NUMERICAL RADIUS INEQUALITIES FOR THE EXTENDED GENERALIZED ALUTHGE TRANSFORM OF BOUNDED OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let H be a complex Hilbert space. For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we define the operator $$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$ that we call the extended generalized Aluthge transform. In this paper we provide several numerical radius inequalities concerning the extended generalized Aluthge transform $\Delta_{t, V}(T)$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [10], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [11] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

[^0]for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [9]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [8] and [4].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $\omega(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[13]$.

Utilizing this transform T. Yamazaki, [13] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in B(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
For a contraction $V \in \mathcal{B}(H)$, i.e. $0 \leq V^{*} V \leq I$ and an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$ we define the operator

$$
\Delta_{t, V}(T):=|T|^{t} V|T|^{1-t}
$$

that we call the extended generalized Aluthge transform.
We assume in what follows that $|T|^{0}:=I$.
For $t=1$ we have

$$
\widehat{T}_{V}:=\Delta_{1, V}(T)=|T| V
$$

that we call the extended Dougal transform, for $t=1 / 2$,

$$
\widetilde{T}_{V}=\Delta_{1 / 2, V}(T):=|T|^{1 / 2} V|T|^{1 / 2}
$$

that we call the extended Aluthge transform and for $t=0$,

$$
T_{V}:=\Delta_{0, V}(T)=V|T|
$$

An operator $U \in \mathcal{B}(H)$ is called a partial isometry if $\|U x\|=\|x\|$ for all $x \in$ $\mathcal{N}^{\perp}(U)$.

Now, let $x \in H$, then there exists a unique $x_{1} \in \mathcal{N}(U)$ and a unique $x_{2} \in \mathcal{N}^{\perp}(U)$ such that $x=x_{1}+x_{2}$. Then

$$
0 \leq\left\langle U^{*} U x, x\right\rangle=\|U x\|^{2}=\left\|U x_{1}+U x_{2}\right\|^{2}=\left\|U x_{2}\right\|^{2}=\left\|x_{2}\right\|^{2}
$$

By the fact that $x_{1} \perp x_{2}$,

$$
\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}
$$

Therefore

$$
0 \leq\left\langle U^{*} U x, x\right\rangle \leq\|x\|^{2}
$$

which shows that U is a contraction on H.
Let $T \in \mathcal{B}(H)$ and $T=U|T|$ the polar decomposition of T with U a partial isometry. Then

$$
\begin{gathered}
T_{U}=U|T|=T \\
\widetilde{T}_{U}=|T|^{1 / 2} U|T|^{1 / 2}=\widetilde{T}
\end{gathered}
$$

is the usual Aluthge transform and

$$
\widehat{T}_{U}=|T| U=\widehat{T}
$$

is the usual Dougal transform.
For $t \in(0,1)$

$$
\Delta_{t, U}(T)=|T|^{t} U|T|^{1-t}=: \Delta_{t}(T)
$$

is the generalized Aluthge transform introduced in by Cho and Tanahashi in [7].
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right)
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.11}
\end{equation*}
$$

In [3] Bunia et al. also proved that

$$
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\}
$$

which for $t=1 / 2$ gives (1.10) as well.
If V is a contraction, then $\|V\| \leq 1$ and since $\left\|V^{*}\right\|=\|V\|$, hence V^{*} is also a contraction. Observe that

$$
\Delta_{t, V}^{*}(T):=\left(|T|^{t} V|T|^{1-t}\right)^{*}=|T|^{1-t} V^{*}|T|^{t}=\Delta_{1-t, V^{*}}(T)
$$

for all $t \in[0,1]$. Therefore

$$
\left(T_{V}\right)^{*}=\widehat{T}_{V^{*}}, \quad\left(\widehat{T}_{V}\right)^{*}=T_{V^{*}}
$$

and

$$
\left(\widetilde{T}_{V}\right)^{*}=\widetilde{T}_{V^{*}}
$$

Since $\left\|V^{*} V\right\|=\left\|V V^{*}\right\|=\|V\|^{2}$ and V is a contraction, then

$$
\left\|\frac{V^{*} V \pm V V^{*}}{2}\right\| \leq\|V\|^{2} \leq 1
$$

showing that

$$
W:=\frac{V^{*} V \pm V V^{*}}{2}
$$

is a contraction and we can consider the transform

$$
\Delta_{t, \frac{V^{*} V \pm V V^{*}}{2}}(T):=|T|^{t}\left(\frac{V^{*} V \pm V V^{*}}{2}\right)|T|^{1-t}
$$

for $t \in[0,1]$.
For a contraction V, we have

$$
\operatorname{Im}(V):=\frac{V-V^{*}}{2 i}, \operatorname{Re}(V):=\operatorname{Re}\left(\frac{V+V^{*}}{2}\right)
$$

and since

$$
\|\operatorname{Im}(V)\|=\left\|\frac{V-V^{*}}{2 i}\right\| \leq\|V\| \leq 1 \text { and }\|\operatorname{Re}(V)\| \leq\|V\| \leq 1
$$

hence $\operatorname{Im}(V)$ and $\operatorname{Re}(V)$ are contractions as well. We can then consider the transforms

$$
\Delta_{t, \operatorname{Im}(V)}(T):=|T|^{t} \operatorname{Im}(V)|T|^{1-t} \text { and } \Delta_{t, \operatorname{Re}(V)}(T):=|T|^{t} \operatorname{Re}(V)|T|^{1-t}
$$

for $t \in[0,1]$.
For $T \in \mathcal{B}(H)$ we define

$$
T_{+}:=\frac{1}{2}(|T|+T) \text { and } T_{-}:=\frac{1}{2}(|T|-T) .
$$

If U is the partial isometry in the polar representation of T, then

$$
V:=\frac{I \pm U}{2}
$$

is a contraction and

$$
\Delta_{t, \frac{I \pm U}{2}}(T):=|T|^{t} \frac{I \pm U}{2}|T|^{1-t}=\frac{|T| \pm \Delta_{t}(T)}{2}
$$

In particular, we get

$$
T_{\frac{I \pm U}{2}}=\frac{|T| \pm T}{2}=T_{ \pm}, \widehat{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widehat{T}}{2}
$$

and

$$
\widetilde{T}_{\frac{I \pm U}{2}}=\frac{|T| \pm \widetilde{T}}{2}
$$

for any operator $T \in \mathcal{B}(H)$.
Motivated by the above results, in this paper we provide several numerical radius inequalities concerning the extended generalized Aluthge transform $\Delta_{t, V}(T)$. The cases of usual generalized Aluthge, Dougal and Aluthge transforms are also presented.

2. Main Results

We use the following recent inequality for the product of two operators obtained in [6]:
Lemma 1. For any $B, C \in \mathcal{B}(H)$ we have

$$
\begin{equation*}
\omega^{2}(B C) \leq \frac{1}{2}\left\|\left|B^{*}\right|^{4}+|C|^{4}\right\| \tag{2.1}
\end{equation*}
$$

We can state the following result:
Theorem 1. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$, we have

$$
\begin{align*}
\omega^{2}\left(T_{V}\right) & \leq \frac{1}{2}\left\|V|T|^{4(1-t)} V^{*}+|T|^{4 t}\right\| \leq \frac{1}{2}\| \| T\left\|^{4(1-t)} I+|T|^{4 t}\right\| \tag{2.2}\\
& \leq \frac{1}{2}\left(\|T\|^{4(1-t)}+\|T\|^{4 t}\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq \frac{1}{2}\left\||T|^{4(1-t)}+V^{*}|T|^{4 t} V\right\| \leq \frac{1}{2}\left\||T|^{4(1-t)}+\right\| T\left\|^{4 t} I\right\|^{4} \tag{2.3}\\
& \leq \frac{1}{2}\left(\|T\|^{4(1-t)}+\|T\|^{4 t}\right)
\end{align*}
$$

We also have

$$
\begin{align*}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\| \| T\left\|^{2 t}|T|^{t}\left|V^{*}\right|^{4}|T|^{t}+|T|^{4(1-t)}\right\| \tag{2.4}\\
& \leq \frac{1}{2}\| \| T\left\|^{2 t}|T|^{2 t}+|T|^{4(1-t)}\right\| \leq \frac{1}{2}\left(\|T\|^{4(1-t)}+\|T\|^{4 t}\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\left\||T|^{4 t}+\right\| T\left\|^{2(1-t)}|T|^{1-t}|V|^{4}|T|^{1-t}\right\| \tag{2.5}\\
& \leq \frac{1}{2}\left\||T|^{4 t}+\right\| T\left\|^{2(1-t)}|T|^{(1-t)}\right\| \leq \frac{1}{2}\left(\|T\|^{4(1-t)}+\|T\|^{4 t}\right)
\end{align*}
$$

Proof. If we take $B=V|T|^{1-t}$ and $C=|T|^{t}$, then we get $B C=V|T|=T_{V}$ and

$$
\left|B^{*}\right|^{2}=B B^{*}=V|T|^{1-t}|T|^{1-t} V^{*}=V|T|^{2(1-t)} V^{*} .
$$

Observe that

$$
\begin{aligned}
0 & \leq\left|B^{*}\right|^{4}=\left|B^{*}\right|^{2}\left|B^{*}\right|^{2}=V|T|^{2(1-t)} V^{*} V|T|^{2(1-t)} V^{*} \\
& \leq V|T|^{2(1-t)} I|T|^{2(1-t)} V^{*}=V|T|^{4(1-t)} V^{*} \\
& \leq\|T\|^{4(1-t)} V V^{*} \leq\|T\|^{4(1-t)} I .
\end{aligned}
$$

Since $|C|^{4}=|T|^{4 t}$, then

$$
0 \leq\left|B^{*}\right|^{4}+|C|^{4} \leq V|T|^{4(1-t)} V^{*}+|T|^{4 t} \leq\|T\|^{4(1-t)} I+|T|^{4 t}
$$

and by (2.1) we derive (2.2).
If we take $B=|T|^{1-t}$ and $C=|T|^{t} V$, then we get $B C=|T| V=\widehat{T}_{V}$. Also

$$
0 \leq|C|^{2}=C^{*} C=V^{*}|T|^{t}|T|^{t} V=V^{*}|T|^{2 t} V
$$

and

$$
\begin{aligned}
0 & \leq|C|^{4}=|C|^{2}|C|^{2}=V^{*}|T|^{2 t} V V^{*}|T|^{2 t} V \leq V^{*}|T|^{2 t} I|T|^{2 t} V \\
& =V^{*}|T|^{4 t} V \leq\|T\|^{4 t} V^{*} V \leq\|T\|^{4 t} I
\end{aligned}
$$

and since $\left|B^{*}\right|^{4}=|T|^{4(1-t)}$, then by (2.1) we derive (2.3).
Further, if we take $B=|T|^{t} V$ and $C=|T|^{1-t}$, then we get $B C=|T|^{t} V|T|^{1-t}=$ $\Delta_{t, V}(T)$ and

$$
\left|B^{*}\right|^{2}=B B^{*}=|T|^{t} V V^{*}|T|^{t}
$$

Observe that

$$
\begin{aligned}
0 & \leq\left|B^{*}\right|^{4}=|T|^{t} V V^{*}|T|^{t}|T|^{t} V V^{*}|T|^{t}=|T|^{t} V V^{*}|T|^{2 t} V V^{*}|T|^{t} \\
& \leq\|T\|^{2 t}|T|^{t} V V^{*} V V^{*}|T|^{t}=\|T\|^{2 t}|T|^{t}\left(V V^{*}\right)^{2}|T|^{t} \\
& =\|T\|^{2 t}|T|^{t}\left|V^{*}\right|^{4}|T|^{t} \leq\|T\|^{2 t}|T|^{2 t}
\end{aligned}
$$

and since $|C|^{4}=|T|^{4(1-t)}$, then by (2.1) we derive (2.4).
Finally, if we take $B=|T|^{t}$ and $C=V|T|^{1-t}$, then we get $B C=|T|^{t} V|T|^{1-t}=$ $\Delta_{t, V}(T)$ and

$$
|C|^{2}=C^{*} C=|T|^{1-t} V^{*} V|T|^{1-t}
$$

Observe that

$$
\begin{aligned}
|C|^{4} & =|T|^{1-t} V^{*} V|T|^{1-t}|T|^{1-t} V^{*} V|T|^{1-t}=|T|^{1-t} V^{*} V|T|^{2(1-t)} V^{*} V|T|^{1-t} \\
& \leq\|T\|^{2(1-t)}|T|^{1-t} V^{*} V V^{*} V|T|^{1-t}=\|T\|^{2(1-t)}|T|^{1-t}\left(V^{*} V\right)^{2}|T|^{1-t} \\
& =\|T\|^{2(1-t)}|T|^{1-t}|V|^{4}|T|^{1-t} \leq\|T\|^{2(1-t)}|T|^{(1-t)}
\end{aligned}
$$

and since $\left|B^{*}\right|^{4}=|T|^{4 t}$, then by (2.1) we derive (2.5).
Remark 1. If we take $t=1 / 2$ in (2.2) and (2.3), then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left\|V|T|^{2} V^{*}+|T|^{2}\right\| \leq \frac{1}{2}\| \| T\left\|^{2} I+|T|^{2}\right\| \leq\|T\|^{2}
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left\|V^{*}|T|^{2} V+|T|^{2}\right\| \leq \frac{1}{2}\| \| T\left\|^{2} I+|T|^{2}\right\| \leq\|T\|^{2}
$$

Also, if we take $t=1 / 2$ in (2.4) and (2.5), then we get

$$
\omega^{2}\left(\widetilde{T}_{V}\right) \leq \frac{1}{2}\| \| T\left\|^{1 / 2} \widetilde{T}_{\left|V^{*}\right|^{4}}+|T|^{2}\right\| \leq \frac{1}{2}\| \| T\left\||T|+|T|^{2}\right\| \leq\|T\|^{2}
$$

and

$$
\omega^{2}\left(\widetilde{T}_{V}\right) \leq \frac{1}{2}\| \| T\left\|^{1 / 2} \widetilde{T}_{|V|^{4}}+|T|^{2}\right\| \leq \frac{1}{2}\| \| T\left\||T|+|T|^{2}\right\| \leq\|T\|^{2}
$$

If we take $t=0$ in Theorem 1, then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left\|V|T|^{4} V^{*}+I\right\|
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left\||T|^{4}+|V|^{2}\right\| .
$$

We also have

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left\|\left|V^{*}\right|^{4}+|T|^{4}\right\|
$$

and

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\|I+\| T\left\|^{2}|T||V|^{4}|T|\right\|
$$

If we take $t=1$ in Theorem 1, then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left\|\left|V^{*}\right|^{2}+|T|^{4}\right\|
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left\|I+V^{*}|T|^{4} V\right\|
$$

We also have

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\| \| T\left\|^{2}|T|\left|V^{*}\right|^{4}|T|+I\right\|
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left\||T|^{4}+|V|^{4}\right\| .
$$

The case of one operator is as follows:
Proposition 1. For $T \in \mathcal{B}(H)$ and $t \in[0,1]$, we have

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\|\left|T^{*}\right|^{4(1-t)}+|T|^{4 t}\right\| \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2}\left(\Delta_{t}(T)\right) \leq \frac{1}{2}\left\||T|^{4(1-t)}+|T|^{4 t}\right\| \tag{2.7}
\end{equation*}
$$

Proof. If $T=U|T|$ is the polar decomposition of T with U a partial isometry. As in the proof of Theorem 1 if we take $B=U|T|^{1-t}$ and $C=|T|^{t}$, then we get $B C=U|T|=T$ and

$$
\left|B^{*}\right|^{2}=B B^{*}=U|T|^{1-t}|T|^{1-t} U^{*}=U|T|^{2(1-t)} U^{*}=\left|T^{*}\right|^{2(1-t)}
$$

where the last equality is well know. Then $\left|B^{*}\right|^{4}=\left|T^{*}\right|^{4(1-t)},|C|^{4}=|T|^{4 t}$ and by (2.1) we derive (2.6).

Finally, if we take $B=|T|^{t}$ and $C=U|T|^{1-t}$, then we get $B C=|T|^{t} U|T|^{1-t}=$ $\Delta_{t}(T)$ and, since U is an isometry on $\operatorname{ran}(|T|)$,

$$
|C|^{2}=C^{*} C=|T|^{1-t} U^{*} U|T|^{1-t}=|T|^{2(1-t)}
$$

Then $|C|^{4}=|T|^{4(1-t)},|B|^{4}=|T|^{4 t}$ and by (2.1) we derive (2.7).
Remark 2. The inequality (2.6) also follows by (1.6) for $r=2$.
We use the following inequality as well [6]:
Lemma 2. For any $B, C \in \mathcal{B}(H)$ we have

$$
\begin{equation*}
\omega^{2}(B C) \leq \frac{1}{2}\left(\|B\|^{2}\|C\|^{2}+\omega\left(\left|B^{*}\right|^{2}|C|^{2}\right)\right) \tag{2.8}
\end{equation*}
$$

We have:
Theorem 2. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t \in[0,1]$, we have

$$
\begin{align*}
\omega^{2}\left(T_{V}\right) & \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V|T|^{2(1-t)} V^{*}|T|^{2 t}\right)\right) \tag{2.9}\\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V|T|^{2(1-t)} V^{*}|T|^{2 t}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V^{*}|T|^{2 t} V|T|^{2(1-t)}\right)\right) \tag{2.10}\\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V^{*}|T|^{2 t} V|T|^{2(1-t)}\right)\right) .
\end{align*}
$$

Also, we have

$$
\begin{align*}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T|^{t} V V^{*}|T|^{2-t}\right)\right) \tag{2.11}\\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{t} V V^{*}|T|^{2-t}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T|^{1+t} V^{*} V|T|^{1-t}\right)\right) \tag{2.12}\\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{1+t} V^{*} V|T|^{1-t}\right)\right)
\end{align*}
$$

Proof. If we take $B=V|T|^{1-t}$ and $C=|T|^{t}$, then we get $B C=V|T|=T_{V}$ and

$$
\left|B^{*}\right|^{2}=V|T|^{2(1-t)} V^{*},|C|^{2}=|T|^{2 t}
$$

By (2.8) we get

$$
\begin{aligned}
\omega^{2}\left(T_{V}\right) & \leq \frac{1}{2}\left\|V|T|^{1-t}\right\|^{2}\left\||T|^{t}\right\|^{2}+\frac{1}{2} \omega\left(V|T|^{2(1-t)} V^{*}|T|^{2 t}\right) \\
& \leq \frac{1}{2}\|V\|^{2}\|T\|^{2}+\frac{1}{2} \omega\left(V|T|^{2(1-t)} V^{*}|T|^{2 t}\right),
\end{aligned}
$$

which proves (2.9).
If we take $B=|T|^{1-t}$ and $C=|T|^{t} V$, then we get $B C=|T| V=\widehat{T}_{V}$. Also

$$
\left|B^{*}\right|^{2}=|T|^{2(1-t)}, \quad|C|^{2}=V^{*}|T|^{t}|T|^{t} V=V^{*}|T|^{2 t} V
$$

By (2.8) we get

$$
\begin{aligned}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq \frac{1}{2}\left\||T|^{2(1-t)}\right\|^{2}\left\|V^{*}|T|^{2 t} V\right\|^{2}+\frac{1}{2} \omega\left(|T|^{2(1-t)} V^{*}|T|^{2 t} V\right) \\
& \leq \frac{1}{2}\|V\|^{2}\|T\|^{2}+\frac{1}{2} \omega\left(|T|^{2(1-t)} V^{*}|T|^{2 t} V\right)
\end{aligned}
$$

which proves (2.10).
Further, if we take $B=|T|^{t} V$ and $C=|T|^{1-t}$, then we get $B C=|T|^{t} V|T|^{1-t}=$ $\Delta_{t, V}(T)$ and

$$
\left|B^{*}\right|^{2}=B B^{*}=|T|^{t} V V^{*}|T|^{t}, \quad|C|^{2}=|T|^{2(1-t)}
$$

By (2.8) we get

$$
\begin{aligned}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\left\||T|^{t} V\right\|^{2}\|T\|^{2(1-t)}+\frac{1}{2} \omega\left(|T|^{t} V V^{*}|T|^{t}|T|^{2(1-t)}\right) \\
& \leq \frac{1}{2}\|V\|^{2}\|T\|^{2}+\frac{1}{2} \omega\left(|T|^{t} V V^{*}|T|^{2-t}\right)
\end{aligned}
$$

which proves (2.11).
Finally, if we take $B=|T|^{t}$ and $C=V|T|^{1-t}$, then we get $B C=|T|^{t} V|T|^{1-t}=$ $\Delta_{t, V}(T)$ and

$$
\left|B^{*}\right|^{2}=|T|^{2 t}, \quad|C|^{2}=C^{*} C=|T|^{1-t} V^{*} V|T|^{1-t}
$$

By (2.8) we get

$$
\begin{aligned}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\|T\|^{2 t}\left\|V|T|^{1-t}\right\|^{2}+\frac{1}{2} \omega\left(|T|^{1+t} V^{*} V|T|^{1-t}\right) \\
& \leq \frac{1}{2}\|V\|^{2}\|T\|^{2}+\frac{1}{2} \omega\left(|T|^{1+t} V^{*} V|T|^{1-t}\right)
\end{aligned}
$$

which proves (2.11).
Remark 3. If we take $t=1 / 2$ in Theorem 2, then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V|T| V^{*}|T|\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V|T| V^{*}|T|\right)\right)
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V^{*}|T| V|T|\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V^{*}|T| V|T|\right)\right)
$$

Also, we have

$$
\begin{aligned}
\omega^{2}\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T|^{1 / 2} V V^{*}|T|^{3 / 2}\right)\right) \\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{1 / 2} V V^{*}|T|^{3 / 2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T|^{3 / 2} V^{*} V|T|^{1 / 2}\right)\right) \\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{3 / 2} V^{*} V|T|^{1 / 2}\right)\right)
\end{aligned}
$$

If we take $t=0$ in Theorem 2, then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V|T|^{2} V^{*}\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V|T|^{2} V^{*}\right)\right)
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V^{*} V|T|^{2}\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V^{*} V|T|^{2}\right)\right)
$$

Also, we have

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V V^{*}|T|^{2}\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V V^{*}|T|^{2}\right)\right)
$$

and

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T| V^{*} V|T|\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T| V^{*} V|T|\right)\right)
$$

If we take $t=1$ in Theorem 2, then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V V^{*}|T|^{2}\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V V^{*}|T|^{2}\right)\right)
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(V^{*}|T|^{2} V\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(V^{*}|T|^{2} V\right)\right)
$$

Also, we have

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T| V V^{*}|T|\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T| V V^{*}|T|\right)\right)
$$

and

$$
\omega^{2}\left(\widehat{T}_{V}\right) \leq \frac{1}{2}\left(\|V\|^{2}\|T\|^{2}+\omega\left(|T|^{2} V^{*} V\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{2} V^{*} V\right)\right)
$$

We also have:
Proposition 2. For $T \in \mathcal{B}(H)$ and $t \in[0,1]$, we have

$$
\begin{gather*}
\omega^{2}(T) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(\left|T^{*}\right|^{2(1-t)}|T|^{2 t}\right)\right), \tag{2.13}\\
\text { see also }[6], \\
\omega^{2}(\widehat{T}) \leq \frac{1}{2}\left(\|T\|^{2(1-t)}\left\|U^{*}|T|^{2 t} U\right\|+\omega\left(|T|^{2(1-t)} U^{*}|T|^{2 t} U\right)\right) \tag{2.14}\\
\leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{2(1-t)} U^{*}|T|^{2 t} U\right)\right),
\end{gather*}
$$

and

$$
\begin{align*}
\omega^{2}\left(\Delta_{t, V}(T)\right) & \leq \frac{1}{2}\left(\left\||T|^{t} U\right\|^{2}\|T\|^{2(1-t)}+\omega\left(|T|^{t} U U^{*}|T|^{2-t}\right)\right) \tag{2.15}\\
& \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(|T|^{t} U U^{*}|T|^{2-t}\right)\right)
\end{align*}
$$

Proof. Let $B=U|T|^{1-t}$ and $C=|T|^{t}$, then we get $B C=U|T|=T$,

$$
|B|^{2}=\left(U|T|^{1-t}\right)^{*} U|T|^{1-t}=|T|^{1-t} U^{*} U|T|^{1-t}=|T|^{2(1-t)}
$$

and then

$$
\|B\|^{2}=\left\||B|^{2}\right\|=\|T\|^{2(1-t)}
$$

and $\|C\|^{2}=\|T\|^{2 t}$.
Also,

$$
\left|B^{*}\right|^{2}|C|^{2}=U|T|^{1-t}|T|^{1-t} U^{*}|T|^{2 t}=U|T|^{2(1-t)} U^{*}|T|^{2 t}=\left|T^{*}\right|^{2(1-t)}|T|^{2 t}
$$

and by Lemma 2 we obtain (2.13).
If we take $B=|T|^{1-t}$ and $C=|T|^{t} U$, then we get $B C=|T| U=\widehat{T}$. Also

$$
\left|B^{*}\right|^{2}=|T|^{2(1-t)}, \quad|C|^{2}=U^{*}|T|^{t}|T|^{t} U=U^{*}|T|^{2 t} U
$$

and

$$
\left|B^{*}\right|^{2}|C|^{2}=|T|^{2(1-t)} U^{*}|T|^{2 t} U
$$

and by Lemma 2 we obtain (2.14).
Further, if we take $B=|T|^{t} U$ and $C=|T|^{1-t}$, then we get $B C=|T|^{t} U|T|^{1-t}=$ $\Delta_{t, V}(T)$,

$$
\left|B^{*}\right|^{2}=B B^{*}=|T|^{t} U U^{*}|T|^{t},|C|^{2}=|T|^{2(1-t)}
$$

and

$$
\left|B^{*}\right|^{2}|C|^{2}=|T|^{t} U U^{*}|T|^{t}|T|^{2(1-t)}=|T|^{t} U U^{*}|T|^{2-t}
$$

and by Lemma 2 we obtain (2.15).

Remark 4. The case $t=1 / 2$ in (2.13) was obtained in [6] as,

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(\left|T^{*}\right||T|\right)\right) \leq \frac{1}{2}\left(\|T\|^{2}+\left\|T^{2}\right\|\right) \tag{2.16}
\end{equation*}
$$

If we take $t=1 / 2$ in (2.14), then we get

$$
\begin{equation*}
\omega^{2}(\widehat{T}) \leq \frac{1}{2}\left(\|T\|\left\||T|^{1 / 2} U\right\|^{2}+\omega\left(|T| U^{*}|T| U\right)\right) \tag{2.17}
\end{equation*}
$$

From (2.15) we obtain

$$
\begin{equation*}
\omega^{2}(\widetilde{T}) \leq \frac{1}{2}\left(\|T\|\left\||T|^{1 / 2} U\right\|^{2}+\omega\left(\left.\left.\left|U^{*}\right| T\right|^{1 / 2}\right|^{2}|T|\right)\right) \tag{2.18}
\end{equation*}
$$

If we take $t=0$ in (2.15) then we get

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left(\|T\|^{2}+\omega\left(U U^{*}|T|^{2}\right)\right) \tag{2.19}
\end{equation*}
$$

3. Related Results

In [6] the author also obtained:
Lemma 3. For any $B, C \in \mathcal{B}(H)$ we have

$$
\omega^{2}(B C) \leq\left\|\alpha\left|B^{*}\right|^{2}+(1-\alpha)|C|^{2}\right\|\|B\|^{2(1-\alpha)}\|C\|^{2 \alpha}
$$

for all $\alpha \in[0,1]$. In particular,

$$
\omega^{2}(B C) \leq \frac{1}{2}\left\|\left|B^{*}\right|^{2}+|C|^{2}\right\|\|B\|\|C\|
$$

We can state the following result:
Theorem 3. For a contraction $V \in \mathcal{B}(H)$, an operator $T \in \mathcal{B}(H)$ and $t, \alpha \in[0,1]$, we have

$$
\begin{align*}
\omega^{2}\left(T_{V}\right) & \leq\left\|\alpha V|T|^{2(1-t)} V^{*}+(1-\alpha)|T|^{2 t}\right\|\left\|V|T|^{2(1-t)} V^{*}\right\|^{1-\alpha}\|T\|^{2 t \alpha} \tag{3.1}\\
& \leq\left\|\alpha V|T|^{2(1-t)} V^{*}+(1-\alpha)|T|^{2 t}\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{align*}
$$

and

$$
\begin{align*}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq\left\|\alpha|T|^{2(1-t)}+(1-\alpha) V^{*}|T|^{2 t} V\right\|\left\|V^{*}|T|^{2 t} V\right\|^{1-\alpha}\|T\|^{2 t \alpha} \tag{3.2}\\
& \leq\left\|\alpha|T|^{2(1-t)}+(1-\alpha) V^{*}|T|^{2 t} V\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{align*}
$$

Also, we have

$$
\begin{align*}
& \omega^{2}\left(\Delta_{t, V}(T)\right) \tag{3.3}\\
& \leq\left\|\alpha|T|^{t} V V^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\left\||T|^{t} V V^{*}|T|^{t}\right\|^{1-\alpha}\|T\|^{2(1-t) \alpha} \\
& \leq\left\|\alpha|T|^{t} V V^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{align*}
$$

and

$$
\begin{align*}
& \omega^{2}\left(\Delta_{t, V}(T)\right) \tag{3.4}\\
& \leq\left\|\alpha|T|^{2 t}+(1-\alpha)|T|^{1-t} V^{*} V|T|^{1-t}\right\|\|T\|^{2 t(1-\alpha)}\left\||T|^{1-t} V^{*} V|T|^{1-t}\right\|^{2 \alpha} \\
& \leq\left\|\alpha|T|^{2 t}+(1-\alpha)|T|^{1-t} V^{*} V|T|^{1-t}\right\|\|T\|^{2[t(1-\alpha)+\alpha(1-t)]}
\end{align*}
$$

Proof. If we take $B=V|T|^{1-t}$ and $C=|T|^{t}$, then we get $B C=V|T|=T_{V}$ and

$$
\left|B^{*}\right|^{2}=B B^{*}=V|T|^{1-t}|T|^{1-t} V^{*}=V|T|^{2(1-t)} V^{*} .
$$

By Lemma 3 for $\alpha \in[0,1]$ we get

$$
\begin{aligned}
\omega^{2}\left(T_{V}\right) & \leq\left\|\alpha V|T|^{2(1-t)} V^{*}+(1-\alpha)|T|^{2 t}\right\|\left\|V|T|^{2(1-t)} V^{*}\right\|^{1-\alpha}\|T\|^{2 t \alpha} \\
& \leq\left\|\alpha V|T|^{2(1-t)} V^{*}+(1-\alpha)|T|^{2 t}\right\|\|T\|^{2(1-t)(1-\alpha)}\|T\|^{2 t \alpha} \\
& =\left\|\alpha V|T|^{2(1-t)} V^{*}+(1-\alpha)|T|^{2 t}\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{aligned}
$$

which proves (3.1).
If we take $B=|T|^{1-t}$ and $C=|T|^{t} V$, then we get $B C=|T| V=\widehat{T}_{V}$. Also

$$
\left|B^{*}\right|^{2}=|T|^{2(1-t)}, \quad|C|^{2}=V^{*}|T|^{t}|T|^{t} V=V^{*}|T|^{2 t} V
$$

From Lemma 3 we get

$$
\begin{aligned}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq\left\|\alpha|T|^{2(1-t)}+(1-\alpha) V^{*}|T|^{2 t} V\right\|\|T\|^{2(1-t)(1-\alpha)}\left\|V^{*}|T|^{2 t} V\right\|^{\alpha} \\
& \leq\left\|\alpha|T|^{2(1-t)}+(1-\alpha) V^{*}|T|^{2 t} V\right\|\|T\|^{2(1-t)(1-\alpha)}\|T\|^{2 t \alpha} \\
& =\left\|\alpha|T|^{2(1-t)}+(1-\alpha) V^{*}|T|^{2 t} V\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]},
\end{aligned}
$$

which proves (3.2).
Further, if we take $B=|T|^{t} V$ and $C=|T|^{1-t}$, then we get $B C=|T|^{t} V|T|^{1-t}=$ $\Delta_{t, V}(T)$ and

$$
\left|B^{*}\right|^{2}=B B^{*}=|T|^{t} V V^{*}|T|^{t},|C|^{2}=|T|^{2(1-t)}
$$

By Lemma 3 we get

$$
\begin{aligned}
& \omega^{2}\left(\Delta_{t, V}(T)\right) \\
& \leq\left\|\alpha|T|^{t} V V^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\left\||T|^{t} V V^{*}|T|^{t}\right\|^{1-\alpha}\|T\|^{2(1-t) \alpha} \\
& \leq\left\|\alpha|T|^{t} V V^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\|T\|^{2 t(1-\alpha)}\|T\|^{2(1-t) \alpha} \\
& =\left\|\alpha|T|^{t} V V^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{aligned}
$$

which proves (3.3).
Finally, if we take $B=|T|^{t}$ and $C=V|T|^{1-t}$, then we get $B C=|T|^{t} V|T|^{1-t}=$ $\Delta_{t, V}(T)$ and

$$
\left|B^{*}\right|^{2}=|T|^{2 t}, \quad|C|^{2}=C^{*} C=|T|^{1-t} V^{*} V|T|^{1-t}
$$

From Lemma 3 we get

$$
\begin{aligned}
& \omega^{2}\left(\Delta_{t, V}(T)\right) \\
& \leq\left\|\alpha|T|^{2 t}+(1-\alpha)|T|^{1-t} V^{*} V|T|^{1-t}\right\|\|T\|^{2 t(1-\alpha)}\left\||T|^{1-t} V^{*} V|T|^{1-t}\right\|^{2 \alpha} \\
& \leq\left\|\alpha|T|^{2 t}+(1-\alpha)|T|^{1-t} V^{*} V|T|^{1-t}\right\|\|T\|^{2 t(1-\alpha)}\|T\|^{2 \alpha(1-t)} \\
& =\left\|\alpha|T|^{2 t}+(1-\alpha)|T|^{1-t} V^{*} V|T|^{1-t}\right\|\|T\|^{2[t(1-\alpha)+\alpha(1-t)]}
\end{aligned}
$$

which proves (3.4).
Remark 5. If we take $t=1 / 2$ in Theorem 3, then for $\alpha \in[0,1]$,

$$
\begin{aligned}
\omega^{2}\left(T_{V}\right) & \leq\left\|\alpha V|T| V^{*}+(1-\alpha)|T|\right\|\left\|V|T| V^{*}\right\|^{1-\alpha}\|T\|^{\alpha} \\
& \leq\left\|\alpha V|T| V^{*}+(1-\alpha)|T|\right\|\|T\|
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq\left\|\alpha|T|+(1-\alpha) V^{*}|T| V\right\|\left\|V^{*}|T| V\right\|^{1-\alpha}\|T\|^{\alpha} \\
& \leq\left\|\alpha|T|+(1-\alpha) V^{*}|T| V\right\|\|T\|
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
& \omega^{2}\left(\widetilde{T}_{V}\right) \\
& \leq\left\|\alpha|T|^{1 / 2} V V^{*}|T|^{1 / 2}+(1-\alpha)|T|\right\|\left\||T|^{1 / 2} V V^{*}|T|^{1 / 2}\right\|^{1-\alpha}\|T\|^{\alpha} \\
& \leq\left\|\alpha|T|^{1 / 2} V V^{*}|T|^{1 / 2}+(1-\alpha)|T|\right\|\|T\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \omega^{2}\left(\widetilde{T}_{V}\right) \\
& \leq\left\|\alpha|T|+(1-\alpha)|T|^{1 / 2} V^{*} V|T|^{1 / 2}\right\|\|T\|^{1-\alpha}\left\||T|^{1 / 2} V^{*} V|T|^{1 / 2}\right\|^{2 \alpha} \\
& \leq\left\|\alpha|T|+(1-\alpha)|T|^{1 / 2} V^{*} V|T|^{1 / 2}\right\|\|T\|
\end{aligned}
$$

If in these inequalities we take $\alpha=1 / 2$, then we get

$$
\omega^{2}\left(T_{V}\right) \leq \frac{1}{2}\left\|V|T| V^{*}+|T|\right\|\left\|V|T| V^{*}\right\|^{1 / 2}\|T\|^{1 / 2} \leq \frac{1}{2}\left\|V|T| V^{*}+|T|\right\|\|T\|
$$

and

$$
\begin{aligned}
\omega^{2}\left(\widehat{T}_{V}\right) & \leq \frac{1}{2}\left\||T|+V^{*}|T| V\right\|\left\|V|T| V^{*}\right\|^{1 / 2}\|T\|^{1 / 2} \\
& \leq \frac{1}{2} \alpha|T|+V^{*}|T| V\|T\|
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\omega^{2}\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2}\left\||T|^{1 / 2} V V^{*}|T|^{1 / 2}+|T|\right\|\left\||T|^{1 / 2} V V^{*}|T|^{1 / 2}\right\|^{1 / 2}\|T\|^{1 / 2} \\
& \leq \frac{1}{2}\left\||T|^{1 / 2} V V^{*}|T|^{1 / 2}+|T|\right\|\|T\|
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}\left(\widetilde{T}_{V}\right) & \leq \frac{1}{2}\left\||T|+|T|^{1 / 2} V^{*} V|T|^{1 / 2}\right\|\|T\|^{1 / 2}\left\||T|^{1 / 2} V^{*} V|T|^{1 / 2}\right\| \\
& \leq \frac{1}{2}\left\||T|+|T|^{1 / 2} V^{*} V|T|^{1 / 2}\right\|\|T\|
\end{aligned}
$$

Proposition 3. For $T \in \mathcal{B}(H)$ and $t \in[0,1]$, we have for

$$
\begin{equation*}
\omega^{2}(T) \leq\left\|\alpha\left|T^{*}\right|^{2(1-t)}+(1-\alpha)|T|^{2 t}\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \omega^{2}(\widehat{T}) \tag{3.6}\\
& \leq\left\|\alpha|T|^{2(1-t)}+(1-\alpha) U^{*}|T|^{2 t} U\right\|\left\|U^{*}|T|^{2 t} U\right\|^{1-\alpha}\|T\|^{2 t \alpha} \\
& \leq\left\|\alpha|T|^{2(1-t)}+(1-\alpha) U^{*}|T|^{2 t} U\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{align*}
$$

Also, we have

$$
\begin{align*}
& \omega^{2}(\widetilde{T}) \tag{3.7}\\
& \leq\left\|\alpha|T|^{t} U U^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\left\||T|^{t} U U^{*}|T|^{t}\right\|^{1-\alpha}\|T\|^{2(1-t) \alpha} \\
& \leq\left\|\alpha|T|^{t} U U^{*}|T|^{t}+(1-\alpha)|T|^{2(1-t)}\right\|\|T\|^{2[(1-t)(1-\alpha)+t \alpha]}
\end{align*}
$$

and

$$
\begin{equation*}
\omega^{2}(\widetilde{T}) \leq\left\|\alpha|T|^{2 t}+(1-\alpha)|T|^{2(1-t)}\right\|\|T\|^{2[t(1-\alpha)+\alpha(1-t)]} \tag{3.8}
\end{equation*}
$$

The proof follows by Theorem 3 by observing that, if $T=U|T|$ is the polar decomposition of T with U a partial isometry, then

$$
U|T|^{2(1-t)} U^{*}=\left|T^{*}\right|^{2(1-t)} \text { and }|T|^{1-t} V^{*} V|T|^{1-t}=|T|^{2(1-t)}
$$

If we take $t=1 / 2$ in Proposition 3 , then we get

$$
\omega^{2}(T) \leq\left\|\alpha\left|T^{*}\right|+(1-\alpha)|T|\right\|\|T\|
$$

and

$$
\begin{aligned}
\omega^{2}(\widehat{T}) & \leq\left\|\alpha|T|+(1-\alpha) U^{*}|T| U\right\|\left\|U^{*}|T| U\right\|^{1-\alpha}\|T\|^{\alpha} \\
& \leq\left\|\alpha|T|+(1-\alpha) U^{*}|T| U\right\|\|T\|
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\omega^{2}(\widetilde{T}) & \leq\left\|\alpha|T|^{1 / 2} U U^{*}|T|^{1 / 2}+(1-\alpha)|T|\right\|\left\||T|^{1 / 2} U U^{*}|T|^{1 / 2}\right\|^{1-\alpha}\|T\|^{\alpha} \\
& \leq\left\|\alpha|T|^{1 / 2} U U^{*}|T|^{1 / 2}+(1-\alpha)|T|\right\|\|T\|
\end{aligned}
$$

For $\alpha=1 / 2$ we further have

$$
\begin{gathered}
\omega^{2}(T) \leq \frac{1}{2}\left\|\left|T^{*}\right|+|T|\right\|\|T\| \\
\omega^{2}(\widehat{T}) \leq \frac{1}{2}\left\||T|+U^{*}|T| U\right\|\left\|U^{*}|T| U\right\|^{1 / 2}\|T\|^{1 / 2} \leq \frac{1}{2}\left\||T|+U^{*}|T| U\right\|\|T\| .
\end{gathered}
$$

and

$$
\begin{aligned}
\omega^{2}(\widetilde{T}) & \leq \frac{1}{2}\left\||T|^{1 / 2} U U^{*}|T|^{1 / 2}+|T|\right\|\left\||T|^{1 / 2} U U^{*}|T|^{1 / 2}\right\|^{1 / 2}\|T\|^{1 / 2} \\
& \leq \frac{1}{2}\left\||T|^{1 / 2} U U^{*}|T|^{1 / 2}+|T|\right\|\|T\|
\end{aligned}
$$

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia, S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] P. Bhunia, K. Feki and K. Paul, Numerical radius inequalities for products and sums of semi-Hilberian space operators, Filomat Vol 36 (2022), No. 4.
[6] P. Bhunia, Improved bounds for the numerical radius via polar decomposition of operators, Preprint https://arxiv.org/abs/2303.03051v1.
[7] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[8] Silvestru Sever Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[9] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., $\mathbf{1 6 8}$ (2005), No. 1, 73-80.
[12] M. Sattari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 470(1), 216-227 (2015)
[13] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dugal transform, Contractions, Partial isometrie, Numerical radius.

