\rfloor$. It holds

$$
\begin{equation*}
\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k)}<\frac{1}{\psi(1)}, \quad \forall x \in[a, b] . \tag{28}
\end{equation*}
$$

Remark 27 ([24]) i) We have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k) \neq 1, \tag{29}
\end{equation*}
$$

for at least some $x \in[a, b]$.
ii) For large enough $n \in \mathbb{N}$ we always obtain $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq\lfloor n b\rfloor$.

In general, by Theorem 23, it holds

$$
\begin{equation*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \psi(n x-k) \leq 1 \tag{30}
\end{equation*}
$$

We introduce

$$
\begin{equation*}
Z\left(x_{1}, \ldots, x_{N}\right):=Z(x):=\prod_{i=1}^{N} \psi\left(x_{i}\right), \quad x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}, N \in \mathbb{N} \tag{31}
\end{equation*}
$$

It has the properties:
(i) $Z(x)>0, \forall x \in \mathbb{R}^{N}$,
(ii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} Z(x-k):=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty} Z\left(x_{1}-k_{1}, \ldots, x_{N}-k_{N}\right)=1 \tag{32}
\end{equation*}
$$

where $k:=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{N}, \forall x \in \mathbb{R}^{N}$,
hence
(iii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} Z(n x-k)=1 \tag{33}
\end{equation*}
$$

$\forall x \in \mathbb{R}^{N} ; n \in \mathbb{N}$,
and
(iv)

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} Z(x) d x=1 \tag{34}
\end{equation*}
$$

that is Z is a multivariate density function.
Here denote $\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right\}, x \in \mathbb{R}^{N}$, also set $\infty:=(\infty, \ldots, \infty)$, $-\infty:=(-\infty, \ldots,-\infty)$ upon the multivariate context, and

$$
\begin{align*}
\lceil n a\rceil & :=\left(\left\lceil n a_{1}\right\rceil, \ldots,\left\lceil n a_{N}\right\rceil\right), \\
\lfloor n b\rfloor & :=\left(\left\lfloor n b_{1}\right\rfloor, \ldots,\left\lfloor n b_{N}\right\rfloor\right), \tag{35}
\end{align*}
$$

where $a:=\left(a_{1}, \ldots, a_{N}\right), b:=\left(b_{1}, \ldots, b_{N}\right)$.
We obviously see that

$$
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)=\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right)=
$$

$$
\begin{equation*}
\sum_{k_{1}=\left\lceil n a_{1}\right\rceil}^{\left\lfloor n b_{1}\right\rfloor} \ldots \sum_{k_{N}=\left\lceil n a_{N}\right\rceil}^{\left\lfloor n b_{N}\right\rfloor}\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right)=\prod_{i=1}^{N}\left(\sum_{k_{i}=\left\lceil n a_{i}\right\rceil}^{\left\lfloor n b_{i}\right\rfloor} \psi\left(n x_{i}-k_{i}\right)\right) \tag{36}
\end{equation*}
$$

For $0<\beta<1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^{N}$, we have that

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)= \\
\left\{\begin{array}{c}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \\
\left\|\frac{k}{n}-x\right\|_{\infty} \leq \frac{1}{n^{\beta}}
\end{array} Z(n x-k)+\sum_{\substack{\lfloor n b\rfloor}}^{k=\lceil n a\rceil} \begin{array}{l}
\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta}}
\end{array}\right. \tag{37}
\end{gather*}
$$

In the last two sums the counting is over disjoint vector sets of k 's, because the condition $\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta}}$ implies that there exists at least one $\left|\frac{k_{r}}{n}-x_{r}\right|>\frac{1}{n^{\beta}}$, where $r \in\{1, \ldots, N\}$.
(v) As in [21], pp. 379-380, we derive that

$$
\begin{equation*}
\sum_{\substack{k=\lceil n a\rceil \\ \frac{k}{n}-x \|_{\infty}>\frac{1}{n^{\beta}}}}^{\lfloor n b\rfloor} Z(n x-k) \stackrel{(7)}{<} \frac{1-h\left(n^{1-\beta}-2\right)}{2}, 0<\beta<1, \tag{38}
\end{equation*}
$$

with $n \in \mathbb{N}: n^{1-\beta}>2, x \in \prod_{i=1}^{N}\left[a_{i}, b_{i}\right]$.
(vi) By Theorem 26 we get that

$$
\begin{equation*}
0<\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)}<\frac{1}{(\psi(1))^{N}}=: \gamma(N), \tag{39}
\end{equation*}
$$

$\forall x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), \quad n \in \mathbb{N}$.
It is also clear that
(vii)

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty} Z(n x-k)<\frac{1-h\left(n^{1-\beta}-2\right)}{2}=: c(\beta, n), \tag{40}\\
& -x \|_{\infty}>\frac{1}{n^{\beta}}
\end{align*}
$$

$0<\beta<1, n \in \mathbb{N}: n^{1-\beta}>2, x \in \mathbb{R}^{N}$.
Furthermore it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k) \neq 1, \tag{41}
\end{equation*}
$$

for at least some $x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$.
Let $f \in C\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, and $n \in \mathbb{N}$ such that $\left\lceil n a_{i}\right\rceil \leq\left\lfloor n b_{i}\right\rfloor, i=1, \ldots, N$.
We define the multivariate averaged positive linear neural network operators $\left(x:=\left(x_{1}, \ldots, x_{N}\right) \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)\right):$

$$
\begin{gather*}
A_{n}\left(f, x_{1}, \ldots, x_{N}\right):=A_{n}(f, x):=\frac{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f\left(\frac{k}{n}\right) Z(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)}= \tag{42}\\
\frac{\sum_{k_{1}=\left\lceil n a_{1}\right\rceil}^{\left\lfloor n b_{1}\right\rfloor} \sum_{k_{2}=\left\lceil n a_{2}\right\rceil}^{\left\lfloor n b_{2}\right\rfloor} \cdots \sum_{k_{N}=\left\lceil n a_{N}\right\rceil}^{\left\lfloor n b_{N}\right\rfloor} f\left(\frac{k_{1}}{n}, \ldots, \frac{k_{N}}{n}\right)\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right)}{\prod_{i=1}^{N}\left(\sum_{k_{i}=\left\lceil n a_{i}\right\rceil}^{\left\lfloor n b_{i}\right\rfloor} \psi\left(n x_{i}-k_{i}\right)\right)} .
\end{gather*}
$$

For large enough $n \in \mathbb{N}$ we always obtain $\left\lceil n a_{i}\right\rceil \leq\left\lfloor n b_{i}\right\rfloor, i=1, \ldots, N$. Also $a_{i} \leq \frac{k_{i}}{n} \leq b_{i}$, iff $\left\lceil n a_{i}\right\rceil \leq k_{i} \leq\left\lfloor n b_{i}\right\rfloor, i=1, \ldots, N$.

When $f \in C_{B}\left(\mathbb{R}^{N}\right)$ we define

$$
\begin{align*}
& B_{n}(f, x):=B_{n}\left(f, x_{1}, \ldots, x_{N}\right):=\sum_{k=-\infty}^{\infty} f\left(\frac{k}{n}\right) Z(n x-k):= \tag{43}\\
& \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty} f\left(\frac{k_{1}}{n}, \frac{k_{2}}{n}, \ldots, \frac{k_{N}}{n}\right)\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right),
\end{align*}
$$

$n \in \mathbb{N}, \forall x \in \mathbb{R}^{N}, N \in \mathbb{N}$, the multivariate quasi-interpolation neural network operators.

Also for $f \in C_{B}\left(\mathbb{R}^{N}\right)$ we define the multivariate Kantorovich type neural network operators

$$
\begin{gathered}
C_{n}(f, x):=C_{n}\left(f, x_{1}, \ldots, x_{N}\right):=\sum_{k=-\infty}^{\infty}\left(n^{N} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) d t\right) Z(n x-k):= \\
\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty}\left(n^{N} \int_{\frac{k_{1}}{n}}^{\frac{k_{1}+1}{n}} \int_{\frac{k_{2}}{n}}^{\frac{k_{2}+1}{n}} \ldots \int_{\frac{k_{N}}{n}}^{\frac{k_{N}+1}{n}} f\left(t_{1}, \ldots, t_{N}\right) d t_{1} \ldots d t_{N}\right) \\
\cdot\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right)
\end{gathered}
$$

$n \in \mathbb{N}, \forall x \in \mathbb{R}^{N}$.
Again for $f \in C_{B}\left(\mathbb{R}^{N}\right), N \in \mathbb{N}$, we define the multivariate neural network operators of quadrature type $D_{n}(f, x), n \in \mathbb{N}$, as follows. Let $\theta=$ $\left(\theta_{1}, \ldots, \theta_{N}\right) \in \mathbb{N}^{N}, \bar{r}=\left(r_{1}, \ldots, r_{N}\right) \in \mathbb{Z}_{+}^{N}, w_{\bar{r}}=w_{r_{1}, r_{2}, \ldots r_{N}} \geq 0$, such that

$$
\begin{align*}
& \sum_{\bar{r}=0}^{\theta} w_{\bar{r}}=\sum_{r_{1}=0}^{\theta_{1}} \sum_{r_{2}=0}^{\theta_{2}} \ldots \sum_{r_{N}=0}^{\theta_{N}} w_{r_{1}, r_{2}, \ldots r_{N}}=1 ; k \in \mathbb{Z}^{N} \text { and } \\
& \delta_{n k}(f):=\delta_{n, k_{1}, k_{2}, \ldots, k_{N}}(f):=\sum_{\bar{r}=0}^{\theta} w_{\bar{r}} f\left(\frac{k}{n}+\frac{\bar{r}}{n \theta}\right):= \\
& \sum_{r_{1}=0}^{\theta_{1}} \sum_{r_{2}=0}^{\theta_{2}} \ldots \sum_{r_{N}=0}^{\theta_{N}} w_{r_{1}, r_{2}, \ldots . r_{N}} f\left(\frac{k_{1}}{n}+\frac{r_{1}}{n \theta_{1}}, \frac{k_{2}}{n}+\frac{r_{2}}{n \theta_{2}}, \ldots, \frac{k_{N}}{n}+\frac{r_{N}}{n \theta_{N}}\right), \tag{45}
\end{align*}
$$

where $\frac{\bar{r}}{\theta}:=\left(\frac{r_{1}}{\theta_{1}}, \frac{r_{2}}{\theta_{2}}, \ldots, \frac{r_{N}}{\theta_{N}}\right)$.
We put

$$
\begin{gather*}
D_{n}(f, x):=D_{n}\left(f, x_{1}, \ldots, x_{N}\right):=\sum_{k=-\infty}^{\infty} \delta_{n k}(f) Z(n x-k):= \tag{46}\\
\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty} \delta_{n, k_{1}, k_{2}, \ldots, k_{N}}(f)\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right),
\end{gather*}
$$

$\forall x \in \mathbb{R}^{N}$.
Let $f \in C^{m}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), m, N \in \mathbb{N}$. Here f_{α} denotes a partial derivative of $f, \alpha:=\left(\alpha_{1}, \ldots, \alpha_{N}\right), \alpha_{i} \in \mathbb{Z}_{+}, i=1, \ldots, N$, and $|\alpha|:=\sum_{i=1}^{N} \alpha_{i}=l$, where $l=0,1, \ldots, m$. We write also $f_{\alpha}:=\frac{\partial^{\alpha} f}{\partial x^{\alpha}}$ and we say it is of order l.

We denote

$$
\omega_{1, m}^{\max }\left(f_{\alpha}, h\right):=\max _{\alpha:|\alpha|=m} \omega_{1}\left(f_{\alpha}, h\right) .
$$

Call also

$$
\left\|f_{\alpha}\right\|_{\infty, m}^{\max }:=\max _{\alpha:|\alpha|=m}\left\{\left\|f_{\alpha}\right\|_{\infty}\right\},
$$

where $\|\cdot\|_{\infty}$ is the supremum norm.
In [21], [23], we studied the basic approximation properties of A_{n}, B_{n}, C_{n}, D_{n} neural network operators and as well of their iterates for Banach space valued functions. That is, the quantitative pointwise and uniform convergence of these operators to the unit operator I.

We need
Theorem 28 Let $f \in C\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 0<\beta<1, x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), N, n \in$ \mathbb{N} with $n^{1-\beta}>2$. Then
1)

$$
\begin{equation*}
\left|A_{n}(f, x)-f(x)\right| \leq \gamma(N)\left[\omega_{1}\left(f, \frac{1}{n^{\beta}}\right)+2 c(\beta, n)\|f\|_{\infty}\right]=: \lambda_{1}, \tag{47}
\end{equation*}
$$

and
2)

$$
\begin{equation*}
\left\|A_{n}(f)-f\right\|_{\infty} \leq \lambda_{1} \tag{48}
\end{equation*}
$$

We notice that $\lim _{n \rightarrow \infty} A_{n}(f)=f$, pointwise and uniformly.
Proof. Similar to [23], p. 118.
We need
Theorem 29 Let $f \in C_{B}\left(\mathbb{R}^{N}\right), 0<\beta<1, x \in \mathbb{R}^{N}, N, n \in \mathbb{N}$ with $n^{1-\beta}>2$. Then
1)

$$
\begin{equation*}
\left|B_{n}(f, x)-f(x)\right| \leq \omega_{1}\left(f, \frac{1}{n^{\beta}}\right)+2 c(\beta, n)\|f\|_{\infty}=: \lambda_{2} \tag{49}
\end{equation*}
$$

2)

$$
\begin{equation*}
\left\|B_{n}(f)-f\right\|_{\infty} \leq \lambda_{2} \tag{50}
\end{equation*}
$$

Given that $f \in\left(C_{U}\left(\mathbb{R}^{N}\right) \cap C_{B}\left(\mathbb{R}^{N}\right)\right.$), we obtain $\lim _{n \rightarrow \infty} B_{n}(f)=f$, uniformly.
Proof. Similar to [23], p. 128.
We also need
Theorem 30 Let $f \in C_{B}\left(\mathbb{R}^{N}\right), 0<\beta<1, x \in \mathbb{R}^{N}, N, n \in \mathbb{N}$ with $n^{1-\beta}>2$. Then
1)

$$
\begin{equation*}
\left|C_{n}(f, x)-f(x)\right| \leq \omega_{1}\left(f, \frac{1}{n}+\frac{1}{n^{\beta}}\right)+2 c(\beta, n)\|f\|_{\infty}=: \lambda_{3} \tag{51}
\end{equation*}
$$

2)

$$
\begin{equation*}
\left\|C_{n}(f)-f\right\|_{\infty} \leq \lambda_{3} . \tag{52}
\end{equation*}
$$

Given that $f \in\left(C_{U}\left(\mathbb{R}^{N}\right) \cap C_{B}\left(\mathbb{R}^{N}\right)\right)$, we obtain $\lim _{n \rightarrow \infty} C_{n}(f)=f$, uniformly.
Proof. Similar to [23], p. 129.
We also need
Theorem 31 Let $f \in C_{B}\left(\mathbb{R}^{N}\right), 0<\beta<1, x \in \mathbb{R}^{N}, N, n \in \mathbb{N}$ with $n^{1-\beta}>2$. Then
1)

$$
\begin{equation*}
\left|D_{n}(f, x)-f(x)\right| \leq \omega_{1}\left(f, \frac{1}{n}+\frac{1}{n^{\beta}}\right)+2 c(\beta, n)\|f\|_{\infty}=\lambda_{3} \tag{53}
\end{equation*}
$$

2)

$$
\begin{equation*}
\left\|D_{n}(f)-f\right\|_{\infty} \leq \lambda_{3} \tag{54}
\end{equation*}
$$

Given that $f \in\left(C_{U}\left(\mathbb{R}^{N}\right) \cap C_{B}\left(\mathbb{R}^{N}\right)\right)$, we obtain $\lim _{n \rightarrow \infty} D_{n}(f)=f$, uniformly.

Proof. Similar to [23], p. 131.
We finally mention (similar to [21], p. 481)
Theorem 32 Let $f \in C^{m}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 0<\beta<1, n, m, N \in \mathbb{N}, n^{1-\beta}>2$,

$$
\begin{aligned}
& x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right) \text {. Then } \\
& \text { i) } \\
& \left|A_{n}(f, x)-f(x)-\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}}\left(\frac{f_{\alpha}(x)}{\prod_{i=1}^{N} \alpha_{i}!}\right) A_{n}\left(\prod_{i=1}^{N}\left(\cdot-x_{i}\right)^{\alpha_{i}}, x\right)\right)\right| \leq \\
& \quad \gamma(N) \cdot\left\{\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{\max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\left(\frac{\|b-a\|_{\infty}^{m}\left\|f_{\alpha}\right\|_{\infty, m}^{\max } N^{m}}{m!}\right) 2 c(\beta, n)\right\},
\end{aligned}
$$

ii)

$$
\begin{gather*}
\left|A_{n}(f, x)-f(x)\right| \leq \gamma(N) \cdot \tag{56}\\
\left\{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}}\left(\frac{\left|f_{\alpha}(x)\right|}{\prod_{i=1}^{N} \alpha_{i}!}\right)\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)\right. \\
\left.+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{\max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\left(\frac{\|b-a\|_{\infty}^{m}\left\|f_{\alpha}\right\|_{\infty, m}^{\max } N^{m}}{m!}\right) 2 c(\beta, n)\right\}
\end{gather*}
$$

iii)

$$
\begin{gather*}
\left\|A_{n}(f)-f\right\|_{\infty} \leq \gamma(N) \tag{57}\\
\left\{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}}\left(\frac{\left\|f_{\alpha}\right\|_{\infty}}{\prod_{i=1}^{N} \alpha_{i}!}\right)\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)\right. \\
\left.+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{\max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\left(\frac{\|b-a\|_{\infty}^{m}\left\|f_{\alpha}\right\|_{\infty, m}^{\max } N^{m}}{m!}\right) 2 c(\beta, n)\right\},
\end{gather*}
$$

iv) additionally assume $f_{\alpha}\left(x_{0}\right)=0$, for all $\alpha:|\alpha|=1, \ldots, m ; x_{0} \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, then

$$
\begin{gather*}
\left|A_{n}\left(f, x_{0}\right)-f\left(x_{0}\right)\right| \leq \gamma(N)\left\{\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{\max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\right. \tag{58}\\
\left.\left(\frac{\|b-a\|_{\infty}^{m}\left\|f_{\alpha}\right\|_{\infty, m}^{\max } N^{m}}{m!}\right) 2 c(\beta, n)\right\}
\end{gather*}
$$

notice in the last the extremely high rate of convergence at $n^{-\beta(m+1)}$.

4 Main Results: Fuzzy multivariate Neural Network Approximation based on a general sigmoid function

We define the following General Fuzzy multivariate Neural Network Operators $A_{n}^{\mathcal{F}}, B_{n}^{\mathcal{F}}, C_{n}^{\mathcal{F}}, D_{n}^{\mathcal{F}}$, based on a general sigmoid activation function. These are analogs of the real $A_{n}, B_{n}, C_{n}, D_{n}$, see (42), (43), (44) and (46), respectively. Let $f \in C_{\mathcal{F}}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), N \in \mathbb{N}$, we set

$$
\begin{align*}
& A_{n}^{\mathcal{F}}\left(f, x_{1}, \ldots, x_{N}\right):=A_{n}^{\mathcal{F}}(f, x):=\frac{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor *} f\left(\frac{k}{n}\right) \odot Z(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)} \\
&= \frac{\sum_{k_{1}=\left\lceil n a_{1}\right\rceil}^{\left\lfloor n b_{1}\right\rfloor *} \cdots \sum_{k_{N}=\left\lceil n a_{N}\right\rceil}^{\left\lfloor n b_{N}\right\rfloor *} f\left(\frac{k_{1}}{n}, \ldots, \frac{k_{N}}{n}\right) \odot\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right)}{\prod_{i=1}^{N}\left(\sum_{k_{i}=\left\lceil n a_{i}\right\rceil}^{\left\lfloor n b_{i}\right\rfloor} \psi\left(n x_{i}-k_{i}\right)\right)}, \tag{59}
\end{align*}
$$

$x \in \prod_{i=1}^{N}\left[a_{i}, b_{i}\right], n \in \mathbb{N}$.
Let $f \in C_{B}\left(\mathbb{R}^{N}, \mathbb{R}_{\mathcal{F}}\right)$, we put

$$
\begin{align*}
& B_{n}^{\mathcal{F}}(f, x):=B_{n}^{\mathcal{F}}\left(f, x_{1}, \ldots, x_{N}\right):=\sum_{k=-\infty}^{\infty *} f\left(\frac{k}{n}\right) \odot Z(n x-k) \\
& :=\sum_{k_{1}=-\infty}^{\infty *} \ldots \sum_{k_{N}=-\infty}^{\infty *} f\left(\frac{k_{1}}{n}, \ldots, \frac{k_{N}}{n}\right) \odot\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right) \tag{60}
\end{align*}
$$

$x \in \mathbb{R}^{N}, n \in \mathbb{N}$.
Let $f \in C_{B}\left(\mathbb{R}^{N}, \mathbb{R}_{\mathcal{F}}\right)$, we define the multivariate fuzzy Kantorovich type neural network operator,

$$
\begin{gather*}
C_{n}^{\mathcal{F}}(f, x):=C_{n}^{\mathcal{F}}\left(f, x_{1}, \ldots, x_{N}\right): \\
\sum_{k_{1}=-\infty}^{\infty *} \ldots \sum_{k=-\infty}^{\infty *}\left(n^{N} \odot \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) d t\right) \odot Z(n x-k):= \\
\odot \tag{61}\\
\odot \\
\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right)
\end{gather*}
$$

$x \in \mathbb{R}^{N}, n \in \mathbb{N}$.
Let $f \in C_{B}\left(\mathbb{R}^{N}, \mathbb{R}_{\mathcal{F}}\right)$, we define the multivariate fuzzy quadrature type neural network operator. Let here

$$
\begin{align*}
& \delta_{n k}^{\mathcal{F}}(f):=\delta_{n, k_{1}, \ldots, k_{N}}^{\mathcal{F}}(f):=\sum_{\bar{r}=0}^{\theta_{\bar{*}}} w_{\bar{r}} \odot f\left(\frac{k}{n}+\frac{\bar{r}}{n \theta}\right):= \tag{62}\\
& \sum_{r_{1}=0}^{\theta_{1} *} \ldots \sum_{r_{N}=0}^{\theta_{N} *} w_{r_{1}, \ldots r_{N}} \odot f\left(\frac{k_{1}}{n}+\frac{r_{1}}{n \theta_{1}}, \ldots, \frac{k_{N}}{n}+\frac{r_{N}}{n \theta_{N}}\right) .
\end{align*}
$$

We put

$$
\begin{gather*}
D_{n}^{\mathcal{F}}(f, x):=D_{n}^{\mathcal{F}}\left(f, x_{1}, \ldots, x_{N}\right):=\sum_{k=-\infty}^{\infty *} \delta_{n k}^{\mathcal{F}}(f) \odot Z(n x-k):= \\
\sum_{k_{1}=-\infty}^{\infty *} \ldots \sum_{k_{N}=-\infty}^{\infty *} \delta_{n, k_{1}, \ldots, k_{N}}^{\mathcal{F}}(f) \odot\left(\prod_{i=1}^{N} \psi\left(n x_{i}-k_{i}\right)\right), \tag{63}
\end{gather*}
$$

$x \in \mathbb{R}^{N}, n \in \mathbb{N}$.
We can put together all $B_{n}^{\mathcal{F}}, C_{n}^{\mathcal{F}}, D_{n}^{\mathcal{F}}$ fuzzy operators as follows:

$$
\begin{equation*}
L_{n}^{\mathcal{F}}(f, x):=\sum_{k=-\infty}^{\infty *} l_{n k}^{\mathcal{F}}(f) \odot Z(n x-k), \tag{64}
\end{equation*}
$$

where

$$
l_{n k}^{\mathcal{F}}(f):=\left\{\begin{array}{l}
f\left(\frac{k}{n}\right), \text { if } L_{n}^{\mathcal{F}}=B_{n}^{\mathcal{F}}, \tag{65}\\
n^{N} \odot \int_{\frac{k}{n}}^{n} f(t) d t, \text { if } L_{n}^{\mathcal{F}}=C_{n}^{\mathcal{F}} \\
\delta_{n k}^{\mathcal{F}}(f), \text { if } L_{n}^{\mathcal{F}}=D_{n}^{\mathcal{F}},
\end{array}\right.
$$

$x \in \mathbb{R}^{N}, n \in \mathbb{N}$.
Similarly, we can put together all B_{n}, C_{n}, D_{n} real operators as

$$
\begin{equation*}
L_{n}(f, x):=\sum_{k=-\infty}^{\infty} l_{n k}(f) Z(n x-k) \tag{66}
\end{equation*}
$$

where

$$
l_{n k}(f):=\left\{\begin{array}{l}
f\left(\frac{k}{n}\right), \text { if } L_{n}=B_{n} \tag{67}\\
n^{N} \int_{\frac{k}{n}}^{\frac{k}{n}} f(t) d t, \text { if } L_{n}=C_{n} \\
\delta_{n k}(f), \text { if } L_{n}=D_{n}
\end{array}\right.
$$

$x \in \mathbb{R}^{N}, n \in \mathbb{N}$.
Let $r \in[0,1]$, we observe that

$$
\left[A_{n}^{\mathcal{F}}(f, x)\right]^{r}=\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left[f\left(\frac{k}{n}\right)\right]^{r}\left(\frac{Z(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)}\right)=
$$

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left[f_{-}^{(r)}\left(\frac{k}{n}\right), f_{+}^{(r)}\left(\frac{k}{n}\right)\right]\left(\frac{Z(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)}\right)= \tag{68}\\
{\left[\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f_{-}^{(r)}\left(\frac{k}{n}\right)\left(\frac{Z(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)}\right), \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f_{+}^{(r)}\left(\frac{k}{n}\right)\left(\frac{Z(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z(n x-k)}\right)\right]} \\
=\left[A_{n}\left(f_{-}^{(r)}, x\right), A_{n}\left(f_{+}^{(r)}, x\right)\right] . \tag{69}
\end{gather*}
$$

We have proved that

$$
\begin{equation*}
\left(A_{n}^{\mathcal{F}}(f, x)\right)_{ \pm}^{(r)}=A_{n}\left(f_{ \pm}^{(r)}, x\right), \tag{70}
\end{equation*}
$$

$\forall r \in[0,1], \forall x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$.
Similarly, as in [21], pp. 485-489, a lengthy proof (see Remark 21.31 and proof of (21.76) there) it holds that

$$
\begin{equation*}
\left(L_{n}^{\mathcal{F}}(f, x)\right)_{ \pm}^{(r)}=L_{n}\left(f_{ \pm}^{(r)}, x\right), \tag{71}
\end{equation*}
$$

$\forall r \in[0,1], \forall x \in \mathbb{R}^{N}$.
Based on (70) and (71) now one may write

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right)= \tag{72}\\
\sup _{r \in[0,1]} \max \left\{\left|\left(A_{n}\left(f_{-}^{(r)}, x\right)\right)-f_{-}^{(r)}(x)\right|,\left|A_{n}\left(f_{+}^{(r)}, x\right)-f_{+}^{(r)}(x)\right|\right\},
\end{gather*}
$$

and

$$
\begin{gather*}
D\left(L_{n}^{\mathcal{F}}(f, x), f(x)\right)= \\
\sup _{r \in[0,1]} \max \left\{\left|\left(L_{n}\left(f_{-}^{(r)}, x\right)\right)-f_{-}^{(r)}(x)\right|,\left|L_{n}\left(f_{+}^{(r)}, x\right)-f_{+}^{(r)}(x)\right|\right\} \tag{73}
\end{gather*}
$$

We present
Theorem 33 Let $f \in C_{\mathcal{F}}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 0<\beta<1, x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), N, n \in$ \mathbb{N} with $n^{1-\beta}>2$. Then
1)

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \\
\gamma(N)\left[\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\beta}}\right)+2 c(\beta, n) D^{*}(f, \widetilde{\sigma})\right]=: \rho_{1}, \tag{74}
\end{gather*}
$$

and
2)

$$
\begin{equation*}
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq \rho_{1} . \tag{75}
\end{equation*}
$$

We notice that $A_{n}^{\mathcal{F}}(f, x) \xrightarrow{D} f(x)$, and $A_{n}^{\mathcal{F}}(f) \xrightarrow{D^{*}} f$, as $n \rightarrow \infty$,quantitatively with rates.

Proof. Since $f \in C_{\mathcal{F}}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$ we have that $f_{ \pm}^{(r)} \in C\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), \forall$ $r \in[0,1]$. Hence by (47) we obtain

$$
\begin{gather*}
\left|A_{n}\left(f_{ \pm}^{(r)}, x\right)-f_{ \pm}^{(r)}(x)\right| \leq \gamma(N)\left[\omega_{1}\left(f_{ \pm}^{(r)}, \frac{1}{n^{\beta}}\right)+2 c(\beta, n)\left\|f_{ \pm}^{(r)}\right\|_{\infty}\right] \\
\stackrel{\text { (by }}{(8),(3))} \leq(N)\left[\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\beta}}\right)+2 c(\beta, n) D^{*}(f, \widetilde{o})\right] . \tag{76}
\end{gather*}
$$

By (72) now we are proving the claim.
We give
Theorem 34 Let $f \in C_{B}\left(\mathbb{R}^{N}, \mathbb{R}_{\mathcal{F}}\right), 0<\beta<1, x \in \mathbb{R}^{N}, N, n \in \mathbb{N}$, with $n^{1-\beta}>2$. Then
1)

$$
\begin{gather*}
D\left(B_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \tag{77}\\
\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\beta}}\right)+2 c(\beta, n) D^{*}(f, \widetilde{o})=: \rho_{2},
\end{gather*}
$$

and
2)

$$
\begin{equation*}
D^{*}\left(B_{n}^{\mathcal{F}}(f), f\right) \leq \rho_{2} \tag{78}
\end{equation*}
$$

Proof. Similar to Theorem 33. We use (49) and (73), along with (3) and (8).

We also present
Theorem 35 All as in Theorem 34. Then
1)

$$
\begin{gather*}
D\left(C_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \\
\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n}+\frac{1}{n^{\beta}}\right)+2 c(\beta, n) D^{*}(f, \widetilde{o})=: \rho_{3} \tag{79}
\end{gather*}
$$

and
2)

$$
\begin{equation*}
D^{*}\left(C_{n}^{\mathcal{F}}(f), f\right) \leq \rho_{3} \tag{80}
\end{equation*}
$$

Proof. Similar to Theorem 33. We use (51) and (73), along with (3) and (8).

We also give
Theorem 36 All as in Theorem 34. Then
1)

$$
\begin{gather*}
D\left(D_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \\
\omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n}+\frac{1}{n^{\beta}}\right)+2 c(\beta, n) D^{*}(f, \widetilde{o})=\rho_{3}, \tag{81}
\end{gather*}
$$

and
2)

$$
\begin{equation*}
D^{*}\left(D_{n}^{\mathcal{F}}(f), f\right) \leq \rho_{3} \tag{82}
\end{equation*}
$$

Proof. Similar to Theorem 33. We use (53) and (73), along with (3) and (8).

Note 37 By Theorems 34, 35, 36 for $f \in\left(C_{B}\left(\mathbb{R}^{N}, \mathbb{R}_{\mathcal{F}}\right) \cap C_{\mathcal{F}}^{U}\left(\mathbb{R}^{N}\right)\right)$, we obtain $\lim _{n \rightarrow \infty} D\left(L_{n}^{\mathcal{F}}(f, x), f(x)\right)=0$, and $\lim _{n \rightarrow \infty} D^{*}\left(L_{n}^{\mathcal{F}}(f), f\right)=0$, quantitatively with rates, where $L_{n}^{\mathcal{F}}$ is as in (64) and (65).

Notation 38 Let $f \in C_{\mathcal{F}}^{m}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), m, N \in \mathbb{N}$. Here f_{α} denotes a fuzzy partial derivative with all related notation similar to the real case, see also Remark 15 and Notation 16. We denote

$$
\begin{equation*}
\omega_{1, m}^{(\mathcal{F}) \max }\left(f_{\alpha}, h\right):=\max _{\alpha:|\alpha|=m} \omega_{1}^{(\mathcal{F})}\left(f_{\alpha}, h\right), \quad h>0 \tag{83}
\end{equation*}
$$

Call also

$$
\begin{equation*}
D_{m}^{* \max }\left(f_{\alpha}, \widetilde{o}\right):=\max _{\alpha:|\alpha|=m}\left\{D^{*}\left(f_{\alpha}, \widetilde{o}\right)\right\} \tag{84}
\end{equation*}
$$

We finally present
Theorem 39 Let $f \in C_{\mathcal{F}}^{m}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 0<\beta<1, n, m, N \in \mathbb{N}$ with $n^{1-\beta}>$ 2 , and $x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$. Then 1)

$$
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq \gamma(N) .
$$

$$
\left\{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}} \frac{D\left(f_{\alpha}(x), \widetilde{o}\right)}{\prod_{i=1}^{N} \alpha_{i}!}\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)\right.
$$

$$
\begin{equation*}
\left.+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{(\mathcal{F}) \max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\left(\frac{\|b-a\|_{\infty}^{m} D_{m}^{* \max }\left(f_{\alpha}, \widetilde{o}\right) N^{m}}{m!}\right) 2 c(\beta, n)\right\}, \tag{85}
\end{equation*}
$$

2)

$$
\begin{gather*}
D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \leq \gamma(N) \\
\left\{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}} \frac{D^{*}\left(f_{\alpha}, \widetilde{o}\right)}{\prod_{i=1}^{N} \alpha_{i}!}\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)\right. \\
\left.+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{(\mathcal{F}) \max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\left(\frac{\|b-a\|_{\infty}^{m} D_{m}^{* \max }\left(f_{\alpha}, \widetilde{o}\right) N^{m}}{m!}\right) 2 c(\beta, n)\right\}, \tag{86}
\end{gather*}
$$

3) additionally assume that $f_{\alpha}\left(x_{0}\right)=\widetilde{o}$, for all $\alpha:|\alpha|=1, \ldots, m ; x_{0} \in$ $\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, then

$$
\begin{gather*}
D\left(A_{n}^{\mathcal{F}}\left(f, x_{0}\right), f\left(x_{0}\right)\right) \leq \gamma(N)\left\{\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{(\mathcal{F}) \max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+\right. \\
\left.\left(\frac{\|b-a\|_{\infty}^{m} D_{m}^{* \max }\left(f_{\alpha}, \widetilde{o}\right) N^{m}}{m!}\right) 2 c(\beta, n)\right\} \tag{87}
\end{gather*}
$$

notice in the last the extremely high rate of convergence at $n^{-\beta(m+1)}$.
Above we derive quantitatively with rates the high speed approximation of $D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \rightarrow 0$, as $n \rightarrow \infty$.

Also we establish with rates that $D^{*}\left(A_{n}^{\mathcal{F}}(f), f\right) \rightarrow 0$, as $n \rightarrow \infty$, involving the fuzzy smoothness of f.

Proof. Here $f_{ \pm}^{(r)} \in C^{m}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$. We observe that

$$
\begin{gather*}
\left|A_{n}\left(f_{ \pm}^{(r)}, x\right)-f_{ \pm}^{(r)}(x)\right| \stackrel{(56)}{\leq} \gamma(N) \cdot \\
\left\{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}}\left(\frac{\left|\left(f_{ \pm}^{(r)}\right)_{\alpha}(x)\right|}{\prod_{i=1}^{N} \alpha_{i}!}\right)\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)\right. \\
+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{\max }\left(\left(f_{ \pm}^{(r)}\right)_{\alpha}, \frac{1}{n^{\beta}}\right)+ \\
\left.\left(\frac{\|b-a\|_{\infty}^{m}\left\|\left(f_{ \pm}^{(r)}\right)_{\alpha}\right\|_{\infty, m}^{\max } N^{m}}{m!}\right) 2 c(\beta, n)\right\} \stackrel{(13)}{=} \tag{88}
\end{gather*}
$$

$$
\begin{gather*}
\gamma(N)\left\{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}}\left(\frac{\left|\left(f_{\alpha}\right)_{ \pm}^{(r)}(x)\right|}{\prod_{i=1}^{N} \alpha_{i}!}\right)\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)\right. \\
+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{\max }\left(\left(f_{\alpha}\right)_{ \pm}^{(r)}, \frac{1}{n^{\beta}}\right)+ \\
\left.\left(\frac{\|b-a\|_{\infty}^{m}\left\|\left(f_{\alpha}\right)_{ \pm}^{(r)}\right\|_{\infty, m}^{\max } N^{m}}{m!}\right) 2 c(\beta, n)\right\} \underset{\substack{(3),(8)) \\
\hline \\
\gamma(N)}}{\sum_{j_{*}=1}^{m}\left(\sum_{|\alpha|=j_{*}}\left(\frac{D\left(f_{\alpha}(x), \widetilde{o}\right)}{\prod_{i=1}^{N} \alpha_{i}!}\right)\left[\frac{1}{n^{\beta j_{*}}}+\left(\prod_{i=1}^{N}\left(b_{i}-a_{i}\right)^{\alpha_{i}}\right) c(\beta, n)\right]\right)} \tag{89}\\
+\frac{N^{m}}{m!n^{m \beta}} \omega_{1, m}^{(\mathcal{F}) \max }\left(f_{\alpha}, \frac{1}{n^{\beta}}\right)+ \\
\left.\left(\frac{\|b-a\|_{\infty}^{m} D_{m}^{* \max }\left(f_{\alpha}, \widetilde{o}\right) N^{m}}{m!}\right) 2 c(\beta, n)\right\}=: T
\end{gather*}
$$

respectively in \pm.
We have proved that

$$
\begin{equation*}
\left|A_{n}\left(f_{ \pm}^{(r)}, x\right)-f_{ \pm}^{(r)}(x)\right| \leq T \tag{91}
\end{equation*}
$$

$\forall r \in[0,1]$, respectively in \pm.
Using (72) we obtain

$$
\begin{equation*}
D\left(A_{n}^{\mathcal{F}}(f, x), f(x)\right) \leq T \tag{92}
\end{equation*}
$$

proving the theorem.

References

[1] G.A. Anastassiou, Rate of convergence of some neural network operators to the unit-univariate case, Journal of Mathematical Analysis and Application, Vol. 212 (1997), 237-262.
[2] G.A. Anastassiou, Rate of Convergence of some Multivariate Neural Network Operators to the Unit, Computers and Mathematics, 40 (2000), 1-19.
[3] G.A. Anastassiou, Quantitative Approximations, Chapman and Hall/CRC, Boca Raton, New York, 2001.
[4] G.A. Anastassiou, Higher order Fuzzy Approximation by Fuzzy Wavelet type and Neural Network Operators, Computers and Mathematics, 48 (2004), 1387-1401.
[5] G.A. Anastassiou, Fuzzy Approximation by Fuzzy Convolution type Operators, Computers and Mathematics, 48(2004), 1369-1386.
[6] G.A. Anastassiou, Higher order Fuzzy Korovkin Theory via inequalities, Communications in Applied Analysis, 10(2006), No. 2, 359-392.
[7] G.A. Anastassiou, Fuzzy Korovkin Theorems and Inequalities, Journal of Fuzzy Mathematics, 15(2007), No. 1, 169-205.
[8] G.A. Anastassiou, On Right Fractional Calculus, Chaos, solitons and fractals, 42 (2009), 365-376.
[9] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer, New York, 2009.
[10] G.A. Anastassiou, Fractional Korovkin theory, Chaos, Solitons \& Fractals, Vol. 42, No. 4 (2009), 2080-2094.
[11] G.A. Anastassiou, Fuzzy Mathematics: Approximation Theory, Springer, Heildelberg, New York, 2010.
[12] G.A. Anastassiou, Intelligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems Reference Library, Vol. 19, Springer, Heidelberg, 2011.
[13] G.A. Anastassiou, Higher order multivariate fuzzy approximation by multivariate fuzzy wavelet type and neural network operators, J. of Fuzzy Mathematics, 19 (2011), no. 3, 601-618.
[14] G.A. Anastassiou, Univariate hyperbolic tangent neural network approximation, Mathematics and Computer Modelling, 53(2011), 1111-1132.
[15] G.A. Anastassiou, Multivariate hyperbolic tangent neural network approximation, Computers and Mathematics 61(2011), 809-821.
[16] G.A. Anastassiou, Multivariate sigmoidal neural network approximation, Neural Networks 24(2011), 378-386.
[17] G.A. Anastassiou, Univariate sigmoidal neural network approximation, J. of Computational Analysis and Applications, Vol. 14(4), (2012), 659-690.
[18] G.A. Anastassiou, Approximation by Neural Network Iterates, in Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012, pp. 1-20, Editors: G. Anastassiou and O. Duman, Springer NY, 2013.
[19] G.A. Anastassiou, High degree multivariate fuzzy approximation by quasiinterpolation neural network operators, Discontinuity, Nonlinearity and Complexity, 2 (2), 2013, 125-146.
[20] G.A. Anastassiou, Rate of convergence of some multivariate neural network operators to the unit, revisited, J. of Computational Analysis and Applications, Vol. 15, No. 7 (2013), 1300-1309.
[21] G.A. Anastassiou, Intelligent Systems II: Complete Approximation by Neural Network Operators, Springer, Heidelberg, New York, 2016.
[22] G.A. Anastassiou, Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg, New York, 2018.
[23] G.A. Anastassiou, Banach Space Valued Neural Network, Springer, Heidelberg, New York, 2023.
[24] G.A. Anastassiou, General sigmoid based Banach space valued neural network approximation, J. Computational Analysis and Applications, 31 (4) (2023), 520-534.
[25] P. Cardaliaguet, G. Euvrard, Approximation of a function and its derivative with a neural network, Neural Networks 5 (1992), 207-220.
[26] Z. Chen and F. Cao, The approximation operators with sigmoidal functions, Computers and Mathematics with Applications, 58 (2009), 758-765.
[27] S. Gal, Approximation Theory in Fuzzy Setting, Chapter 13 in Handbook of Analytic-Computational Methods in Applied Mathematics, 617-666, edited by G. Anastassiou, Chapman \& Hall/CRC, Boca Raton, New York, 2000.
[28] R. Goetschel Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18(1986), 31-43.
[29] S. Haykin, Neural Networks: A Comprehensive Foundation (2 ed.), Prentice Hall, New York, 1998.
[30] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24(1987), 301-317.
[31] Y.K. Kim, B.M. Ghil, Integrals of fuzzy-number-valued functions, Fuzzy Sets and Systems, 86(1997), 213-222.
[32] W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 7 (1943), 115-133.
[33] T.M. Mitchell, Machine Learning, WCB-McGraw-Hill, New York, 1997.
[34] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)].
[35] Wu Congxin, Gong Zengtai, On Henstock integrals of interval-valued functions and fuzzy valued functions, Fuzzy Sets and Systems, Vol. 115, No. 3, 2000, 377-391.
[36] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120, No. 3, (2001), 523-532.
[37] C. Wu, M. Ma, On embedding problem of fuzzy numer spaces: Part 1, Fuzzy Sets and Systems, 44 (1991), 33-38.

