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Abstract

Here is studied in detail the multivariate fuzzy approximation to the

multivariate unit by multivariate fuzzy neural network operators acti-

vated by a general sigmoid function. These operators are multivariate

fuzzy analogs of earlier studied multivariate Banach space valued ones.

The derived results generalize earlier Banach space valued ones into the

fuzzy level. Here the high order multivariate fuzzy pointwise and uniform

convergences with rates to the multivariate fuzzy unit operator are given

through multivariate fuzzy Jackson type inequalities involving the multi-

variate fuzzy moduli of continuity of the mth order (m ≥ 0) H-fuzzy par-

tial derivatives, of the involved multivariate fuzzy number valued function.

The treated operators are of averaged, quasi-interpolation, Kantorovich

and quadrature types at the multivariate fuzzy setting.
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1 Introduction

The author in [1], [2] and [3], see chapters 2-5, was the first to derive neural net-

work approximations to continuous functions with rates by very specifically de-

fined neural network operators of Cardaliaguet-Euvrard and ”Squashing” types
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[25], by employing the modulus of continuity of the engaged function or its high

order derivative, and deriving very tight Jackson type inequalities. He treats

there both the univariate and multivariate cases. The defining these operators

”bell-shaped” and ”squashing” function are assumed to be of compact support.

The author motivated by [26], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators

of sigmoidal and hyperbolic tangent type which resulted into [12] - [20], by

treating both the univariate and multivariate cases.

Continuation of the author’s works ([4] - [11], [22] and especially of [21], Ch.

21) is this article, where the multivariate fuzzy neural network approximation is

based on a general sigmoid activation function, which among others, may result

into higher rates of approximation. We involve the fuzzy partial derivatives of

the multivariate fuzzy function under approximation or itself, and we establish

tight multivariate fuzzy Jackson type inequalities. An extensive background is

given on fuzzy multivariate analysis and real neural network approximation, all

needed to present our results.

Our fuzzy multivariate feed-forward neural networks (FFNNs) are with one

hidden layer. For neural networks in general you may read [29], [32], [33]. For

the fractional aspect see [34].

2 Fuzzy Real Analysis background

See also [21], Ch. 21, pp. 466-473.

We need the following background

Definition 1 (see [36]) Let µ : R → [0, 1] with the following properties

(i) is normal, i.e., ∃ x0 ∈ R; µ (x0) = 1.

(ii) µ (λx+ (1− λ) y) ≥ min{µ (x) , µ (y)}, ∀ x, y ∈ R, ∀ λ ∈ [0, 1] (µ is

called a convex fuzzy subset).

(iii) µ is upper semicontinuous on R, i.e. ∀ x0 ∈ R and ∀ ε > 0, ∃ neigh-

borhood V (x0) : µ (x) ≤ µ (x0) + ε, ∀ x ∈ V (x0) .

(iv) The set sup p (µ) is compact in R, (where sup p (µ) := {x ∈ R : µ (x) >

0}).
We call µ a fuzzy real number. Denote the set of all µ with RF .

E.g. χ{x0} ∈ RF , for any x0 ∈ R, where χ{x0} is the characteristic function

at x0.

For 0 < r ≤ 1 and µ ∈ RF define

[µ]
r
:= {x ∈ R : µ (x) ≥ r} (1)

and

[µ]
0
:= {x ∈ R : µ (x) ≥ 0}.
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Then it is well known that for each r ∈ [0, 1], [µ]
r
is a closed and bounded

interval on R ([28]).

For u, v ∈ RF and λ ∈ R, we define uniquely the sum u⊕ v and the product

λ⊙ u by

[u⊕ v]
r
= [u]

r
+ [v]

r
, [λ⊙ u]

r
= λ [u]

r
, ∀ r ∈ [0, 1] ,

where [u]
r
+[v]

r
means the usual addition of two intervals (as substes of R) and

λ [u]
r
means the usual product between a scalar and a subset of R (see, e.g.

[36]).

Notice 1⊙ u = u and it holds

u⊕ v = v ⊕ u, λ⊙ u = u⊙ λ.

If 0 ≤ r1 ≤ r2 ≤ 1 then

[u]
r2 ⊆ [u]

r1 .

Actually [u]
r
=
[
u
(r)
− , u

(r)
+

]
, where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀ r ∈ [0, 1].

For λ > 0 one has λu
(r)
± = (λ⊙ u)

(r)
± , respectively.

Define D : RF × RF → RF by

D (u, v) := sup
r∈[0,1]

max
{∣∣∣u(r)− − v

(r)
−

∣∣∣ , ∣∣∣u(r)+ − v
(r)
+

∣∣∣} , (2)

where

[v]
r
=
[
v
(r)
− , v

(r)
+

]
; u, v ∈ RF .

We have that D is a metric on RF .

Then (RF , D) is a complete metric space, see [36], [37].

Let f, g :W ⊆ Rm → RF . We define the distance

D∗ (f, g) = sup
x∈W

D (f (x) , g (x)) .

Remark 2 We determine and use

D∗ (f, õ) = sup
x∈W

D (f (x) , õ) =

sup
x∈W

sup
r∈[0,1]

max
{∣∣∣f (r)− (x)

∣∣∣ , ∣∣∣f (r)+ (x)
∣∣∣} .

By the principle of iterated suprema we find that

D∗ (f, õ) = sup
r∈[0,1]

max
{∥∥∥f (r)−

∥∥∥
∞
,
∥∥∥f (r)+

∥∥∥
∞

}
, (3)

under the assumption D∗ (f, õ) <∞, that is f is a fuzzy bounded function.

Above ∥·∥∞ is the supremum norm of the function over W ⊆ Rm.
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Here Σ∗ stands for fuzzy summation and 0̃ := χ{0} ∈ RF is the neutral

element with respect to ⊕, i.e.,

u⊕ 0̃ = 0̃⊕ u = u, ∀ u ∈ RF .

We need

Remark 3 ([5]). Here r ∈ [0, 1], x
(r)
i , y

(r)
i ∈ R, i = 1, ...,m ∈ N. Suppose that

sup
r∈[0,1]

max
(
x
(r)
i , y

(r)
i

)
∈ R, for i = 1, ...,m.

Then one sees easily that

sup
r∈[0,1]

max

(
m∑
i=1

x
(r)
i ,

m∑
i=1

y
(r)
i

)
≤

m∑
i=1

sup
r∈[0,1]

max
(
x
(r)
i , y

(r)
i

)
. (4)

Definition 4 Let f ∈ C (W ), W ⊆ Rm, m ∈ N, which is bounded or uniformly

continuous, we define (h > 0)

ω1 (f, h) := sup
x,y∈W , ∥x−y∥∞≤h

|f (x)− f (y)| , (5)

where x = (x1, ..., xm), y = (y1, ..., ym) .

Definition 5 Let f : W → RF , W ⊆ Rm, we define the fuzzy modulus of

continuity of f by

ω
(F)
1 (f, h) = sup

x,y∈W , ∥x−y∥∞≤h

D (f (x) , f (y)) , h > 0. (6)

where x = (x1, ..., xm), y = (y1, ..., ym) .

For f :W → RF , W ⊆ Rm, we use

[f ]
r
=
[
f
(r)
− , f

(r)
+

]
, (7)

where f
(r)
± :W → R, ∀ r ∈ [0, 1] .

We need

Proposition 6 ([5]) Let f :W → RF . Assume that ωF
1 (f, δ), ω1

(
f
(r)
− , δ

)
,

ω1

(
f
(r)
+ , δ

)
are finite for any δ > 0, r ∈ [0, 1] .

Then

ω
(F)
1 (f, δ) = sup

r∈[0,1]

max
{
ω1

(
f
(r)
− , δ

)
, ω1

(
f
(r)
+ , δ

)}
. (8)
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We denote by CU
F (W ) the space of fuzzy uniformly continuous functions

from W → RF , also CF (W ) is the space of fuzzy continuous functions on

W ⊆ Rm, and CB (W,RF ) is the fuzzy continuous and bounded functions.

We mention

Proposition 7 ([7]) Let f ∈ CU
F (W ), where W ⊆ Rm is convex. Then

ω
(F)
1 (f, δ) <∞, for any δ > 0.

Proposition 8 ([7]) It holds

lim
δ→0

ω
(F)
1 (f, δ) = ω

(F)
1 (f, 0) = 0, (9)

iff f ∈ CU
F (W ), W ⊆ Rm, where W is convex and compact.

Proposition 9 ([7]) Let f ∈ CF (W ) , W ⊆ Rm open or compact. Then f
(r)
±

are equicontinuous with respect to r ∈ [0, 1] over W , respectively in ±.

Note 10 It is clear by Propositions 6, 8, that if f ∈ CU
F (W ), then f

(r)
± ∈

CU (W ) (uniformly continuous on W ). Also if f ∈ CB (W,RF ), it implies by

(3) that f
(r)
± ∈ CB (W ) (continuous and bounded functions on W ).

We need

Definition 11 Let x, y ∈ RF . If there exists z ∈ RF : x = y ⊕ z, then we call

z the H-difference on x and y, denoted x− y.

Definition 12 ([36]) Let T := [x0, x0 + β] ⊂ R, with β > 0. A function

f : T → RF is H-difference at x ∈ T if there exists an f ′ (x) ∈ RF such

that the limits (with respect to D)

lim
h→0+

f (x+ h)− f (x)

h
, lim

h→0+

f (x)− f (x− h)

h
(10)

exist and are equal to f ′ (x) .

We call f ′ the H-derivative or fuzzy derivative of f at x.

Above is assumed that the H-differences f (x+ h)− f (x), f (x)− f (x− h)

exists in RF in a neighborhood of x.

Definition 13 We denote by CN∗

F (W ), N∗ ∈ N, the space of all N∗-times

fuzzy continuously differentiable functions from W into RF , W ⊆ Rm open or

compact which is convex.

Here fuzzy partial derivatives are defined via Definition 12 in the obvious

way as in the ordinary real case.

We mention
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Theorem 14 ([30]) Let f : [a, b] ⊆ R → RF be H-fuzzy differentiable. Let

t ∈ [a, b], 0 ≤ r ≤ 1. Clearly

[f (t)]
r
=
[
f (t)

(r)
− , f (t)

(r)
+

]
⊆ R.

Then (f (t))
(r)
± are differentiable and

[f ′ (t)]
r
=

[(
f (t)

(r)
−

)′
,
(
f (t)

(r)
+

)′]
.

I.e.

(f ′)
(r)
± =

(
f
(r)
±

)′
, ∀ r ∈ [0, 1] . (11)

Remark 15 (see also [6]) Let f ∈ CN∗
([a, b] ,RF ), N

∗ ≥ 1. Then by Theorem

14 we obtain f
(r)
± ∈ CN∗

([a, b]) and[
f (i) (t)

]r
=

[(
f (t)

(r)
−

)(i)
,
(
f (t)

(r)
+

)(i)]
,

for i = 0, 1, 2, ..., N∗, and in particular we have(
f (i)
)(r)
±

=
(
f
(r)
±

)(i)
, (12)

for any r ∈ [0, 1] .

Let f ∈ CN∗

F (W ), W ⊆ Rm, open or compact, which is convex, denote

fα̃ := ∂α̃f

∂xα̃ , where α̃ := (α̃1, ..., α̃m), α̃i ∈ Z+, i = 1, ...,m and

0 < |α̃| :=
m∑
i=1

α̃i ≤ N∗, N∗ > 1.

Then by Theorem 14 we get that(
f
(r)
±

)
α̃
= (fα̃)

(r)
± , ∀ r ∈ [0, 1] , (13)

and any α̃ : |α̃| ≤ N∗. Here f
(r)
± ∈ CN∗

(W ) .

Notation 16 We denote(
2∑

i=1

D

(
∂

∂xi
, 0̃

))2

f (−→x ) := (14)

D

(
∂2f (x1, x2)

∂x21
, 0̃

)
+D

(
∂2f (x1, x2)

∂x22
, 0̃

)
+ 2D

(
∂2f (x1, x2)

∂x1∂x2
, 0̃

)
.
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In general we denote (j = 1, ..., N∗)(
m∑
i=1

D

(
∂

∂xi
, 0̃

))j

f (−→x ) := (15)

∑
(j1,...,jm)∈Zm

+ :
∑m

i=1 ji=j

j!

j1!j2!...jm!
D

(
∂jf (x1, ..., xm)

∂xj11 ∂x
j2
2 ...∂x

jm
m

, 0̃

)
.

We mention also a particular case of the Fuzzy Henstock integral (δ (x) = δ
2 ),

see [36].

Definition 17 ([27], p. 644) Let f : [a, b] → RF . We say that f is Fuzzy-

Riemann integrable to I ∈ RF if for any ε > 0, there exists δ > 0 such that for

any division P = {[u, v] ; ξ} of [a, b] with the norms ∆(P ) < δ, we have

D

( ∗∑
P

(v − u)⊙ f (ξ) , I

)
< ε.

We write

I := (FR)

∫ b

a

f (x) dx. (16)

We mention

Theorem 18 ([28]) Let f : [a, b] → RF be fuzzy continuous. Then

(FR)

∫ b

a

f (x) dx

exists and belongs to RF , furthermore it holds[
(FR)

∫ b

a

f (x) dx

]r
=

[∫ b

a

(f)
(r)
− (x) dx,

∫ b

a

(f)
(r)
+ (x) dx

]
,

∀ r ∈ [0, 1] .

For the definition of general fuzzy integral we follow [31] next.

Definition 19 Let (Ω,Σ, µ) be a complete σ-finite measure space. We call F :

Ω → RF measurable iff ∀ closed B ⊆ R the function F−1 (B) : Ω → [0, 1] defined

by

F−1 (B) (w) := sup
x∈B

F (w) (x) , all w ∈ Ω

is measurable, see [31].
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Theorem 20 ([31]) For F : Ω → RF ,

F (w) =
{(
F

(r)
− (w) , F

(r)
+ (w)

)
|0 ≤ r ≤ 1

}
,

the following are equivalent

(1) F is measurable,

(2) ∀ r ∈ [0, 1], F
(r)
− , F

(r)
+ are measurable.

Following [31], given that for each r ∈ [0, 1], F
(r)
− , F

(r)
+ are integrable we

have that the parametrized representation{(∫
A

F
(r)
− dµ,

∫
A

F
(r)
+ dµ

)
|0 ≤ r ≤ 1

}
(17)

is a fuzzy real number for each A ∈ Σ.

The last fact leads to

Definition 21 ([31]) A measurable function F : Ω → RF ,

F (w) =
{(
F

(r)
− (w) , F

(r)
+ (w)

)
|0 ≤ r ≤ 1

}
is integrable if for each r ∈ [0, 1], F

(r)
± are integrable, or equivalently, if F

(0)
± are

integrable.

In this case, the fuzzy integral of F over A ∈ Σ is defined by∫
A

Fdµ :=

{(∫
A

F
(r)
− dµ,

∫
A

F
(r)
+ dµ

)
|0 ≤ r ≤ 1

}
. (18)

By [31], F is integrable iff w → ∥F (w)∥F is real-valued integrable.

Here denote

∥u∥F := D
(
u, 0̃
)
, ∀ u ∈ RF .

We need also

Theorem 22 ([31]) Let F,G : Ω → RF be integrable. Then

(1) Let a, b ∈ R, then aF + bG is integrable and for each A ∈ Σ,∫
A

(aF + bG) dµ = a

∫
A

Fdµ+ b

∫
A

Gdµ;

(2) D (F,G) is a real- valued integrable function and for each A ∈ Σ,

D

(∫
A

Fdµ,

∫
A

Gdµ

)
≤
∫
A

D (F,G) dµ.

In particular, ∥∥∥∥∫
A

Fdµ

∥∥∥∥
F
≤
∫
A

∥F∥F dµ.
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Above µ could be the multivariate Lebesgue measure, which we use in this

article, with all the basic properties valid here too. Notice by [31], Fubini’s

theorem is valid for fuzzy integral (18).

Basically here we have that[∫
A

Fdµ

]r
=

[∫
A

F
(r)
− dµ,

∫
A

F
(r)
+ dµ

]
, (19)

i.e. (∫
A

Fdµ

)(r)

±
=

∫
A

F
(r)
± dµ, ∀ r ∈ [0, 1] . (20)

3 About real neural networks background

Here we follow [24].

Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly

increasing, h (0) = 0, h (−x) = −h (x), h (+∞) = 1, h (−∞) = −1. Also h

is strictly convex over (−∞, 0] and strictly concave over [0,+∞), with h(2) ∈
C (R).

We consider the activation function

ψ (x) :=
1

4
(h (x+ 1)− h (x− 1)) , x ∈ R, (21)

As in [23], p. 88, we get that ψ (−x) = ψ (x) , thus ψ is an even function. Since

x+ 1 > x− 1, then h (x+ 1) > h (x− 1), and ψ (x) > 0, all x ∈ R.
We see that

ψ (0) =
h (1)

2
. (22)

Let x > 1, we have that

ψ′ (x) =
1

4
(h′ (x+ 1)− h′ (x− 1)) < 0,

by h′ being strictly decreasing over [0,+∞).

Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds

h′ (x− 1) = h′ (1− x) > h′ (x+ 1), so that again ψ′ (x) < 0. Consequently ψ is

stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.

See that

lim
x→+∞

ψ (x) =
1

4
(h (+∞)− h (+∞)) = 0, (23)

and

lim
x→−∞

ψ (x) =
1

4
(h (−∞)− h (−∞)) = 0. (24)

That is the x-axis is the horizontal asymptote on ψ.
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Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
h (1)

2
.

We need

Theorem 23 ([24]) We have that

∞∑
i=−∞

ψ (x− i) = 1, ∀ x ∈ R. (25)

Theorem 24 ([24]) It holds ∫ ∞

−∞
ψ (x) dx = 1. (26)

Thus ψ (x) is a density function on R.
We give

Theorem 25 ([24]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
k = −∞
: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1− h

(
n1−α − 2

))
2

. (27)

Notice that

lim
n→+∞

(
1− h

(
n1−α − 2

))
2

= 0.

Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the

number.

We further give

Theorem 26 ([24]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds

1∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

<
1

ψ (1)
, ∀ x ∈ [a, b] . (28)

Remark 27 ([24]) i) We have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ̸= 1, (29)

for at least some x ∈ [a, b] .

10



ii) For large enough n ∈ N we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b,

iff ⌈na⌉ ≤ k ≤ ⌊nb⌋.
In general, by Theorem 23, it holds

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ≤ 1. (30)

We introduce

Z (x1, ..., xN ) := Z (x) :=

N∏
i=1

ψ (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (31)

It has the properties:

(i) Z (x) > 0, ∀ x ∈ RN ,

(ii)

∞∑
k=−∞

Z (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z (x1 − k1, ..., xN − kN ) = 1, (32)

where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence

(iii)
∞∑

k=−∞

Z (nx− k) = 1, (33)

∀ x ∈ RN ; n ∈ N,
and

(iv) ∫
RN

Z (x) dx = 1, (34)

that is Z is a multivariate density function.

Here denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set ∞ := (∞, ...,∞),

−∞ := (−∞, ...,−∞) upon the multivariate context, and

⌈na⌉ := (⌈na1⌉ , ..., ⌈naN⌉) ,

⌊nb⌋ := (⌊nb1⌋ , ..., ⌊nbN⌋) ,
(35)

where a := (a1, ..., aN ), b := (b1, ..., bN ) .

We obviously see that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

11



⌊nb1⌋∑
k1=⌈na1⌉

...

⌊nbN⌋∑
kN=⌈naN⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

N∏
i=1

 ⌊nbi⌋∑
ki=⌈nai⌉

ψ (nxi − ki)

 . (36)

For 0 < β < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

Z (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k) . (37)

In the last two sums the counting is over disjoint vector sets of k’s, because the

condition
∥∥ k
n − x

∥∥
∞ > 1

nβ implies that there exists at least one
∣∣kr

n − xr
∣∣ > 1

nβ ,

where r ∈ {1, ..., N} .
(v) As in [21], pp. 379-380, we derive that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k)
(7)
<

1− h
(
n1−β − 2

)
2

, 0 < β < 1, (38)

with n ∈ N : n1−β > 2, x ∈
∏N

i=1 [ai, bi] .

(vi) By Theorem 26 we get that

0 <
1∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
<

1

(ψ (1))
N

=: γ (N) , (39)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that

(vii)

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k) <
1− h

(
n1−β − 2

)
2

=: c (β, n) , (40)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN .

Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) ̸= 1, (41)
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for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

Let f ∈ C
(∏N

i=1 [ai, bi]
)
, and n ∈ N such that ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N.

We define the multivariate averaged positive linear neural network operators

(x := (x1, ..., xN ) ∈
(∏N

i=1 [ai, bi]
)
):

An (f, x1, ..., xN ) := An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
= (42)

∑⌊nb1⌋
k1=⌈na1⌉

∑⌊nb2⌋
k2=⌈na2⌉ ...

∑⌊nbN⌋
kN=⌈naN⌉ f

(
k1

n , ...,
kN

n

) (∏N
i=1 ψ (nxi − ki)

)
∏N

i=1

(∑⌊nbi⌋
ki=⌈nai⌉ ψ (nxi − ki)

) .

For large enough n ∈ N we always obtain ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N . Also

ai ≤ ki

n ≤ bi, iff ⌈nai⌉ ≤ ki ≤ ⌊nbi⌋, i = 1, ..., N .

When f ∈ CB

(
RN
)
we define

Bn (f, x) := Bn (f, x1, ..., xN ) :=

∞∑
k=−∞

f

(
k

n

)
Z (nx− k) := (43)

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

f

(
k1
n
,
k2
n
, ...,

kN
n

)( N∏
i=1

ψ (nxi − ki)

)
,

n ∈ N, ∀ x ∈ RN , N ∈ N, the multivariate quasi-interpolation neural network

operators.

Also for f ∈ CB

(
RN
)
we define the multivariate Kantorovich type neural

network operators

Cn (f, x) := Cn (f, x1, ..., xN ) :=

∞∑
k=−∞

(
nN
∫ k+1

n

k
n

f (t) dt

)
Z (nx− k) :=

(44)
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

(
nN
∫ k1+1

n

k1
n

∫ k2+1
n

k2
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN ) dt1...dtN

)

·

(
N∏
i=1

ψ (nxi − ki)

)
,

n ∈ N, ∀ x ∈ RN .

Again for f ∈ CB

(
RN
)
, N ∈ N, we define the multivariate neural net-

work operators of quadrature type Dn (f, x), n ∈ N, as follows. Let θ =

(θ1, ..., θN ) ∈ NN , r = (r1, ..., rN ) ∈ ZN
+ , wr = wr1,r2,...rN ≥ 0, such that

13



θ∑
r=0

wr =
θ1∑

r1=0

θ2∑
r2=0

...
θN∑

rN=0
wr1,r2,...rN = 1; k ∈ ZN and

δnk (f) := δn,k1,k2,...,kN
(f) :=

θ∑
r=0

wrf

(
k

n
+

r

nθ

)
:=

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1,r2,...rN f

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, ...,
kN
n

+
rN
nθN

)
, (45)

where r
θ :=

(
r1
θ1
, r2θ2 , ...,

rN
θN

)
.

We put

Dn (f, x) := Dn (f, x1, ..., xN ) :=

∞∑
k=−∞

δnk (f)Z (nx− k) := (46)

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

δn,k1,k2,...,kN
(f)

(
N∏
i=1

ψ (nxi − ki)

)
,

∀ x ∈ RN .

Let f ∈ Cm
(∏N

i=1 [ai, bi]
)
, m,N ∈ N. Here fα denotes a partial derivative

of f , α := (α1, ..., αN ), αi ∈ Z+, i = 1, ..., N , and |α| :=
∑N

i=1 αi = l, where

l = 0, 1, ...,m. We write also fα := ∂αf
∂xα and we say it is of order l.

We denote

ωmax
1,m (fα, h) := max

α:|α|=m
ω1 (fα, h) .

Call also

∥fα∥max
∞,m := max

α:|α|=m
{∥fα∥∞} ,

where ∥·∥∞ is the supremum norm.

In [21], [23], we studied the basic approximation properties of An, Bn, Cn,

Dn neural network operators and as well of their iterates for Banach space

valued functions. That is, the quantitative pointwise and uniform convergence

of these operators to the unit operator I.

We need

Theorem 28 Let f ∈ C
(∏N

i=1 [ai, bi]
)
, 0 < β < 1, x ∈

(∏N
i=1 [ai, bi]

)
, N, n ∈

N with n1−β > 2. Then

1)

|An (f, x)− f (x)| ≤ γ (N)

[
ω1

(
f,

1

nβ

)
+ 2c (β, n) ∥f∥∞

]
=: λ1, (47)

and

14



2)

∥An (f)− f∥∞ ≤ λ1. (48)

We notice that lim
n→∞

An (f) = f , pointwise and uniformly.

Proof. Similar to [23], p. 118.

We need

Theorem 29 Let f ∈ CB

(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with n1−β > 2.

Then

1)

|Bn (f, x)− f (x)| ≤ ω1

(
f,

1

nβ

)
+ 2c (β, n) ∥f∥∞ =: λ2, (49)

2)

∥Bn (f)− f∥∞ ≤ λ2. (50)

Given that f ∈
(
CU

(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Bn (f) = f , uniformly.

Proof. Similar to [23], p. 128.

We also need

Theorem 30 Let f ∈ CB

(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with n1−β > 2.

Then

1)

|Cn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n) ∥f∥∞ =: λ3, (51)

2)

∥Cn (f)− f∥∞ ≤ λ3. (52)

Given that f ∈
(
CU

(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Cn (f) = f , uniformly.

Proof. Similar to [23], p. 129.

We also need

Theorem 31 Let f ∈ CB

(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with n1−β > 2.

Then

1)

|Dn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n) ∥f∥∞ = λ3, (53)

2)

∥Dn (f)− f∥∞ ≤ λ3. (54)

Given that f ∈
(
CU

(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Dn (f) = f , uni-

formly.
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Proof. Similar to [23], p. 131.

We finally mention (similar to [21], p. 481)

Theorem 32 Let f ∈ Cm
(∏N

i=1 [ai, bi]
)
, 0 < β < 1, n,m,N ∈ N, n1−β > 2,

x ∈
(∏N

i=1 [ai, bi]
)
. Then

i)∣∣∣∣∣∣An (f, x)− f (x)−
m∑

j∗=1

 ∑
|α|=j∗

(
fα (x)∏N
i=1 αi!

)
An

(
N∏
i=1

(· − xi)
αi , x

)∣∣∣∣∣∣ ≤
(55)

γ (N) ·

{
Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞ ∥fα∥max

∞,mNm

m!

)
2c (β, n)

}
,

ii)

|An (f, x)− f (x)| ≤ γ (N) · (56)
m∑

j∗=1

 ∑
|α|=j∗

(
|fα (x)|∏N
i=1 αi!

)[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞ ∥fα∥max

∞,mNm

m!

)
2c (β, n)

}
,

iii)

∥An (f)− f∥∞ ≤ γ (N) · (57)
m∑

j∗=1

 ∑
|α|=j∗

(
∥fα∥∞∏N
i=1 αi!

)[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞ ∥fα∥max

∞,mNm

m!

)
2c (β, n)

}
,

iv) additionally assume fα (x0) = 0, for all α : |α| = 1, ...,m; x0 ∈
(∏N

i=1 [ai, bi]
)
,

then

|An (f, x0)− f (x0)| ≤ γ (N)

{
Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+ (58)(

∥b− a∥m∞ ∥fα∥max
∞,mNm

m!

)
2c (β, n)

}
,

notice in the last the extremely high rate of convergence at n−β(m+1).
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4 Main Results: Fuzzy multivariate Neural Net-

work Approximation based on a general sig-

moid function

We define the following General Fuzzy multivariate Neural Network Operators

AF
n , B

F
n , C

F
n , D

F
n , based on a general sigmoid activation function. These are

analogs of the real An, Bn, Cn, Dn, see (42), (43), (44) and (46), respectively.

Let f ∈ CF

(
N∏
i=1

[ai, bi]

)
, N ∈ N, we set

AF
n (f, x1, ..., xN ) := AF

n (f, x) :=

⌊nb⌋∗∑
k=⌈na⌉

f
(
k
n

)
⊙ Z (nx− k)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k)

=

∑⌊nb1⌋∗
k1=⌈na1⌉ ...

∑⌊nbN⌋∗
kN=⌈naN⌉ f

(
k1

n , ...,
kN

n

)
⊙
(∏N

i=1 ψ (nxi − ki)
)

∏N
i=1

(∑⌊nbi⌋
ki=⌈nai⌉ ψ (nxi − ki)

) , (59)

x ∈
N∏
i=1

[ai, bi], n ∈ N.

Let f ∈ CB

(
RN ,RF

)
, we put

BF
n (f, x) := BF

n (f, x1, ..., xN ) :=

∞∗∑
k=−∞

f

(
k

n

)
⊙ Z (nx− k)

:=

∞∗∑
k1=−∞

...

∞∗∑
kN=−∞

f

(
k1
n
, ...,

kN
n

)
⊙

(
N∏
i=1

ψ (nxi − ki)

)
, (60)

x ∈ RN , n ∈ N.
Let f ∈ CB

(
RN ,RF

)
, we define the multivariate fuzzy Kantorovich type

neural network operator,

CF
n (f, x) := CF

n (f, x1, ..., xN ) :=

∞∗∑
k=−∞

(
nN ⊙

∫ k+1
n

k
n

f (t) dt

)
⊙ Z (nx− k) :=

∞∗∑
k1=−∞

...

∞∗∑
kN=−∞

(
nN ⊙

∫ k1+1
n

k1
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN ) dt1...dtN

)

⊙

(
N∏
i=1

ψ (nxi − ki)

)
, (61)
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x ∈ RN , n ∈ N.
Let f ∈ CB

(
RN ,RF

)
, we define the multivariate fuzzy quadrature type

neural network operator. Let here

δFnk (f) := δFn,k1,...,kN
(f) :=

θ∗∑
r=0

wr ⊙ f

(
k

n
+

r

nθ

)
:= (62)

θ1∗∑
r1=0

...

θN∗∑
rN=0

wr1,...rN ⊙ f

(
k1
n

+
r1
nθ1

, ...,
kN
n

+
rN
nθN

)
.

We put

DF
n (f, x) := DF

n (f, x1, ..., xN ) :=

∞∗∑
k=−∞

δFnk (f)⊙ Z (nx− k) :=

∞∗∑
k1=−∞

...

∞∗∑
kN=−∞

δFn,k1,...,kN
(f)⊙

(
N∏
i=1

ψ (nxi − ki)

)
, (63)

x ∈ RN , n ∈ N.
We can put together all BF

n , CF
n , DF

n fuzzy operators as follows:

LF
n (f, x) :=

∞∗∑
k=−∞

lFnk (f)⊙ Z (nx− k) , (64)

where

lFnk (f) :=


f
(
k
n

)
, if LF

n = BF
n ,

nN ⊙
∫ k+1

n
k
n

f (t) dt, if LF
n = CF

n ,

δFnk (f) , if L
F
n = DF

n ,

(65)

x ∈ RN , n ∈ N.
Similarly, we can put together all Bn, Cn, Dn real operators as

Ln (f, x) :=

∞∑
k=−∞

lnk (f)Z (nx− k) , (66)

where

lnk (f) :=


f
(
k
n

)
, if Ln = Bn,

nN
∫ k+1

n
k
n

f (t) dt, if Ln = Cn,

δnk (f) , if Ln = Dn,

(67)

x ∈ RN , n ∈ N.
Let r ∈ [0, 1], we observe that

[
AF

n (f, x)
]r

=

⌊nb⌋∑
k=⌈na⌉

[
f

(
k

n

)]r
 Z (nx− k)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k)

 =
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⌊nb⌋∑
k=⌈na⌉

[
f
(r)
−

(
k

n

)
, f

(r)
+

(
k

n

)] Z (nx− k)
⌊nb⌋∑

k=⌈na⌉
Z (nx− k)

 = (68)


⌊nb⌋∑

k=⌈na⌉

f
(r)
−

(
k

n

) Z (nx− k)
⌊nb⌋∑

k=⌈na⌉
Z (nx− k)

 ,

⌊nb⌋∑
k=⌈na⌉

f
(r)
+

(
k

n

) Z (nx− k)
⌊nb⌋∑

k=⌈na⌉
Z (nx− k)




=
[
An

(
f
(r)
− , x

)
, An

(
f
(r)
+ , x

)]
. (69)

We have proved that (
AF

n (f, x)
)(r)
± = An

(
f
(r)
± , x

)
, (70)

∀ r ∈ [0, 1], ∀ x ∈
(

N∏
i=1

[ai, bi]

)
.

Similarly, as in [21], pp. 485-489, a lengthy proof (see Remark 21.31 and

proof of (21.76) there) it holds that(
LF
n (f, x)

)(r)
± = Ln

(
f
(r)
± , x

)
, (71)

∀ r ∈ [0, 1], ∀ x ∈ RN .

Based on (70) and (71) now one may write

D
(
AF

n (f, x) , f (x)
)
= (72)

sup
r∈[0,1]

max
{∣∣∣(An

(
f
(r)
− , x

))
− f

(r)
− (x)

∣∣∣ , ∣∣∣An

(
f
(r)
+ , x

)
− f

(r)
+ (x)

∣∣∣} ,
and

D
(
LF
n (f, x) , f (x)

)
=

sup
r∈[0,1]

max
{∣∣∣(Ln

(
f
(r)
− , x

))
− f

(r)
− (x)

∣∣∣ , ∣∣∣Ln

(
f
(r)
+ , x

)
− f

(r)
+ (x)

∣∣∣} . (73)

We present

Theorem 33 Let f ∈ CF

(
N∏
i=1

[ai, bi]

)
, 0 < β < 1, x ∈

(
N∏
i=1

[ai, bi]

)
, N, n ∈

N with n1−β > 2. Then

1)

D
(
AF

n (f, x) , f (x)
)
≤

γ (N)

[
ω
(F)
1

(
f,

1

nβ

)
+ 2c (β, n)D∗ (f, õ)

]
=: ρ1, (74)
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and

2)

D∗ (AF
n (f) , f

)
≤ ρ1. (75)

We notice that AF
n (f, x)

D→ f (x) , and AF
n (f)

D∗

→ f , as n → ∞,quantitatively

with rates.

Proof. Since f ∈ CF

(
N∏
i=1

[ai, bi]

)
we have that f

(r)
± ∈ C

(
N∏
i=1

[ai, bi]

)
, ∀

r ∈ [0, 1]. Hence by (47) we obtain∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ γ (N)

[
ω1

(
f
(r)
± ,

1

nβ

)
+ 2c (β, n)

∥∥∥f (r)±

∥∥∥
∞

]
(by (8), (3))

≤ γ (N)

[
ω
(F)
1

(
f,

1

nβ

)
+ 2c (β, n)D∗ (f, õ)

]
. (76)

By (72) now we are proving the claim.

We give

Theorem 34 Let f ∈ CB

(
RN ,RF

)
, 0 < β < 1, x ∈ RN , N, n ∈ N, with

n1−β > 2. Then

1)

D
(
BF

n (f, x) , f (x)
)
≤ (77)

ω
(F)
1

(
f,

1

nβ

)
+ 2c (β, n)D∗ (f, õ) =: ρ2,

and

2)

D∗ (BF
n (f) , f

)
≤ ρ2. (78)

Proof. Similar to Theorem 33. We use (49) and (73), along with (3) and

(8).

We also present

Theorem 35 All as in Theorem 34. Then

1)

D
(
CF

n (f, x) , f (x)
)
≤

ω
(F)
1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n)D∗ (f, õ) =: ρ3, (79)

and

2)

D∗ (CF
n (f) , f

)
≤ ρ3. (80)
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Proof. Similar to Theorem 33. We use (51) and (73), along with (3) and

(8).

We also give

Theorem 36 All as in Theorem 34. Then

1)

D
(
DF

n (f, x) , f (x)
)
≤

ω
(F)
1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n)D∗ (f, õ) = ρ3, (81)

and

2)

D∗ (DF
n (f) , f

)
≤ ρ3. (82)

Proof. Similar to Theorem 33. We use (53) and (73), along with (3) and

(8).

Note 37 By Theorems 34, 35, 36 for f ∈
(
CB

(
RN ,RF

)
∩ CU

F
(
RN
))
, we ob-

tain lim
n→∞

D
(
LF
n (f, x) , f (x)

)
= 0, and lim

n→∞
D∗ (LF

n (f) , f
)
= 0, quantitatively

with rates, where LF
n is as in (64) and (65).

Notation 38 Let f ∈ Cm
F

(
N∏
i=1

[ai, bi]

)
, m,N ∈ N. Here fα denotes a fuzzy

partial derivative with all related notation similar to the real case, see also Re-

mark 15 and Notation 16. We denote

ω
(F)max
1,m (fα, h) := max

α:|α|=m
ω
(F)
1 (fα, h) , h > 0. (83)

Call also

D∗max
m (fα, õ) := max

α:|α|=m
{D∗ (fα, õ)} . (84)

We finally present

Theorem 39 Let f ∈ Cm
F

(
N∏
i=1

[ai, bi]

)
, 0 < β < 1, n,m,N ∈ N with n1−β >

2, and x ∈
(

N∏
i=1

[ai, bi]

)
. Then

1)

D
(
AF

n (f, x) , f (x)
)
≤ γ (N) ·

m∑
j∗=1

 ∑
|α|=j∗

D (fα (x) , õ)
N∏
i=1

αi!

[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
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+
Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞D∗max

m (fα, õ)N
m

m!

)
2c (β, n)

}
,

(85)

2)

D∗ (AF
n (f) , f

)
≤ γ (N) ·

m∑
j∗=1

 ∑
|α|=j∗

D∗ (fα, õ)
N∏
i=1

αi!

[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞D∗max

m (fα, õ)N
m

m!

)
2c (β, n)

}
,

(86)

3) additionally assume that fα (x0) = õ, for all α : |α| = 1, ...,m; x0 ∈(
N∏
i=1

[ai, bi]

)
, then

D
(
AF

n (f, x0) , f (x0)
)
≤ γ (N)

{
Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞D∗max

m (fα, õ)N
m

m!

)
2c (β, n)

}
, (87)

notice in the last the extremely high rate of convergence at n−β(m+1).

Above we derive quantitatively with rates the high speed approximation of

D
(
AF

n (f, x) , f (x)
)
→ 0, as n→ ∞.

Also we establish with rates that D∗ (AF
n (f) , f

)
→ 0, as n → ∞, involving

the fuzzy smoothness of f.

Proof. Here f
(r)
± ∈ Cm

(
N∏
i=1

[ai, bi]

)
. We observe that

∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ (56)≤ γ (N) ·
m∑

j∗=1

 ∑
|α|=j∗


∣∣∣(f (r)±

)
α
(x)
∣∣∣

N∏
i=1

αi!


[

1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

((
f
(r)
±

)
α
,
1

nβ

)
+∥b− a∥m∞

∥∥∥(f (r)±

)
α

∥∥∥max

∞,m
Nm

m!

 2c (β, n)

 (13)
= (88)
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γ (N)


m∑

j∗=1

 ∑
|α|=j∗


∣∣∣(fα)(r)± (x)

∣∣∣
N∏
i=1

αi!


[

1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

(
(fα)

(r)
± ,

1

nβ

)
+∥b− a∥m∞

∥∥∥(fα)(r)±

∥∥∥max

∞,m
Nm

m!

 2c (β, n)


(by (3), (8))

≤ (89)

γ (N)


m∑

j∗=1

 ∑
|α|=j∗

D (fα (x) , õ)
N∏
i=1

αi!


[

1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+(

∥b− a∥m∞D∗max
m (fα, õ)N

m

m!

)
2c (β, n)

}
=: T, (90)

respectively in ±.
We have proved that ∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ T, (91)

∀ r ∈ [0, 1], respectively in ±.

Using (72) we obtain

D
(
AF

n (f, x) , f (x)
)
≤ T, (92)

proving the theorem.
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