SOME INEQUALITIES FOR THE SPECTRAL RADIUS IN TERMS OF THE EXTENDED GENERALIZED ALUTHGE TRANSFORM OF BOUNDED OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } H \text { be a complex Hilbert space. For a contraction } V \in \mathcal{B}(H), \\
& \text { i.e. } 0 \leq V^{*} V \leq I \text {, an operator } T \in \mathcal{B}(H) \text { and } t \in[0,1] \text { we define the operator } \\
& \qquad \Delta_{t, V}(T):=|T|^{t} V|T|^{1-t} \\
& \text { that we call the extended generalized Aluthge transform. In this paper we show }
\end{aligned}
$$ among others that, for all $t \in[0,1]$

$$
\begin{aligned}
r\left(T_{V}\right) & \leq \frac{1}{2} \max \left\{\omega\left(T_{V}\right), \omega\left(\Delta_{t, V}(T)\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|T_{V}\right\|^{1 / 2},\left\|\Delta_{t, V}(T)\right\|^{1 / 2}\right\} \\
r\left(T_{V}\right) & \leq \frac{1}{2} \max \left\{\omega\left(\widehat{T}_{V}\right), \omega\left(\Delta_{t, V}(T)\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|\widehat{T}_{V}\right\|^{1 / 2},\left\|\Delta_{t, V}(T)\right\|^{1 / 2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
r\left(T_{V}\right) & \leq \frac{1}{2} \max \left\{\omega\left(\widehat{T}_{V}\right), \omega\left(\widetilde{T}_{V}\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|\widehat{T}_{V}\right\|^{1 / 2},\left\|\widetilde{T}_{V}\right\|^{1 / 2}\right\}
\end{aligned}
$$

where $r(\cdot)$ is the spectral radius, $T_{V}:=V|T|, \widetilde{T}_{V}:=|T|^{1 / 2} V|T|^{1 / 2}$ and $\widehat{T}_{V}:=|T| V$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

[^0]This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.2}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [10], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.2):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.3}
\end{equation*}
$$

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [11] improved the inequality (1.2) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.4}
\end{equation*}
$$

for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [9]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.6}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.5) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.7}
\end{equation*}
$$

and from (1.6) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.8}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [7] and [4].

We denote by $r(T)$ the spectral radius of the operator T. It is well known that $r(T) \leq \omega(T)$ for any T and

$$
\begin{equation*}
r(A B)=r(B A) \text { for every } A, B \in B(H) \tag{1.9}
\end{equation*}
$$

It is well known that if $A B=B A$, then also

$$
r(A+B) \leq r(A)+r(B) \text { and } r(A B) \leq r(A) r(B)
$$

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $\omega(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=r(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[13]$.

Utilizing this transform T. Yamazaki, [13] obtained in 2007 the following refinement of Kittaneh's inequality (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in \underset{\sim}{B}(H)$.
We remark that if $\widetilde{T}=0$, then obviously $\omega(T)=\frac{1}{2}\|T\|$.
For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$ and an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$, in [8] we introduced the two variables transform,

$$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$

that we call the extended generalized Aluthge transform.
We assume in what follows that $|T|^{0}:=I$.
For $t=1$ we have

$$
\widehat{T}_{V}:=\Delta_{1, V}(T)=|T| V
$$

that we call the extended Dougal transform, for $t=1 / 2$,

$$
\widetilde{T}_{V}=\Delta_{1 / 2, V}(T):=|T|^{1 / 2} V|T|^{1 / 2}
$$

that we call the extended Aluthge transform and for $t=0$,

$$
T_{V}:=\Delta_{0, V}(T)=V|T|
$$

An operator $U \in \mathcal{B}(H)$ is called a partial isometry if $\|U x\|=\|x\|$ for all $x \in$ $\mathcal{N}^{\perp}(U)$.

Now, let $x \in H$, then there exists a unique $x_{1} \in \mathcal{N}(U)$ and a unique $x_{2} \in \mathcal{N}^{\perp}(U)$ such that $x=x_{1}+x_{2}$. Then

$$
0 \leq\left\langle U^{*} U x, x\right\rangle=\|U x\|^{2}=\left\|U x_{1}+U x_{2}\right\|^{2}=\left\|U x_{2}\right\|^{2}=\left\|x_{2}\right\|^{2}
$$

By the fact that $x_{1} \perp x_{2},\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}$. Therefore $0 \leq\left\langle U^{*} U x, x\right\rangle \leq\|x\|^{2}$, which shows that U is a contraction on H.

Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then $T_{U}=U|T|=T$,

$$
\widetilde{T}_{U}=|T|^{1 / 2} U|T|^{1 / 2}=\widetilde{T}
$$

is the usual Aluthge transform and

$$
\widehat{T}_{U}=|T| U=\widehat{T}
$$

is the usual Dougal transform.
For $t \in(0,1)$

$$
\Delta_{t, U}(T)=|T|^{t} U|T|^{1-t}=: \Delta_{t}(T)
$$

is the generalized Aluthge transform introduced in by Cho and Tanahashi in [6].
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right) \tag{1.11}
\end{equation*}
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.12}
\end{equation*}
$$

In [3] Bunia et al. also proved that

$$
\begin{equation*}
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\} \tag{1.13}
\end{equation*}
$$

which for $t=1 / 2$ gives (1.10) as well.
If V is a contraction, then $\|V\| \leq 1$ and since $\left\|V^{*}\right\|=\|V\|$, hence V^{*} is also a contraction. Observe that

$$
\Delta_{t, V}^{*}(T):=\left(|T|^{t} V|T|^{1-t}\right)^{*}=|T|^{1-t} V^{*}|T|^{t}=\Delta_{1-t, V^{*}}(T)
$$

for all $t \in[0,1]$. Therefore

$$
\left(T_{V}\right)^{*}=\widehat{T}_{V^{*}}, \quad\left(\widehat{T}_{V}\right)^{*}=T_{V^{*}} \text { and }\left(\widetilde{T}_{V}\right)^{*}=\widetilde{T}_{V^{*}}
$$

Since $\left\|V^{*} V\right\|=\left\|V V^{*}\right\|=\|V\|^{2}$ and V is a contraction, then $\left\|\frac{V^{*} V \pm V V^{*}}{2}\right\| \leq$ $\|V\|^{2} \leq 1$ showing that $W:=\frac{V^{*} V \pm V V^{*}}{2}$ is a contraction and we can consider the transform

$$
\Delta_{t, \frac{V^{*} V \pm V V^{*}}{2}}(T):=|T|^{t}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1-t}
$$

for $t \in[0,1]$.
For a contraction V, we have

$$
\operatorname{Im}(V):=\frac{V-V^{*}}{2 i}, \operatorname{Re}(V):=\operatorname{Re}\left(\frac{V+V^{*}}{2}\right)
$$

and since

$$
\|\operatorname{Im}(V)\|=\left\|\frac{V-V^{*}}{2 i}\right\| \leq\|V\| \leq 1 \text { and }\|\operatorname{Re}(V)\| \leq\|V\| \leq 1
$$

hence $\operatorname{Im}(V)$ and $\operatorname{Re}(V)$ are contractions as well. We can then consider the transforms

$$
\Delta_{t, \operatorname{Im}(V)}(T):=|T|^{t} \operatorname{Im}(V)|T|^{1-t} \text { and } \Delta_{t, \operatorname{Re}(V)}(T):=|T|^{t} \operatorname{Re}(V)|T|^{1-t}
$$

for $t \in[0,1]$.
For $T \in \mathcal{B}(H)$ we define $T_{+}:=\frac{1}{2}(|T|+T)$ and $T_{-}:=\frac{1}{2}(|T|-T)$. If U is the partial isometry in the polar representation of T, then $V:=\frac{I \pm U}{2}$ is a contraction and

$$
\Delta_{t, \frac{I \pm U}{2}}(T):=|T|^{t} \frac{I \pm U}{2}|T|^{1-t}=\frac{|T| \pm \Delta_{t}(T)}{2}
$$

In particular, we get

$$
T_{\frac{I \pm U}{2}}=\frac{|T| \pm T}{2}=T_{ \pm}, \widehat{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widehat{T}}{2} \text { and } \widetilde{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widetilde{T}}{2}
$$

for any operator $T \in \mathcal{B}(H)$.

2. Main Results

We use the following result:
Lemma 1. Let $A, B \in \mathcal{B}(H)$, then

$$
\begin{align*}
r(A B) & \leq \frac{1}{4}(\omega(A B)+\omega(B A)) \tag{2.1}\\
& +\frac{1}{4}\left[(\omega(A B)-\omega(B A))^{2}+4 \min \{\|A\|\|B A B\|,\|B\|\|A B A\|\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \{\omega(A B), \omega(B A)\} \\
& +\frac{1}{2} \min \left\{\|A\|^{1 / 2}\|B A B\|^{1 / 2},\|B\|^{1 / 2}\|A B A\|^{1 / 2}\right\} .
\end{align*}
$$

Proof. The first part was obtained by Abu-Omar and Kittaneh in [2].
Using the elementary inequality $(c+d)^{1 / 2} \leq c^{1 / 2}+d^{1 / 2}$ for $c, d \geq 0$, we have

$$
\begin{aligned}
& {\left[(\omega(A B)-\omega(B A))^{2}+4 \min \{\|A\|\|B A B\|,\|B\|\|A B A\|\}\right]^{1 / 2}} \\
& \leq|\omega(A B)-\omega(B A)|+2 \min \left\{\|A\|^{1 / 2}\|B A B\|^{1 / 2},\|B\|^{1 / 2}\|A B A\|^{1 / 2}\right\} .
\end{aligned}
$$

Since

$$
\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)
$$

hence

$$
\begin{aligned}
& \frac{1}{4}(\omega(A B)+\omega(B A))+\frac{1}{4}|\omega(A B)-\omega(B A)| \\
& +\frac{1}{2} \min \left\{\|A\|^{1 / 2}\|B A B\|^{1 / 2},\|B\|^{1 / 2}\|A B A\|^{1 / 2}\right\} \\
& =\frac{1}{2} \max \{\omega(A B), \omega(B A)\} \\
& +\frac{1}{2} \min \left\{\|A\|^{1 / 2}\|B A B\|^{1 / 2},\|B\|^{1 / 2}\|A B A\|^{1 / 2}\right\}
\end{aligned}
$$

and the last part is also proved.
Now, we observe that by the property (1.9) we have the chain of equalities

$$
r\left(T_{V}\right)=r\left(\widehat{T}_{V}\right)=r\left(\widetilde{T}_{V}\right)=r\left(\Delta_{t, V}(T)\right)
$$

for all $t \in[0,1]$.
We can state the following result:
Theorem 1. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ we have that (2.2) $\quad r\left(T_{V}\right)$

$$
\leq \frac{1}{4}\left(\omega\left(T_{V}\right)+\omega\left(\Delta_{t, V}(T)\right)\right)
$$

$$
+\frac{1}{4}\left[\left(\omega\left(T_{V}\right)-\omega\left(\Delta_{t, V}(T)\right)\right)^{2}+4\|V\|\|T\| \min \left\{\left\|T_{V}\right\|,\left\|\Delta_{t, V}(T)\right\|\right\}\right]^{1 / 2}
$$

$$
\leq \frac{1}{2} \max \left\{\omega\left(T_{V}\right), \omega\left(\Delta_{t, V}(T)\right)\right\}
$$

$$
+\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|T_{V}\right\|^{1 / 2},\left\|\Delta_{t, V}(T)\right\|^{1 / 2}\right\}
$$

for all $t \in[0,1]$.
Also,

$$
\begin{align*}
r\left(T_{V}\right) & \leq \frac{1}{4}\left(\omega\left(\widehat{T}_{V}\right)+\omega\left(\Delta_{t, V}(T)\right)\right) \tag{2.3}\\
& +\frac{1}{4}\left[\left(\omega\left(\widehat{T}_{V}\right)-\omega\left(\Delta_{t, V}(T)\right)\right)^{2}\right. \\
& \left.+4\|V\|\|T\| \min \left\{\left\|\widehat{T}_{V}\right\|,\left\|\Delta_{t, V}(T)\right\|\right\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \left\{\omega\left(\widehat{T}_{V}\right), \omega\left(\Delta_{t, V}(T)\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|\widehat{T}_{V}\right\|^{1 / 2},\left\|\Delta_{t, V}(T)\right\|^{1 / 2}\right\}
\end{align*}
$$

for all $t \in[0,1]$.
Proof. Now, since

$$
\begin{aligned}
\min \{\|A\|\|B A B\|,\|B\|\|A B A\|\} & \leq \min \{\|A\|\|B\|\|A B\|,\|B\|\|A\|\|B A\|\} \\
& =\|A\|\|B\| \min \{\|A B\|,\|B A\|\}
\end{aligned}
$$

then from (2.1) we have

$$
\begin{align*}
r(A B) & \leq \frac{1}{4}(\omega(A B)+\omega(B A)) \tag{2.4}\\
& +\frac{1}{4}\left[(\omega(A B)-\omega(B A))^{2}+4\|A\|\|B\| \min \{\|A B\|,\|B A\|\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \{\omega(A B), \omega(B A)\} \\
& +\frac{1}{2}\|A\|^{1 / 2}\|B\|^{1 / 2} \min \left\{\|A B\|^{1 / 2},\|B A\|^{1 / 2}\right\}
\end{align*}
$$

By taking $A=V|T|^{1-t}$ and $B=|T|^{t}$, we observe that

$$
\begin{aligned}
& \|A\|\|B\| \min \{\|A B\|,\|B A\|\} \\
& =\left\|V|T|^{1-t}\right\|\left\||T|^{t}\right\| \min \left\{\left\|V|T|^{1-t}|T|^{t}\right\|,\left\||T|^{t} V|T|^{1-t}\right\|\right\} \\
& \leq\|V\|\|T\|^{1-t}\|T\|^{t} \min \left\{\left\|V|T|^{1-t}|T|^{t}\right\|,\left\||T|^{t} V|T|^{1-t}\right\|\right\} \\
& =\|V\|\|T\| \min \left\{\|V|T|\|,\left\||T|^{t} V|T|^{1-t}\right\|\right\} \\
& =\|V\|\|T\| \min \left\{\left\|T_{V}\right\|,\left\|\Delta_{t, V}(T)\right\|\right\} .
\end{aligned}
$$

Since

$$
r(A B)=r\left(T_{V}\right), \omega(A B)=\omega\left(T_{V}\right) \text { and } \omega(B A)=\omega\left(\Delta_{t, V}(T)\right)
$$

hence by (2.4) we derive (2.2).
If we take in Lemma $1 A=|T|^{1-t}, B=|T|^{t} V$, then

$$
\begin{aligned}
r(A B) & =r\left(\widehat{T}_{V}\right)=r\left(T_{V}\right), \omega(A B)=\omega\left(\widehat{T}_{V}\right) \\
\omega(B A) & =\omega\left(\Delta_{t, V}(T)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \|A\|\|B\| \min \{\|A B\|,\|B A\|\} \\
& =\left\||T|^{1-t}\right\|\left\||T|^{t} V\right\| \min \left\{\left\|\widehat{T}_{V}\right\|,\left\|\Delta_{t, V}(T)\right\|\right\} \\
& \leq\|V\|\|T\| \min \left\{\left\|\widehat{T}_{V}\right\|,\left\|\Delta_{t, V}(T)\right\|\right\}
\end{aligned}
$$

and by (2.4) we obtain (2.3).
In particular, from (2.2) we get

$$
\begin{aligned}
r\left(T_{V}\right) & \leq \frac{1}{4}\left(\omega\left(T_{V}\right)+\omega\left(\widetilde{T}_{V}\right)\right) \\
& +\frac{1}{4}\left[\left(\omega\left(T_{V}\right)-\omega\left(\widetilde{T}_{V}\right)\right)^{2}+4\|V\|\|T\| \min \left\{\left\|T_{V}\right\|,\left\|\widetilde{T}_{V}\right\|\right\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \left\{\omega\left(T_{V}\right), \omega\left(\widetilde{T}_{V}\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|T_{V}\right\|^{1 / 2},\left\|\widetilde{T}_{V}\right\|^{1 / 2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
r\left(T_{V}\right) & \leq \frac{1}{4}\left(\omega\left(T_{V}\right)+\omega\left(\widehat{T}_{V}\right)\right) \\
& +\frac{1}{4}\left[\left(\omega\left(T_{V}\right)-\omega\left(\widehat{T}_{V}\right)\right)^{2}+4\|V\|\|T\| \min \left\{\left\|T_{V}\right\|,\left\|\widehat{T}_{V}\right\|\right\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \left\{\omega\left(T_{V}\right), \omega\left(\widehat{T}_{V}\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|T_{V}\right\|^{1 / 2},\left\|\widehat{T}_{V}\right\|^{1 / 2}\right\}
\end{aligned}
$$

Also, from (2.3) we obtain

$$
\begin{aligned}
r\left(T_{V}\right) & \leq \frac{1}{4}\left(\omega\left(\widehat{T}_{V}\right)+\omega\left(\widetilde{T}_{V}\right)\right) \\
& +\frac{1}{4}\left[\left(\omega\left(\widehat{T}_{V}\right)-\omega\left(\widetilde{T}_{V}\right)\right)^{2}+4\|V\|\|T\| \min \left\{\left\|\widehat{T}_{V}\right\|,\left\|\widetilde{T}_{V}\right\|\right\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \left\{\omega\left(\widehat{T}_{V}\right), \omega\left(\widetilde{T}_{V}\right)\right\} \\
& +\frac{1}{2}\|V\|^{1 / 2}\|T\|^{1 / 2} \min \left\{\left\|\widehat{T}_{V}\right\|^{1 / 2},\left\|\widetilde{T}_{V}\right\|^{1 / 2}\right\} .
\end{aligned}
$$

Remark 1. Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then for $V=U$ we have $T_{V}=T, \widehat{T}_{V}=\widehat{T}$ the Dougal transform, $\widetilde{T}_{V}=\widetilde{T}$ the Aluthge transform and $\Delta_{t, V}(T)=\Delta_{t}(T)$ the generalized Aluthge transform.

Observe that

$$
\min \left\{\|T\|,\left\|\Delta_{t}(T)\right\|\right\}=\left\|\Delta_{t}(T)\right\|, t \in[0,1]
$$

and by (2.2) we get

$$
\begin{align*}
r(T) & \leq \frac{1}{4}\left(\omega(T)+\omega\left(\Delta_{t}(T)\right)\right) \tag{2.5}\\
& +\frac{1}{4}\left[\left(\omega(T)-\omega\left(\Delta_{t}(T)\right)\right)^{2}+4\|T\|\left\|\Delta_{t}(T)\right\|\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \left\{\omega(T), \omega\left(\Delta_{t}(T)\right)\right\}+\frac{1}{2}\|T\|^{1 / 2}\left\|\Delta_{t}(T)\right\|^{1 / 2} .
\end{align*}
$$

In particular,

$$
\begin{aligned}
r(T) & \leq \frac{1}{4}(\omega(T)+\omega(\widetilde{T}))+\frac{1}{4}\left[(\omega(T)-\omega(\widetilde{T}))^{2}+4\|T\|\|\widetilde{T}\|\right]^{1 / 2} \\
& \leq \frac{1}{2} \omega(T)+\frac{1}{2}\|T\|^{1 / 2}\|\widetilde{T}\|^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
r(T) & \leq \frac{1}{4}(\omega(T)+\omega(\widehat{T}))+\frac{1}{4}\left[(\omega(T)-\omega(\widehat{T}))^{2}+4\|T\|\|\widehat{T}\|\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \{\omega(T), \omega(\widehat{T})\}+\frac{1}{2}\|T\|^{1 / 2}\|\widehat{T}\|^{1 / 2}
\end{aligned}
$$

From (2.3) we also obtain

$$
\begin{align*}
r(T) & \leq \frac{1}{4}\left(\omega(\widehat{T})+\omega\left(\Delta_{t}(T)\right)\right) \tag{2.6}\\
& +\frac{1}{4}\left[\left(\omega(\widehat{T})-\omega\left(\Delta_{t}(T)\right)\right)^{2}+4\|T\| \min \left\{\|\widehat{T}\|,\left\|\Delta_{t}(T)\right\|\right\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \left\{\omega(\widehat{T}), \omega\left(\Delta_{t}(T)\right)\right\}+\frac{1}{2} \min \left\{\|\widehat{T}\|^{1 / 2},\left\|\Delta_{t}(T)\right\|^{1 / 2}\right\}
\end{align*}
$$

for all $t \in[0,1]$.
In particular,

$$
\begin{aligned}
r(T) & \leq \frac{1}{4}(\omega(\widehat{T})+\omega(\widetilde{T})) \\
& +\frac{1}{4}\left[(\omega(\widehat{T})-\omega(\widetilde{T}))^{2}+4\|T\| \min \{\|\widehat{T}\|,\|\widetilde{T}\|\}\right]^{1 / 2} \\
& \leq \frac{1}{2} \max \{\omega(\widehat{T}), \omega(\widetilde{T})\}+\frac{1}{2}\|T\|^{1 / 2} \min \left\{\|\widehat{T}\|^{1 / 2},\|\widetilde{T}\|^{1 / 2}\right\}
\end{aligned}
$$

3. Related Results

Recall the following result obtained in [2]:
Lemma 2. Let $A, B \in \mathcal{B}(H)$, then

$$
\begin{equation*}
r(A B \pm B A) \leq \omega(A B)+\min \left\{\|A\|^{1 / 2}\left\|A B^{2}\right\|^{1 / 2},\|B\|^{1 / 2}\left\|A^{2} B\right\|^{1 / 2}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
r(A B \pm B A) \leq \omega(B A)+\min \left\{\|A\|^{1 / 2}\left\|B^{2} A\right\|^{1 / 2},\|B\|^{1 / 2}\left\|B A^{2}\right\|^{1 / 2}\right\} \tag{3.2}
\end{equation*}
$$

We can state the following result:

Theorem 2. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ we have that

$$
\begin{equation*}
r\left(T_{V} \pm \Delta_{t, V}(T)\right) \leq \omega\left(T_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|T_{V}\right\|^{1 / 2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
r\left(T_{V} \pm \Delta_{t, V}(T)\right) \leq \omega\left(\Delta_{t, V}(T)\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\Delta_{t, V}(T)\right\|^{1 / 2} \tag{3.4}
\end{equation*}
$$

for all $t \in[0,1]$
Proof. Take $A=V|T|^{1-t}$ and $B=|T|^{t}$. We observe that

$$
\begin{aligned}
r(A B \pm B A)= & r\left(T_{V} \pm \Delta_{t, V}(T)\right), \omega(A B)=\omega\left(T_{V}\right) \\
\|A\|^{1 / 2}\left\|A B^{2}\right\|^{1 / 2} & =\left\|V|T|^{1-t}\right\|^{1 / 2}\left\|V|T|^{1-t}|T|^{2 t}\right\|^{1 / 2} \\
& =\left\|V|T|^{1-t}\right\|^{1 / 2}\left\|V|T||T|^{t}\right\|^{1 / 2} \\
& \leq\|V\|^{1 / 2}\|T\|^{(1-t) / 2}\|V|T|\|^{1 / 2}\|T\|^{t / 2} \\
& =\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|T_{V}\right\|^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|B\|^{1 / 2}\left\|A^{2} B\right\|^{1 / 2} & =\left\||T|^{t}\right\|^{1 / 2}\left\|V|T|^{1-t} V|T|^{1-t}|T|^{t}\right\|^{1 / 2} \\
& =\|T\|^{t / 2}\left\|V|T|^{1-t} V|T|\right\|^{1 / 2} \\
& \leq\|T\|^{t / 2}\left\|V|T|^{1-t}\right\|^{1 / 2}\|V|T|\|^{1 / 2} \\
& \leq\|T\|^{t / 2}\|V\|^{1 / 2}\|T\|^{(1-t) / 2}\|V|T|\|^{1 / 2} \\
& =\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|T_{V}\right\|^{1 / 2}
\end{aligned}
$$

and by (3.1) we get (3.3).
Also, for the same choices of A and B, we have $\omega(B A)=\omega\left(\Delta_{t}(T)\right)$,

$$
\begin{aligned}
\|A\|^{1 / 2}\left\|B^{2} A\right\|^{1 / 2} & =\left\|V|T|^{1-t}\right\|^{1 / 2}\left\||T|^{t}|T|^{t} V|T|^{1-t}\right\|^{1 / 2} \\
& \leq\|V\|^{1 / 2}\|T\|^{(1-t) / 2}\|T\|^{t / 2}\left\||T|^{t} V|T|^{1-t}\right\|^{1 / 2} \\
& =\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\Delta_{t, V}(T)\right\|^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|B\|^{1 / 2}\left\|B A^{2}\right\|^{1 / 2} & =\left\||T|^{t}\right\|^{1 / 2}\left\||T|^{t} V|T|^{1-t} V|T|^{1-t}\right\|^{1 / 2} \\
& \leq\|T\|^{t / 2}\left\||T|^{t} V|T|^{1-t}\right\|^{1 / 2}\left\|V|T|^{1-t}\right\| \\
& \leq\|T\|^{t / 2}\left\||T|^{t} V|T|^{1-t}\right\|^{1 / 2}\|V\|^{1 / 2}\|T\|^{(1-t) / 2} \\
& =\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\Delta_{t, V}(T)\right\|^{1 / 2}
\end{aligned}
$$

and by (3.2) we obtain (3.4).

From (3.3) we derive that

$$
r\left(T_{V} \pm \widehat{T}_{V}\right) \leq \omega\left(T_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|T_{V}\right\|^{1 / 2}
$$

and

$$
r\left(T_{V} \pm \widetilde{T}_{V}\right) \leq \omega\left(T_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|T_{V}\right\|^{1 / 2}
$$

while from (3.4) we obtain that

$$
r\left(T_{V} \pm \widehat{T}_{V}\right) \leq \omega\left(\widehat{T}_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2}
$$

and

$$
r\left(T_{V} \pm \widetilde{T}_{V}\right) \leq \omega\left(\widetilde{T}_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\widetilde{T}_{V}\right\|^{1 / 2}
$$

Remark 2. Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then for $V=U$ we get

$$
r\left(T \pm \Delta_{t}(T)\right) \leq \omega(T)+\|T\|
$$

and

$$
r\left(T \pm \Delta_{t}(T)\right) \leq \omega\left(\Delta_{t}(T)\right)+\|T\|^{1 / 2}\left\|\Delta_{t}(T)\right\|^{1 / 2}
$$

for all $t \in[0,1]$.
In particular,

$$
r(T \pm \widehat{T}) \leq \omega(T)+\|T\|
$$

and

$$
r(T \pm \widetilde{T}) \leq \omega(T)+\|T\|
$$

Also

$$
r(T \pm \widehat{T}) \leq \omega(\widehat{T})+\|T\|^{1 / 2}\|\widehat{T}\|^{1 / 2}
$$

and

$$
r(T \pm \widetilde{T}) \leq \omega(\widetilde{T})+\|T\|^{1 / 2}\|\widetilde{T}\|^{1 / 2}
$$

We also have:
Theorem 3. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ we have that

$$
\begin{equation*}
r\left(\Delta_{t, V}(T) \pm \widehat{T}_{V}\right) \leq \omega\left(\Delta_{t, V}(T)\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\Delta_{t, V}(T)\right\|^{1 / 2} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
r\left(\Delta_{t, V}(T) \pm \widehat{T}_{V}\right) \leq \omega\left(\widehat{T}_{V}\right)+\|T\|^{1 / 2}\|V\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2} \tag{3.6}
\end{equation*}
$$

for all $t \in[0,1]$.

UPPER BOUNDS FOR THE EXTENDED GENERALIZED ALUTHGE TRANSFORM 11
Proof. If we take $A=|T|^{t} V$ and $B=|T|^{1-t}$ in (3.1) we get

$$
\begin{aligned}
& r\left(\Delta_{t, V}(T) \pm \widehat{T}_{V}\right) \\
& \leq \omega\left(\Delta_{t, V}(T)\right)+\min \left\{\left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{t} V|T|^{1-t}|T|^{1-t}\right\|^{1 / 2}\right. \\
& \left.\left\||T|^{1-t}\right\|^{1 / 2}\left\||T|^{t} V|T|^{t} V|T|^{1-t}\right\|^{1 / 2}\right\} \\
& =\omega\left(\Delta_{t, V}(T)\right)+\min \left\{\left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{t} V|T|^{1-t}|T|^{1-t}\right\|^{1 / 2}\right. \\
& \left.\|T\|^{(1-t) / 2}\left\||T|^{t} V|T|^{t} V|T|^{1-t}\right\|^{1 / 2}\right\}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{t} V|T|^{1-t}|T|^{1-t}\right\|^{1 / 2} \\
& \leq\|V\|^{1 / 2}\|T\|^{t / 2}\left\||T|^{t} V|T|^{1-t}\right\|^{1 / 2}\|T\|^{(1-t) / 2} \\
& =\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\Delta_{t, V}(T)\right\|^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \|T\|^{(1-t) / 2}\left\||T|^{t} V|T|^{t} V|T|^{1-t}\right\|^{1 / 2} \\
& \leq\|T\|^{(1-t) / 2}\left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{t} V|T|^{1-t}\right\|^{1 / 2} \\
& \leq\|T\|^{(1-t) / 2}\|T\|^{t / 2}\|V\|^{1 / 2}\left\||T|^{t} V|T|^{1-t}\right\|^{1 / 2} \\
& =\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\Delta_{t, V}(T)\right\|^{1 / 2}
\end{aligned}
$$

and the inequality (3.5) is proved.
With the same choice for A and B in (3.2), we get

$$
\begin{aligned}
& r\left(\Delta_{t, V}(T) \pm \widehat{T}_{V}\right) \\
& \leq \omega\left(\widehat{T}_{V}\right)+\min \left\{\left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{1-t}|T|^{1-t}|T|^{t} V\right\|^{1 / 2}\right. \\
& \left.\left\||T|^{1-t}\right\|^{1 / 2}\left\||T|^{1-t}|T|^{t} V|T|^{t} V\right\|^{1 / 2}\right\} \\
& =\omega\left(\widehat{T}_{V}\right)+\min \left\{\left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{1-t}|T| V\right\|^{1 / 2}\right. \\
& \left.\left\||T|^{1-t}\right\|^{1 / 2}\left\||T| V|T|^{t} V\right\|^{1 / 2}\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
\left\||T|^{t} V\right\|^{1 / 2}\left\||T|^{1-t}|T| V\right\|^{1 / 2} & \leq\|T\|^{t / 2}\|V\|^{1 / 2}\|T\|^{(1-t) / 2}\||T| V\|^{1 / 2} \\
& =\|T\|^{1 / 2}\|V\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\||T|^{1-t}\right\|^{1 / 2}\left\||T| V|T|^{t} V\right\|^{1 / 2} & \leq\|T\|^{(1-t) / 2}\||T| V\|^{1 / 2}\|T\|^{t / 2}\|V\|^{1 / 2} \\
& =\|T\|^{1 / 2}\|V\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2}
\end{aligned}
$$

and the inequality (3.6).
From (3.5) we get

$$
r\left(T_{V} \pm \widehat{T}_{V}\right) \leq \omega\left(T_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|T_{V}\right\|^{1 / 2}
$$

and

$$
r\left(\widetilde{T}_{V} \pm \widehat{T}_{V}\right) \leq \omega\left(\widetilde{T}_{V}\right)+\|V\|^{1 / 2}\|T\|^{1 / 2}\left\|\widetilde{T}_{V}\right\|^{1 / 2}
$$

From (3.6)

$$
r\left(T_{V} \pm \widehat{T}_{V}\right) \leq \omega\left(\widehat{T}_{V}\right)+\|T\|^{1 / 2}\|V\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2}
$$

and

$$
r\left(\widetilde{T}_{V} \pm \widehat{T}_{V}\right) \leq \omega\left(\widehat{T}_{V}\right)+\|T\|^{1 / 2}\|V\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2}
$$

Remark 3. Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then for $V=U$ we get

$$
r\left(\Delta_{t}(T) \pm \widehat{T}\right) \leq \omega\left(\Delta_{t}(T)\right)+\|T\|^{1 / 2}\left\|\Delta_{t}(T)\right\|^{1 / 2}
$$

and

$$
r\left(\Delta_{t}(T) \pm \widehat{T}\right) \leq \omega\left(\widehat{T}_{V}\right)+\|T\|^{1 / 2}\left\|\widehat{T}_{V}\right\|^{1 / 2}
$$

for all $t \in[0,1]$.
In particular,

$$
r(\widetilde{T} \pm \widehat{T}) \leq \omega(\widetilde{T})+\|T\|^{1 / 2}\|\widetilde{T}\|^{1 / 2}
$$

Also

$$
r(\widetilde{T} \pm \widehat{T}) \leq \omega(\widehat{T})+\|T\|^{1 / 2}\|\widehat{T}\|^{1 / 2}
$$

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia , S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] P. Bhunia, K. Feki and K. Paul, Numerical radius inequalities for products and sums of semi-Hilberian space operators, Filomat Vol 36 (2022), No. 4.
[6] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[8] S. S. Dragomir, Upper bounds for the extended generalized Aluthge transform of bounded pperators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 26 (2023), Art. 8, 14 pp. [Online https://rgmia.org/papers/v26/v26a08.pdf].
[9] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., $\mathbf{1 6 8}$ (2005), No. 1, 73-80.
[12] M. Sattari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 470(1), 216-227 (2015)
[13] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dugal transform, Contractions, Partial isometry, Numerical radius.

