INEQUALITIES FOR THE (p, q)-EXTENDED GENERALIZED ALUTHGE TRANSFORM OF BOUNDED OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let H be a complex Hilbert space. For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$, and an operator $T \in \mathcal{B}(H)$ we define the (p, q)-extended generalized Aluthge transform by $$
\Delta_{p, q, V}(T):=|T|^{p} V|T|^{q}
$$

where $p, q \geq 0$. In this paper we provide some upper bounds for the (p, q) extended generalized Aluthge transform $\Delta_{p, q, V}(T)$. Several particular cases of interest are also presented.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [11], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [12] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

[^0]for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [10]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [8] and [5].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $w(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[14]$.

Utilizing this transform T. Yamazaki, [14] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in B(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform $\Delta_{t}(T):=|T|^{t} U|T|^{1-t}$ to prove that

$$
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right)
$$

For $t=1$ this also gives the following result for the Dougal transform $\widehat{T}:=|T| U$,

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.11}
\end{equation*}
$$

In [4] Bunia et al. also proved that

$$
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\}
$$

which for $t=1 / 2$ gives (1.10) as well.

Motivated by the above results, in this paper we provide some upper bounds for the (p, q)-extended generalized Aluthge transform $\Delta_{p, q, V}(T)$ introduced below. Several particular cases of interest are also presented.

2. Some Preliminary Facts

We define, for V a contraction, i.e., $V^{*} V \leq I$ and $T \in \mathcal{B}(H)$, the (p, q)-extended generalized Aluthge transform by

$$
\Delta_{p, q, V}(T):=|T|^{p} V|T|^{q},
$$

where $p, q \geq 0$. We also assume in what follows that $|T|^{0}:=I$.
We denote

$$
T_{q, V}:=\Delta_{0, q, V}(T):=V|T|^{q}
$$

and

$$
T_{V}:=\Delta_{0,1, V}(T):=V|T|
$$

The p-extended generalized Dougal transform is defined by

$$
\widehat{T}_{p, V}:=\Delta_{p, 0, V}(T):=|T|^{p} V
$$

the extended generalized Dougal transform by

$$
\widehat{T}_{V}:=\Delta_{1,0, V}(T):=V|T|
$$

the p-extended generalized Aluthge transform by

$$
\widetilde{T}_{p, V}:=\Delta_{p, p, V}(T):=|T|^{p} V|T|^{p}
$$

and the extended Aluthge transform by

$$
\widetilde{T}_{V}:=\Delta_{1 / 2,1 / 2, V}(T):=|T|^{1 / 2} V|T|^{1 / 2}
$$

For $p=t, q=1-t$, where $t \in[0,1]$ we have

$$
\Delta_{t, V}(T):=\Delta_{t, 1-t, V}(T)=|T|^{t} V|T|^{1-t}
$$

The transform $\Delta_{t, V}(T)$, called the extended generalized Aluthge transform, was introduced and studied in [9].

An operator $U \in \mathcal{B}(H)$ is called a partial isometry if $\|U x\|=\|x\|$ for all $x \in$ $\mathcal{N}^{\perp}(U)$.

Now, let $x \in H$, then there exists a unique $x_{1} \in \mathcal{N}(U)$ and a unique $x_{2} \in \mathcal{N}^{\perp}(U)$ such that $x=x_{1}+x_{2}$. Then

$$
0 \leq\left\langle U^{*} U x, x\right\rangle=\|U x\|^{2}=\left\|U x_{1}+U x_{2}\right\|^{2}=\left\|U x_{2}\right\|^{2}=\left\|x_{2}\right\|^{2}
$$

By the fact that $x_{1} \perp x_{2}$,

$$
\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2} .
$$

Therefore

$$
0 \leq\left\langle U^{*} U x, x\right\rangle \leq\|x\|^{2}
$$

which shows that U is a contraction on H.
If the operator T has the polar decomposition $T=U|T|$ with U a partial isometry, then by taking $V=U$, we define

$$
\Delta_{p, q}(T):=|T|^{p} U|T|^{q}
$$

and all the previous transform by omitting in the notations the V, which will give the concepts of the p-generalized Dougal transform

$$
\widehat{T}_{p}:=\Delta_{p, 0, U}(T):=|T|^{p} U,
$$

the Dougal transform

$$
\widehat{T}:=\Delta_{1,0, U}(T):=|T| U
$$

and the p-generalized Aluthge transform

$$
\widetilde{T}_{p}:=\Delta_{p, p, U}(T):=|T|^{p} U|T|^{p}
$$

which for $p=1 / 2$ gives the usual Aluthge transform

$$
\widetilde{T}:=\Delta_{1 / 2,1 / 2, U}(T):=|T|^{1 / 2} U|T|^{1 / 2}
$$

Also

$$
T_{q}:=\Delta_{0, q}(T):=U|T|^{q},
$$

which gives for $q=1$ the usual polar decomposition $T=U|T|$.
For $p=t, q=1-t$, where $t \in[0,1]$ we have

$$
\Delta_{t}(T):=\Delta_{t, 1-t}(T)=|T|^{t} V|T|^{1-t}
$$

The transform $\Delta_{t}(T)$ was introduced and studied in [7].
If V is a contraction, then $\|V\| \leq 1$ and since $\left\|V^{*}\right\|=\|V\|$, hence V^{*} is also a contraction. Observe that

$$
\Delta_{p, q, V}^{*}(T):=\left(|T|^{p} V|T|^{q}\right)^{*}=|T|^{q} V^{*}|T|^{p}=\Delta_{q, p, V^{*}}(T)
$$

for all $p, q \geq 0$. Therefore

$$
\left(T_{q, V}\right)^{*}=\widehat{T}_{q, V^{*}}, \quad\left(\widehat{T}_{p, V}\right)^{*}=T_{p, V^{*}}
$$

and

$$
\left(\widetilde{T}_{p, V}\right)^{*}=\widetilde{T}_{p, V^{*}}
$$

Since $\left\|V^{*} V\right\|=\left\|V V^{*}\right\|=\|V\|^{2}$ and V is a contraction, then

$$
\left\|\frac{V^{*} V \pm V V^{*}}{2}\right\| \leq\|V\|^{2} \leq 1
$$

showing that

$$
W:=\frac{V^{*} V \pm V V^{*}}{2}
$$

is a contraction and we can consider the transform

$$
\Delta_{p, q, \frac{V^{*} V \pm V V^{*}}{2}}(T):=|T|^{p}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{q}
$$

for $p, q \geq 0$.
For a contraction V, we have

$$
\operatorname{Im}(V):=\frac{V-V^{*}}{2 i}, \operatorname{Re}(V):=\operatorname{Re}\left(\frac{V+V^{*}}{2}\right)
$$

and since

$$
\|\operatorname{Im}(V)\|=\left\|\frac{V-V^{*}}{2 i}\right\| \leq\|V\| \leq 1 \text { and }\|\operatorname{Re}(V)\| \leq\|V\| \leq 1
$$

hence $\operatorname{Im}(V)$ and $\operatorname{Re}(V)$ are contractions as well. We can then consider the transforms

$$
\Delta_{p, q, \operatorname{Im}(V)}(T):=|T|^{p} \operatorname{Im}(V)|T|^{q} \text { and } \Delta_{p, q, \operatorname{Re}(V)}(T):=|T|^{p} \operatorname{Re}(V)|T|^{q}
$$

for $p, q \geq 0$.
For $T \in \mathcal{B}(H)$ we define

$$
T_{+}:=\frac{1}{2}(|T|+T) \text { and } T_{-}:=\frac{1}{2}(|T|-T)
$$

If U is the partial isometry in the polar representation of T, then

$$
V:=\frac{I \pm U}{2}
$$

is a contraction and we can consider

$$
\Delta_{p, q, \frac{I \pm U}{2}}(T):=|T|^{p} \frac{I \pm U}{2}|T|^{q}=\frac{|T|^{p+q} \pm \Delta_{p, q}(T)}{2}
$$

In particular, we get

$$
T_{q, \frac{I \pm U}{2}}=\frac{|T|^{q} \pm T_{q}}{2}=T_{ \pm}, \widehat{T}_{p, \frac{I \pm U}{2}}=\frac{|T|^{p} \pm \widehat{T_{p}}}{2}
$$

and

$$
\widetilde{T}_{p, \frac{I \pm U}{2}}=\frac{|T|^{p} \pm \widetilde{T_{p}}}{2}
$$

for any operator $T \in \mathcal{B}(H)$.

3. Main Results

Our first main result is as follows:
Theorem 1. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $q \geq r \geq 0$ and $p \geq s \geq 0$,

$$
\begin{align*}
& \omega\left(\Delta_{p, q, V}(T)\right) \tag{3.1}\\
& \leq \frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\left\|\Delta_{p, q-r, V}(T)\right\|\|T\|^{r}\right) \\
& \leq \frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{2}\|T\|^{r}\left\|\Delta_{p, q-r, V}(T)\right\|
\end{align*}
$$

and

$$
\begin{align*}
& \omega\left(\Delta_{p, q, V}(T)\right) \tag{3.2}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\|T\|^{p-s}\left\|\Delta_{s, q, V}(T)\right\|\right) \\
& \leq \frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{2}\|T\|^{p-s}\left\|\Delta_{s, q, V}(T)\right\| .
\end{align*}
$$

Proof. We use the following inequality obtained in [3] (see also [6] for a generalization):

$$
\begin{align*}
\omega(A B) & \leq \frac{1}{2} \omega(B A)+\frac{1}{4}(\|A B\|+\|A\|\|B\|) \tag{3.3}\\
& \leq \frac{1}{2} \omega(B A)+\frac{1}{2}\|A\|\|B\|
\end{align*}
$$

that holds for all $A, B \in \mathcal{B}(H)$.

If we take $A=|T|^{p} V|T|^{q-r}$ and $B=|T|^{r}$ then we get from (3.3) that

$$
\begin{aligned}
& \omega\left(\Delta_{p, q, V}(T)\right) \\
& \leq \frac{1}{2} \omega\left(|T|^{p+r} V|T|^{q-r}\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\left\||T|^{p} V|T|^{q-r}\right\|\|T\|^{r}\right) \\
& =\frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\left\|\Delta_{p, q-r, V}(T)\right\|\|T\|^{r}\right) \\
& \leq \frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{2}\left\|\Delta_{p, q-r, V}(T)\right\|\|T\|^{r}
\end{aligned}
$$

which proves (3.1)
Now, if we take $A=|T|^{p-s}$ and $B=|T|^{s} V|T|^{q}$ in (3.3), then we get

$$
\begin{aligned}
& \omega\left(\Delta_{p, q, V}(T)\right) \\
& \leq \frac{1}{2} \omega\left(|T|^{s} V|T|^{q+p-s}\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\|T\|^{p-s}\left\||T|^{s} V|T|^{q}\right\|\right) \\
& =\frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\|T\|^{p-s}\left\|\Delta_{s, q, V}(T)\right\|\right) \\
& \leq \frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{2}\|T\|^{p-s}\left\|\Delta_{s, q, V}(T)\right\|
\end{aligned}
$$

which proves the inequality (3.2).
Corollary 1. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $p \geq s \geq 0$,

$$
\begin{align*}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{p+s, p-s, V}(T)\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{p, V}\right\|+\left\|\Delta_{p, p-s, V}(T)\right\|\|T\|^{s}\right) \tag{3.4}\\
& \leq \frac{1}{2} \omega\left(\Delta_{p+s, p-s, V}(T)\right)+\frac{1}{2}\|T\|^{s}\left\|\Delta_{p, p-s, V}(T)\right\|
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 2 p-s, V}(T)\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{p, V}\right\|+\|T\|^{p-s}\left\|\Delta_{s, p, V}(T)\right\|\right) \tag{3.5}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 2 p-s, V}(T)\right)+\frac{1}{2}\|T\|^{p-s}\left\|\Delta_{s, p, V}(T)\right\|
\end{align*}
$$

Follows by Theorem 1 by taking $p=q \geq 0$.
Now, if we take $p=1 / 2 \geq s \geq 0$ in Corollary 1 , then we get

$$
\begin{align*}
& \omega\left(\widetilde{T}_{V}\right) \tag{3.6}\\
& \leq \frac{1}{2} \omega\left(\Delta_{1 / 2+s, 1 / 2-s, V}(T)\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\left\|\Delta_{1 / 2,1 / 2-s, V}(T)\right\|\|T\|^{s}\right) \\
& \leq \frac{1}{2} \omega\left(\Delta_{1 / 2+s, 1 / 2-s, V}(T)\right)+\frac{1}{2}\|T\|^{s}\left\|\Delta_{1 / 2,1 / 2-s, V}(T)\right\|
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\|T\|^{1 / 2-s}\left\|\Delta_{s, 1 / 2, V}(T)\right\|\right) \tag{3.7}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{2}\|T\|^{1 / 2-s}\left\|\Delta_{s, 1 / 2, V}(T)\right\|
\end{align*}
$$

If we choose $s=1 / 2$ in (3.6), then we obtain

$$
\begin{align*}
& \omega\left(\widetilde{T}_{V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\left\|\widehat{T}_{1 / 2, V}\right\|\|T\|^{1 / 2}\right) \tag{3.8}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{2}\left\|\widehat{T}_{1 / 2, V}\right\|\|T\|^{1 / 2}
\end{align*}
$$

If we take $s=0$ in (3.7), then we get

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\|T\|^{1 / 2}\left\|T_{1 / 2, V}\right\|\right) \tag{3.9}\\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{2}\|T\|^{1 / 2}\left\|T_{1 / 2, V}\right\|
\end{align*}
$$

Corollary 2. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $q \geq r \geq 0$,

$$
\begin{align*}
\omega\left(T_{q, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{r, q-r, V}(T)\right)+\frac{1}{4}\left(\left\|T_{q, V}\right\|+\left\|T_{q-r, V}\right\|\|T\|^{r}\right) \tag{3.10}\\
& \leq \frac{1}{2} \omega\left(\Delta_{r, q-r, V}(T)\right)+\frac{1}{2}\|T\|^{r}\left\|T_{q-r, V}\right\|
\end{align*}
$$

It follows by Theorem 1 by taking $p=0$.
Now, if we take $q=1$ in (3.10) then we get

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{r, 1-r, V}(T)\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\left\|T_{1-r, V}\right\|\|T\|^{r}\right) \tag{3.11}\\
& \leq \frac{1}{2} \omega\left(\Delta_{r, 1-r, V}(T)\right)+\frac{1}{2}\|T\|^{r}\left\|T_{1-r, V}\right\|
\end{align*}
$$

for all $r \in[0,1]$.
If we consider $r=1$ in the inequality (3.11), then we obtain

$$
\begin{equation*}
\omega\left(T_{V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{2}\|V\|\|T\| \tag{3.12}
\end{equation*}
$$

From the same inequality (3.11) for $r=1 / 2$, we derive

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\left\|T_{1 / 2, V}\right\|\|T\|^{1 / 2}\right) \tag{3.13}\\
& \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{2}\left\|T_{1 / 2, V}\right\|\|T\|^{1 / 2}
\end{align*}
$$

We also have:
Corollary 3. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $p \geq s \geq 0$,

$$
\begin{align*}
\omega\left(\widehat{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, p-s, V}(T)\right)+\frac{1}{4}\left(\left\|\widehat{T}_{p, V}\right\|+\|T\|^{p-s}\left\|\widehat{T}_{s, V}\right\|\right) \tag{3.14}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, p-s, V}(T)\right)+\frac{1}{2}\|T\|^{p-s}\left\|\widehat{T}_{s, V}\right\|
\end{align*}
$$

It follows by Theorem 1 by taking $q=0$.
Further, if we take $p=1$ in (3.14), then we get

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|T\|^{1-s}\left\|\widehat{T}_{s, V}\right\|\right) \tag{3.15}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{2}\|T\|^{1-s}\left\|\widehat{T}_{s, V}\right\|
\end{align*}
$$

for all $s \in[0,1]$.

Now, for $s=0$ in (3.15) we obtain

$$
\begin{equation*}
\omega\left(\widehat{T}_{V}\right) \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|T\|\|V\|\right) \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{2}\|T\|\|V\| \tag{3.16}
\end{equation*}
$$

while for $s=1 / 2$ we derive

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|T\|^{1 / 2}\left\|\widehat{T}_{1 / 2, V}\right\|\right) \tag{3.17}\\
& \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{2}\|T\|^{1 / 2}\left\|\widehat{T}_{1 / 2, V}\right\|
\end{align*}
$$

Remark 1. If we take $r=q$ in (3.1), then we get

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{p+q, V}\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\left\|\widehat{T}_{p, V}\right\|\|T\|^{q}\right) \tag{3.18}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{p+q, V}\right)+\frac{1}{2}\|T\|^{q}\left\|\widehat{T}_{p, V}\right\|
\end{align*}
$$

for all $p, q \geq 0$.
If we choose in (3.18) $p=0$, then we obtain

$$
\begin{align*}
\omega\left(T_{q, V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{q, V}\right)+\frac{1}{4}\left(\left\|T_{q, V}\right\|+\|V\|\|T\|^{q}\right) \tag{3.19}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{q, V}\right)+\frac{1}{2}\|T\|^{q}\|V\|
\end{align*}
$$

for all $q \geq 0$.
If we take $q=1$ in (3.19), then we get

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|T_{V}\right\|+\|V\|\|T\|\right) \tag{3.20}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{2}\|T\|\|V\|
\end{align*}
$$

Also, if we take in (3.18) $p=q$, then we get

$$
\begin{align*}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{2 p, V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{p, V}\right\|+\left\|\widehat{T}_{p, V}\right\|\|T\|^{p}\right) \tag{3.21}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{2 p, V}\right)+\frac{1}{2}\|T\|^{p}\left\|\widehat{T}_{p, V}\right\|
\end{align*}
$$

which, for $p=1 / 2$, gives

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\left\|\widehat{T}_{1 / 2, V}\right\|\|T\|^{1 / 2}\right) \tag{3.22}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{2}\left\|\widehat{T}_{1 / 2, V}\right\|\|T\|^{1 / 2}
\end{align*}
$$

If we take $s=0$ in (3.2), then we get

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2} \omega\left(T_{q+p, V}\right)+\frac{1}{4}\left(\left\|\Delta_{p, q, V}(T)\right\|+\|T\|^{p}\left\|T_{q, V}\right\|\right) \tag{3.23}\\
& \leq \frac{1}{2} \omega\left(T_{q+p, V}\right)+\frac{1}{2}\|T\|^{p}\left\|T_{q, V}\right\|
\end{align*}
$$

for all $p, q \geq 0$.

If we choose $q=0$ in (3.23), then we obtain

$$
\begin{align*}
\omega\left(\widehat{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(T_{p, V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{p, V}\right\|+\|T\|^{p}\|V\|\right) \tag{3.24}\\
& \leq \frac{1}{2} \omega\left(T_{p, V}\right)+\frac{1}{2}\|T\|^{p}\|V\|
\end{align*}
$$

for all $p \geq 0$. If in this inequality we take $p=1$, then we get

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widehat{T}_{V}\right\|+\|T\|\|V\|\right) \tag{3.25}\\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{2}\|T\|\|V\|
\end{align*}
$$

Moreover, if we take in (3.23) $q=p$, then we derive

$$
\begin{align*}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(T_{2 p, V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{p, V}\right\|+\|T\|^{p}\left\|T_{p, V}\right\|\right) \tag{3.26}\\
& \leq \frac{1}{2} \omega\left(T_{2 p, V}\right)+\frac{1}{2}\|T\|^{p}\left\|T_{p, V}\right\|
\end{align*}
$$

for all $p \geq 0$, which for $p=1 / 2$ produces

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left(\left\|\widetilde{T}_{V}\right\|+\|T\|^{1 / 2}\left\|T_{1 / 2, V}\right\|\right) \tag{3.27}\\
& \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{2}\|T\|^{1 / 2}\left\|T_{1 / 2, V}\right\|
\end{align*}
$$

We also have:
Theorem 2. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $q \geq r \geq 0$ and $p \geq s \geq 0$,

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+\right\| T\left\|^{2 p} \widetilde{T}_{q-r,|V|^{2}}\right\| \tag{3.28}\\
& \leq \frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+\right\| T\left\|^{2 p}|T|^{2(q-r)}\right\|
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\right\| T\left\|^{2 q} \widetilde{T}_{s,\left|V^{*}\right|^{2}}\right\| \tag{3.29}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\right\| T\left\|^{2 q}|T|^{2 s}\right\|
\end{align*}
$$

Proof. We use the following inequality obtained in [13]

$$
\begin{equation*}
\omega(A B) \leq \frac{1}{2} \omega(B A)+\frac{1}{4}\left\|B B^{*}+A^{*} A\right\| \tag{3.30}
\end{equation*}
$$

for all $A, B \in \mathcal{B}(H)$.
If we take $A=|T|^{p} V|T|^{q-r}$ and $B=|T|^{r}$ then we get from (3.30) that

$$
\begin{align*}
& \omega\left(\Delta_{p, q, V}(T)\right) \tag{3.31}\\
& \leq \frac{1}{2} \omega\left(\Delta_{p+r, q-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+|T|^{q-r} V^{*}|T|^{2 p} V|T|^{q-r}\right\|
\end{align*}
$$

Observe that

$$
0 \leq|T|^{2 p} \leq\left\||T|^{2 p}\right\| I=\|T\|^{2 p} I
$$

and if we multiply this inequality to the left with V^{*} and to the right with V, then we get

$$
V^{*}|T|^{2 p} V \leq\|T\|^{2 p} V^{*} V=\|T\|^{2 p}|V|^{2} \leq\|T\|^{2 p}
$$

Moreover, if we multiply both sides with $|T|^{q-r} \geq 0$, then we further obtain

$$
\begin{aligned}
|T|^{q-r} V^{*}|T|^{2 p} V|T|^{q-r} & \leq\|T\|^{2 p}|T|^{q-r}|V|^{2}|T|^{q-r}=\|T\|^{2 p} \widetilde{T}_{q-r,|V|^{2}} \\
& \leq\|T\|^{2 p}|T|^{2(q-r)}
\end{aligned}
$$

and by (3.31) we derive the desired result (3.28).
Now, if we take $A=|T|^{p-s}$ and $B=|T|^{s} V|T|^{q}$ in (3.30), then we get

$$
\begin{align*}
& \omega\left(\Delta_{p, q, V}(T)\right) \tag{3.32}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, q+p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{s} V|T|^{2 q} V^{*}|T|^{s}+|T|^{2(p-s)}\right\|
\end{align*}
$$

Since, as above

$$
\begin{aligned}
|T|^{s} V|T|^{2 q} V^{*}|T|^{s} & \leq\|T\|^{2 q}|T|^{s} V V^{*}|T|^{s}=\|T\|^{2 q}|T|^{s}\left|V^{*}\right|^{2}|T|^{s} \\
& =\|T\|^{2 q} \widetilde{T}_{s,\left|V^{*}\right|^{2}} \leq\|T\|^{2 q}|T|^{2 s}
\end{aligned}
$$

hence by (3.32) we derive (3.29).
Corollary 4. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $p \geq s \geq 0$,

$$
\begin{align*}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{p+s, p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2 s}+\right\| T\left\|^{2 p} \widetilde{T}_{p-s,|V|^{2}}\right\| \tag{3.33}\\
& \leq \frac{1}{2} \omega\left(\Delta_{p+s, p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2 s}+\right\| T\left\|^{2 p}|T|^{2(p-s)}\right\|
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 2 p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\right\| T\left\|^{2 p} \widetilde{T}_{s,\left|V^{*}\right|^{2}}\right\| \tag{3.34}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 2 p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\right\| T\left\|^{2 p}|T|^{2 s}\right\|
\end{align*}
$$

Follows by Theorem 2 for $p=q \geq 0$.
Now, if we take $p=1 / 2 \geq s \geq 0$ in Corollary 4, then we get

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{1 / 2+s, 1 / 2-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2 s}+\right\| T\left\|\widetilde{T}_{1 / 2-s,|V|^{2}}\right\| \tag{3.35}\\
& \leq \frac{1}{2} \omega\left(\Delta_{1 / 2+s, 1 / 2-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2 s}+\right\| T\left\||T|^{2(1 / 2-s)}\right\|
\end{align*}
$$

and

$$
\begin{align*}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(1 / 2-s)}+\right\| T\left\|\widetilde{T}_{s,\left|V^{*}\right|^{2}}\right\| \tag{3.36}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(1 / 2-s)}+\right\| T\left\||T|^{2 s}\right\|
\end{align*}
$$

If we choose $s=1 / 2$ in (3.35), then we get

$$
\begin{equation*}
\omega\left(\widetilde{T}_{V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\||T|+\| T\left\||V|^{2}\right\| \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\||T|+\| T\|I\| . \tag{3.37}
\end{equation*}
$$

If we take $s=0$ in (3.36), then we obtain

$$
\begin{equation*}
\omega\left(\widetilde{T}_{V}\right) \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\||T|+\| T\left\|\left|V^{*}\right|^{2}\right\| \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\||T|+\| T\|I\| \tag{3.38}
\end{equation*}
$$

Corollary 5. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $q \geq r \geq 0$,

$$
\begin{align*}
\omega\left(T_{q, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{r, q-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+\widetilde{T}_{q-r,|V|^{2}}\right\| \tag{3.39}\\
& \leq \frac{1}{2} \omega\left(\Delta_{r, q-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+|T|^{2(q-r)}\right\|
\end{align*}
$$

It follows by Theorem 2 for $p=0$.
Now, if we take $q=1$ in (3.39) then we get

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{r, 1-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+\widetilde{T}_{1-r,|V|^{2}}\right\| \tag{3.40}\\
& \leq \frac{1}{2} \omega\left(\Delta_{r, 1-r, V}(T)\right)+\frac{1}{4}\left\||T|^{2 r}+|T|^{2(1-r)}\right\|
\end{align*}
$$

for all $r \in[0,1]$.
If we choose $r=1$ in the inequality (3.40), then we obtain

$$
\begin{equation*}
\omega\left(T_{V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2}+|V|^{2}\right\| \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2}+I\right\| \tag{3.41}
\end{equation*}
$$

From the same inequality (3.40) for $r=1 / 2$, we derive

$$
\begin{equation*}
\omega\left(T_{V}\right) \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left\||T|+\widetilde{T}_{1 / 2,|V|^{2}}\right\| \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{2}\|T\| . \tag{3.42}
\end{equation*}
$$

We also have:
Corollary 6. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $p \geq s \geq 0$,

$$
\begin{align*}
\omega\left(\widehat{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\widetilde{T}_{s,\left|V^{*}\right|^{2}}\right\| \tag{3.43}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+|T|^{2 s}\right\|
\end{align*}
$$

It follows by Theorem 1 for $q=0$.
Further, if we take $p=1$ in (3.43), then we get

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(1-s)}+\widetilde{T}_{s,\left|V^{*}\right|^{2}}\right\| \tag{3.44}\\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 1-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(1-s)}+|T|^{2 s}\right\|
\end{align*}
$$

for all $s \in[0,1]$.
For $s=0$ we obtain from (3.44) that

$$
\omega\left(\widehat{T}_{V}\right) \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\||T|^{2}+\left|V^{*}\right|^{2}\right\| \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\||T|^{2}+I\right\|
$$

while for $s=1 / 2$ we derive

$$
\omega\left(\widehat{T}_{V}\right) \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{4}\left\||T|+\widetilde{T}_{1 / 2,\left|V^{*}\right|^{2}}\right\| \leq \frac{1}{2} \omega\left(\widetilde{T}_{V}\right)+\frac{1}{2}\|T\|
$$

Remark 2. If we take $r=q$ in (3.28), then we get

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{p+q, V}\right)+\frac{1}{4}\left\||T|^{2 q}+\right\| T\left\|^{2 p}|V|^{2}\right\| \tag{3.45}\\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{p+q, V}\right)+\frac{1}{4}\left\||T|^{2 q}+\right\| T\left\|^{2 p} I\right\|
\end{align*}
$$

Further, if we choose $p=0$ in (3.45) then we obtain

$$
\omega\left(T_{q, V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{q, V}\right)+\frac{1}{4}\left\||T|^{2 q}+|V|^{2}\right\| \leq \frac{1}{2} \omega\left(\widehat{T}_{q, V}\right)+\frac{1}{4}\left\||T|^{2 q}+I\right\|
$$

for all $q \geq 0$, while $q=1$ produces

$$
\omega\left(T_{V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2}+|V|^{2}\right\| \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\left\||T|^{2}+I\right\| .
$$

Also, if we take in (3.45) $p=q$, then we get

$$
\begin{aligned}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\widehat{T}_{2 p, V}\right)+\frac{1}{4}\left\||T|^{2 p}+\right\| T\left\|^{2 p}|V|^{2}\right\| \\
& \leq \frac{1}{2} \omega\left(\widehat{T}_{2 p, V}\right)+\frac{1}{4}\left\||T|^{2 p}+\right\| T\left\|^{2 p} I\right\|
\end{aligned}
$$

which for $p=1 / 2$ gives that

$$
\omega\left(\widetilde{T}_{V}\right) \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\||T|+\| T\left\||V|^{2}\right\| \leq \frac{1}{2} \omega\left(\widehat{T}_{V}\right)+\frac{1}{4}\||T|+\| T\|I\| .
$$

If we take $s=0$ in (3.29), then we get

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2} \omega\left(T_{q+p, V}\right)+\frac{1}{4}\left\||T|^{2 p}+\right\| T\left\|^{2 q}\left|V^{*}\right|^{2}\right\| \tag{3.46}\\
& \leq \frac{1}{2} \omega\left(T_{q+p, V}\right)+\frac{1}{4}\left\||T|^{2 p}+\right\| T\left\|^{2 q} I\right\|
\end{align*}
$$

for all $p, q \geq 0$.
If we choose $q=0$ in (3.46), then we obtain

$$
\omega\left(\widehat{T}_{p, V}\right) \leq \frac{1}{2} \omega\left(T_{p, V}\right)+\frac{1}{4}\left\||T|^{2 p}+\left|V^{*}\right|^{2}\right\| \leq \frac{1}{2} \omega\left(T_{p, V}\right)+\frac{1}{4}\left\||T|^{2 p}+I\right\|
$$

for all $p \geq 0$, which for $p=1$ gives

$$
\omega\left(\widehat{T}_{V}\right) \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\||T|^{2}+\left|V^{*}\right|^{2}\right\| \leq \frac{1}{2} \omega\left(T_{V}\right)+\frac{1}{4}\left\||T|^{2}+I\right\| .
$$

Moreover, if we take in Theorem $2 q=p$, then we get

$$
\begin{aligned}
\omega\left(\widetilde{T}_{p, V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{p+s, p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2 s}+\right\| T\left\|^{2 p} \widetilde{T}_{p-s,|V|^{2}}\right\| \\
& \leq \frac{1}{2} \omega\left(\Delta_{p+s, p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2 s}+\right\| T\left\|^{2 p}|T|^{2(p-s)}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\omega\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2} \omega\left(\Delta_{s, 2 p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\right\| T\left\|^{2 p} \widetilde{T}_{s,\left|V^{*}\right|^{2}}\right\| \\
& \leq \frac{1}{2} \omega\left(\Delta_{s, 2 p-s, V}(T)\right)+\frac{1}{4}\left\||T|^{2(p-s)}+\right\| T\left\|^{2 p}|T|^{2 s}\right\|
\end{aligned}
$$

for all $0 \leq s \leq p$.
More similar inequalities may be stated if one further takes some particular values for p and s. The details are omitted.

4. Related Results

We also have:
Theorem 3. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $q \geq 0$ and $p \geq 0$,

$$
\begin{align*}
\omega\left(\Delta_{p, q, V}(T)\right) & \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2 p}|T|^{q}|V|^{2}|T|^{q}+\right\| T\left\|^{2 q}|T|^{p}\left|V^{*}\right|^{2}|T|^{p}\right\|^{1 / 2} \tag{4.1}\\
& \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2 p}|T|^{2 q}+\right\| T\left\|^{2 q}|T|^{2 p}\right\|^{1 / 2} \leq\|T\|^{p+q}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\omega\left(\widetilde{T}_{p, V}\right) \leq \frac{\sqrt{2}}{2}\|T\|^{p}\left\||T|^{p}\left(|V|^{2}+\left|V^{*}\right|^{2}\right)|T|^{p}\right\|^{1 / 2} \leq\|T\|^{2 p} \tag{4.2}
\end{equation*}
$$

Proof. We use the following inequality obtained by Kittaneh in [12]

$$
\begin{equation*}
\omega^{2}(A) \leq \frac{1}{2}\left\|A^{*} A+A A^{*}\right\| \tag{4.3}
\end{equation*}
$$

for all $A \in \mathcal{B}(H)$.
If we write (4.3) for $A=\Delta_{p, q, V}(T)=|T|^{p} V|T|^{q}$, then we get

$$
\begin{align*}
\omega^{2}\left(\Delta_{p, q, V}(T)\right) & \leq \frac{1}{2}\left\||T|^{q} V^{*}|T|^{p}|T|^{p} V|T|^{q}+|T|^{p} V|T|^{q}|T|^{q} V^{*}|T|^{p}\right\| \tag{4.4}\\
& =\frac{1}{2}\left\||T|^{q} V^{*}|T|^{2 p} V|T|^{q}+|T|^{p} V|T|^{2 q} V^{*}|T|^{p}\right\|
\end{align*}
$$

Observe that

$$
\begin{aligned}
0 & \leq|T|^{q} V^{*}|T|^{2 p} V|T|^{q} \leq\|T\|^{2 p}|T|^{q} V^{*} V|T|^{q}=\|T\|^{2 p}|T|^{q}|V|^{2}|T|^{q} \\
& \leq\|T\|^{2 p}|T|^{2 q}
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \leq|T|^{p} V|T|^{2 q} V^{*}|T|^{p} \leq\|T\|^{2 q}|T|^{p} V V^{*}|T|^{p}=\|T\|^{2 q}|T|^{p}\left|V^{*}\right|^{2}|T|^{p} \\
& \leq\|T\|^{2 q}|T|^{2 p}
\end{aligned}
$$

which gives that

$$
\begin{aligned}
0 & \leq|T|^{q} V^{*}|T|^{2 p} V|T|^{q}+|T|^{p} V|T|^{2 q} V^{*}|T|^{p} \\
& \leq\|T\|^{2 p}|T|^{q}|V|^{2}|T|^{q}+\|T\|^{2 q}|T|^{p}\left|V^{*}\right|^{2}|T|^{p} \\
& \leq\|T\|^{2 p}|T|^{2 q}+\|T\|^{2 q}|T|^{2 p}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\||T|^{q} V^{*}|T|^{2 p} V|T|^{q}+|T|^{p} V|T|^{2 q} V^{*}|T|^{p}\right\| \\
& \leq\| \| T\left\|^{2 p}|T|^{q}|V|^{2}|T|^{q}+\right\| T\left\|^{2 q}|T|^{p}\left|V^{*}\right|^{2}|T|^{p}\right\| \\
& \leq\| \| T\left\|^{2 p}|T|^{2 q}+\right\| T\left\|^{2 q}|T|^{2 p}\right\|
\end{aligned}
$$

and by (4.4) we get (4.1).
Corollary 7. Let V be a contraction and $T \in \mathcal{B}(H)$. Then,

$$
\begin{align*}
\omega\left(\widehat{T}_{p, V}\right) & \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2 p}|V|^{2}+|T|^{p}\left|V^{*}\right|^{2}|T|^{p}\right\|^{1 / 2} \tag{4.5}\\
& \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2 p} I+|T|^{2 p}\right\|^{1 / 2} \leq\|T\|^{p}
\end{align*}
$$

for $p \geq 0$ and

$$
\begin{align*}
\omega\left(T_{q, V}\right) & \leq \frac{\sqrt{2}}{2}\left\||T|^{q}|V|^{2}|T|^{q}+\right\| T\left\|^{2 q}\left|V^{*}\right|^{2}\right\|^{1 / 2} \tag{4.6}\\
& \leq \frac{\sqrt{2}}{2}\left\||T|^{2 q}+\right\| T\left\|^{2 q} I\right\|^{1 / 2} \leq\|T\|^{q}
\end{align*}
$$

for $q \geq 0$.

Remark 3. If we take $p=1 / 2$ in (4.2), then we get

$$
\begin{equation*}
\omega\left(\widetilde{T}_{V}\right) \leq \frac{\sqrt{2}}{2}\|T\|^{1 / 2}\left\||T|^{1 / 2}\left(|V|^{2}+\left|V^{*}\right|^{2}\right)|T|^{1 / 2}\right\|^{1 / 2} \leq\|T\| \tag{4.7}
\end{equation*}
$$

If we take $p=1$ in (4.5), then we obtain

$$
\begin{align*}
\omega\left(\widehat{T}_{V}\right) & \leq \frac{\sqrt{2}}{2}\| \| T\left\|^{2}|V|^{2}+|T|\left|V^{*}\right|^{2}|T|\right\|^{1 / 2} \tag{4.8}\\
& \leq \frac{\sqrt{2}}{2}\left\||T|^{2}+\right\| T\left\|^{2} I\right\|^{1 / 2} \leq\|T\|
\end{align*}
$$

while for $q=1$ in (4.6), we get

$$
\begin{align*}
\omega\left(T_{V}\right) & \leq \frac{\sqrt{2}}{2}\left\||T||V|^{2}|T|+\right\| T\left\|^{2}\left|V^{*}\right|^{2}\right\|^{1 / 2} \tag{4.9}\\
& \leq \frac{\sqrt{2}}{2}\left\||T|^{2}+\right\| T\left\|^{2} I\right\|^{1 / 2} \leq\|T\|
\end{align*}
$$

Theorem 4. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $q \geq r \geq 0$ and $p \geq s \geq 0$,

$$
\begin{equation*}
\omega\left(\Delta_{p, q, V}(T)\right) \leq\left\|\Delta_{s, r, V}(T)\right\|\left\|\alpha|T|^{\frac{(p-s) u}{\alpha}}+(1-\alpha)|T|^{\frac{(q-r) u}{1-\alpha}}\right\|^{1 / u} \tag{4.10}
\end{equation*}
$$

for all $u \geq 2$ and $\alpha \in[0,1]$.
In particular, for $p \geq s \geq 0$,

$$
\begin{equation*}
\omega\left(\widetilde{T}_{p, V}\right) \leq\left\|\widetilde{T}_{s, V}\right\|\left\|\alpha|T|^{\frac{(p-s) u}{\alpha}}+(1-\alpha)|T|^{\frac{(p-s) u}{1-\alpha}}\right\|^{1 / u} \tag{4.11}
\end{equation*}
$$

Proof. We use the following inequality obtained in [13]

$$
\begin{equation*}
\omega\left(A^{\alpha} X B^{1-\alpha}\right) \leq\|X\|\left\|\alpha A^{u}+(1-\alpha) B^{u}\right\|^{1 / u} \tag{4.12}
\end{equation*}
$$

where $A, B \geq 0, X \in \mathbb{B}(\mathcal{H}), u \geq 2$ and $\alpha \in(0,1)$.
Observe that

$$
\begin{aligned}
\omega\left(\Delta_{p, q, V}(T)\right) & =\omega\left(|T|^{p-s}|T|^{s} V|T|^{r}|T|^{q-r}\right) \\
& =\omega\left(\left(|T|^{\frac{p-s}{\alpha}}\right)^{\alpha}|T|^{s} V|T|^{r}\left(|T|^{\frac{q-r}{1-\alpha}}\right)^{1-\alpha}\right)
\end{aligned}
$$

and by using the inequality in (4.12) for $A=|T|^{\frac{p-s}{\alpha}}, X=|T|^{s} V|T|^{r}$ and $B=$ $|T|^{\frac{q-r}{1-\alpha}}$, we get
and the inequality (4.10) is proved.
Corollary 8. Let V be a contraction and $T \in \mathcal{B}(H)$ and $u \geq 2, \alpha \in[0,1]$. Then for $q \geq r \geq 0$,

$$
\omega\left(T_{q, V}\right) \leq\left\|T_{r, V}\right\|\left\|\alpha I+(1-\alpha)|T|^{\frac{(q-r) u}{1-\alpha}}\right\|^{1 / u}
$$

and for $p \geq s \geq 0$,

$$
\omega\left(\widehat{T}_{p, V}\right) \leq\left\|\widehat{T}_{s, V}\right\|\left\|\alpha|T|^{\frac{(p-s) u}{\alpha}}+(1-\alpha) I\right\|^{1 / u} .
$$

Finally, we can state:
Theorem 5. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $w \geq r \geq 0$ and $v \geq s \geq 0$,

$$
\begin{equation*}
\omega\left(\Delta_{v, w, V}(T)\right) \leq\left\|\Delta_{s, r, V}(T)\right\|\left\|\frac{1}{p}|T|^{\frac{(v-s) p u}{\alpha}}+\frac{1}{q}|T|^{\frac{(w-r) q u}{\alpha}}\right\|^{\alpha / u} \tag{4.13}
\end{equation*}
$$

for $0 \leq \alpha \leq 1, u \geq 0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p u, q u \geq 2$.
In particular, for $v \geq s \geq 0$

$$
\begin{equation*}
\omega\left(\widetilde{T}_{v, V}\right) \leq\left\|\widetilde{T}_{s, V}\right\|\left\|\frac{1}{p}|T|^{\frac{(v-s) p u}{\alpha}}+\frac{1}{q}|T|^{\frac{(v-s) q u}{\alpha}}\right\|^{\alpha / u} . \tag{4.14}
\end{equation*}
$$

Proof. We use the following inequality obtained in [13]

$$
\begin{equation*}
\omega\left(A^{\alpha} X B^{\alpha}\right) \leq\|X\|\left\|\frac{1}{p} A^{p u}+\frac{1}{q} B^{q u}\right\|^{\alpha / u} \tag{4.15}
\end{equation*}
$$

for $0 \leq \alpha \leq 1, u \geq 0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p u, q u \geq 2$.
Observe that

$$
\begin{aligned}
\omega\left(\Delta_{v, w, V}(T)\right) & =\omega\left(|T|^{v-s}|T|^{s} V|T|^{r}|T|^{w-r}\right) \\
& =\omega\left(\left(|T|^{\frac{v-s}{\alpha}}\right)^{\alpha}|T|^{s} V|T|^{r}\left(|T|^{\frac{w-r}{\alpha}}\right)^{\alpha}\right)
\end{aligned}
$$

and by using the inequality in (4.12) for $A=|T|^{\frac{v-s}{\alpha}}, X=|T|^{s} V|T|^{r}$ and $B=$ $|T|^{\frac{w-r}{\alpha}}$, we get

$$
\begin{aligned}
\omega\left(\Delta_{v, w, V}(T)\right) & \leq\left\|\Delta_{s, r, V}(T)\right\|\left\|\frac{1}{p}\left(|T|^{\frac{v-s}{\alpha}}\right)^{p u}+\frac{1}{q}\left(|T|^{\frac{w-r}{\alpha}}\right)^{q u}\right\|^{\alpha / u} \\
& =\left\|\Delta_{s, r, V}(T)\right\|\left\|\frac{1}{p}|T|^{\frac{(v-s) p u}{\alpha}}+\frac{1}{q}|T|^{\frac{(w-r) q u}{\alpha}}\right\|^{\alpha / u}
\end{aligned}
$$

which proves (4.13).
Corollary 9. Let V be a contraction and $T \in \mathcal{B}(H)$. Then for $v \geq s \geq 0$,

$$
\omega\left(\widehat{T}_{v, V}\right) \leq\left\|\widehat{T}_{s, V}\right\|\left\|\frac{1}{p}|T|^{\frac{(v-s) p u}{\alpha}}+\frac{1}{q} I\right\|^{\alpha / u}
$$

for $0 \leq \alpha \leq 1, u \geq 0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p u, q u \geq 2$.
For $w \geq r \geq 0$ we also have

$$
\omega\left(T_{w, V}\right) \leq\left\|T_{r, V}\right\|\left\|\frac{1}{p} I+\frac{1}{q}|T|^{\frac{(w-r) q u}{\alpha}}\right\|^{\alpha / u} .
$$

More similar inequalities may be stated if one further takes some particular values for v, w, s and r. The details are omitted.

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] A. Abu-Omar and F. Kittaneh, Numerical radius inequalities for products and commutators of operators, Houston J. Math. 41 (2015), no. 4, 1163-1173. 5
[4] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[5] P. Bhunia , S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[6] P. Bhunia, K. Feki and K. Paul, Numerical radius inequalities for products and sums of semi-Hilberian space operators, Filomat Vol 36 (2022), No. 4.
[7] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[8] Silvestru Sever Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[9] S. S. Dragomir, Upper bounds for the extended ggeneralized Aluthge transform of bounded operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 26 (2023), Art. 8, 14 pp. [Online https://rgmia.org/papers/v26/v26a08.pdf].
[10] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[11] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[12] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., $\mathbf{1 6 8}$ (2005), No. 1, 73-80.
[13] M. Sattari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 470(1), 216-227 (2015)
[14] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dougal transform, Contractions, Partial isometry, Numerical radius.

