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Abstract

In this article based on trigonometric and hyperbolic type Taylor for-
mulae we establish Poincaré, Sobolev and Hilbert-Pachpatte type inequal-
ities of di¤erent kinds speci�c and general.
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1 Main Results

We start with a collection of Poincaré type inequalities.

Theorem 1 Let f 2 C2 ([a; b] ;K), where K = R or C, such that f (a) =
f 0 (a) = 0, and p; q > 1 : 1p +

1
q = 1. Then

kfkLq([a;b]) �
 Z b

a

�Z x

a

jsin (x� t)jp dt
� q

p

dx

! 1
q

kf + f 00kLq([a;b]) : (1)

Proof. Since f (a) = f 0 (a) = 0, by Corollary 3.4 of [1] we have

f (x) =

Z x

a

(f 00 (t) + f (t)) sin (x� t) dt; (2)

8 x 2 [a; b] :
It follows by Hölder�s inequality that

jf (x)j �
Z x

a

jf 00 (t) + f (t)j jsin (x� t)j dt �
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�Z x

a

jsin (x� t)jp dt
� 1

p
�Z x

a

j(f 00 + f) (t)jq dt
� 1

q

� (3)

�Z x

a

jsin (x� t)jp dt
� 1

p

kf 00 + fkLq([a;b]) :

Hence

jf (x)jq �
�Z x

a

jsin (x� t)jp dt
� q

p

kf 00 + fkqLq([a;b]) ; (4)

and Z b

a

jf (x)jq dx �
 Z b

a

�Z x

a

jsin (x� t)jp dt
� q

p

dx

!
kf 00 + fkqLq([a;b]) : (5)

We have proved that Z b

a

jf (x)jq dx
! 1

q

�
 Z b

a

�Z x

a

jsin (x� t)jp dt
� q

p

dx

! 1
q

kf 00 + fkLq([a;b]) :

(6)

It follows

Theorem 2 All as in Theorem 1. Then

kfkLq([a;b]) �
 Z b

a

�Z x

a

jsinh (x� t)jp dt
� q

p

dx

! 1
q

kf � f 00kLq([a;b]) : (7)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.5 of
[1].
We continue with

Theorem 3 Let f 2 C4 ([a; b] ;K), where K = R or C, such that f (a) =
f 0 (a) = f 00 (a) = f 000 (a) = 0, and p; q > 1 : 1p +

1
q = 1. Then

kfkLq([a;b]) �

1

2

 Z b

a

�Z x

a

jsinh (x� t)� sin (x� t)jp dt
� q

p

dx

! 1
q

kf � f 0000kLq([a;b]) : (8)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.6 of
[1].
It follows
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Theorem 4 Let f 2 C4 ([a; b] ;K), where K = R or C, such that f (a) =
f 0 (a) = f 00 (a) = f 000 (a) = 0, and p; q > 1 : 1p +

1
q = 1. Also let �; � 2 R with

��
�
�2 � �2

�
6= 0. Then

kfkLq([a;b]) �

1

j�j j�j
���2 � �2��

 Z b

a

�Z x

a

j� sin (� (x� t))� � sin (� (x� t))jp dt
� q

p

dx

! 1
q



f 0000 + ��2 + �2� f 00 + �2�2f


Lq([a;b])

: (9)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.7 of
[1].
Next comes

Theorem 5 Let f 2 C4 ([a; b] ;K), where K = R or C, such that f (i) (a) = 0,
i = 0; 1; 2; 3; and p; q > 1 : 1p +

1
q = 1; � 2 R, � 6= 0. Then

kfkLq([a;b]) �

1

2 j�j3

 Z b

a

�Z x

a

jsin (� (x� t))� � (x� t) cos (� (x� t))jp dt
� q

p

dx

! 1
q




f (4) + 2�2f 00 + �4f



Lq([a;b])

: (10)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.8 of
[1].
We continue with

Theorem 6 All as in Theorem 4. Then

kfkLq([a;b]) �

1

j�j j�j
���2 � �2��

 Z b

a

�Z x

a

j� sinh (� (x� t))� � sinh (� (x� t))jp dt
� q

p

dx

! 1
q




f (4) � ��2 + �2� f 00 + �2�2f



Lq([a;b])

: (11)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.9 of
[1].
We also give

3



Theorem 7 All as in Theorem 5. Then

kfkLq([a;b]) �

1

2 j�j3

 Z b

a

�Z x

a

j� (x� t) cosh (� (x� t))� sinh (� (x� t))jp dt
� q

p

dx

! 1
q




f (4) � 2�2f 00 + �4f



Lq([a;b])

: (12)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.10 of
[1].
We make

Remark 8 The following come from [1]. Let K denote R or C, [a; b] � R.
For c = (c0; :::; cn) 2 Kn+1 with cn = 1, let the n-th order linear di¤erential
operator

Dc : C
n ([a; b] ;K)! C ([a; b] ;K)

be de�ned by the formula

Dc (f) := cnf
(n) + :::+ c1f

0 + c0f (f 2 Cn ([a; b] ;K) ).

Let !c 2 Cn (R;C) denote the unique solution of the initial value problem

Dc (!c) = 0, !(l)c (0) = �l;n�1 (l 2 f0; :::; n� 1g ). (13)

The function !c will be called the characteristic solution of Dc (!) = 0:

De�ne

(Ta;cf) (x) :=
n�1X
j=0

 
f (j) (a)

n�1�jX
i=0

ci+j+1!
(i)
c (x� a)

!
; (14)

if f (j) (a) = 0, j = 0; 1; :::; n� 1, then

(Ta;cf) (x) = 0, 8 x 2 [a; b] :

Theorem 9 ([1]) Let n 2 N, c = (c0; :::; cn) 2 Kn+1 with cn = 1. Then for all
f 2 Cn ([a; b] ;K), x 2 [a; b], we have

f (x) = (Ta;cf) (x) +

Z x

a

Dc (f) (t)!c (x� t) dt: (15)

If f (j) (a) = 0, j = 0; 1; :::; n� 1, then

f (x) =

Z x

a

Dc (f) (t)!c (x� t) dt; (16)

8 x 2 [a; b] :
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We give the following general Poincaré type inequality.

Theorem 10 All as in Remark 8 and f (j) (a) = 0, j = 0; 1; :::; n� 1, p; q > 1 :
1
p +

1
q = 1. Then

kfkLq([a;b]) �
 Z b

a

�Z x

a

j!c (x� t)jp dt
� q

p

dx

! 1
q

kDc (f)kLq([a;b]) : (17)

Proof. As similar to Theorem 1 is omitted. It is based on Remark 8 and
Theorem 9.
Next follow Sobolev type inequalities.

Theorem 11 All as in Theorem 1, r > 0. Then

kfkLr([a;b]) �
 Z b

a

�Z x

a

jsin (x� t)jp dt
� r

p

dx

! 1
r

kf 00 + fkLq([a;b]) : (18)

Proof. As in (3) we have

jf (x)j �
�Z x

a

jsin (x� t)jp dt
� 1

p

kf 00 + fkLq([a;b]) : (19)

and (by r > 0)

jf (x)jr �
�Z x

a

jsin (x� t)jp dt
� r

p

kf 00 + fkrLq([a;b]) ; (20)

8 x 2 [a; b] :
ThusZ b

a

jf (x)jr dx �
 Z b

a

�Z x

a

jsin (x� t)jp dt
� r

p

dx

!
kf 00 + fkrLq([a;b]) ; (21)

and Z b

a

jf (x)jr dx
! 1

r

�
 Z b

a

�Z x

a

jsin (x� t)jp dt
� r

p

dx

! 1
r

kf 00 + fkLq([a;b]) ;

(22)
proving the claim.

Theorem 12 All as in Theorem 2, r > 0. Then

kfkLr([a;b]) �
 Z b

a

�Z x

a

jsinh (x� t)jp dt
� r

p

dx

! 1
r

kf � f 00kLq([a;b]) : (23)
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Proof. As similar to Theorem 11 is omitted.

Theorem 13 All as in Theorem 3, r > 0. Then

kfkLr([a;b]) �

1

2

 Z b

a

�Z x

a

jsinh (x� t)� sin (x� t)jp dt
� r

p

dx

! 1
r

kf � f 0000kLq([a;b]) : (24)

Proof. As similar to Theorem 11 is omitted.

Theorem 14 All as in Theorem 4, r > 0. Then

kfkLr([a;b]) �

1

j�j j�j
���2 � �2��

 Z b

a

�Z x

a

j� sin (� (x� t))� � sin (� (x� t))jp dt
� r

p

dx

! 1
r



f 0000 + ��2 + �2� f 00 + �2�2f


Lq([a;b])

: (25)

Proof. As similar to Theorem 11 is omitted.

Theorem 15 All as in Theorem 5, r > 0. Then

kfkLr([a;b]) �

1

2 j�j3

 Z b

a

�Z x

a

jsin (� (x� t))� � (x� t) cos (� (x� t))jp dt
� r

p

dx

! 1
r




f (4) + 2�2f 00 + �4f



Lq([a;b])

: (26)

Proof. As similar to Theorem 11 is omitted.

Theorem 16 All as in Theorem 6, r > 0. Then

kfkLr([a;b]) �

1

j�j j�j
���2 � �2��

 Z b

a

�Z x

a

j� sinh (� (x� t))� � sinh (� (x� t))jp dt
� r

p

dx

! 1
r




f (4) � ��2 + �2� f 00 + �2�2f



Lq([a;b])

: (27)

Proof. As similar to Theorem 11 is omitted.
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Theorem 17 All as in Theorem 7, r > 0. Then

kfkLr([a;b]) �

1

2 j�j3

 Z b

a

�Z x

a

j� (x� t) cosh (� (x� t))� sinh (� (x� t))jp dt
� r

p

dx

! 1
r




f (4) � 2�2f 00 + �4f



Lq([a;b])

: (28)

Proof. It is omitted.

Theorem 18 All as in Theorem 10, r > 0. Then

kfkLr([a;b]) �
 Z b

a

�Z x

a

j!c (x� t)jp dt
� r

p

dx

! 1
r

kDc (f)kLq([a;b]) : (29)

Proof. It is omitted.
We continue with a collection of Hilbert-Pachaptted inequalities.

Theorem 19 Here j = 1; 2. Let fj 2 C2 ([aj ; bj ] ;K), where K = R or C, such
that fj (aj) = f 0j (aj) = 0, and p; q > 1 :

1
p +

1
q = 1. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
jsin(x1�t1)jpdt1

p +

R x2
a2
jsin(x2�t2)jqdt2

q

� �
(b1 � a1) (b2 � a2) kf 001 + f1kLq([a1;b1]) kf

00
2 + f2kLp([a2;b2]) : (30)

Proof. As in (3) we have

jf1 (x1)j �
�Z x1

a1

jsin (x1 � t1)jp dt1
� 1

p

kf 001 + f1kLq([a1;b1]) ; (31)

8 x1 2 [a1; b1] ;
and

jf2 (x2)j �
�Z x2

a2

jsin (x2 � t2)jq dt2
� 1

q

kf 002 + f2kLp([a2;b2]) : (32)

8 x2 2 [a2; b2] :
Hence we have

jf1 (x1)j jf2 (x2)j �
�Z x1

a1

jsin (x1 � t1)jp dt1
� 1

p
�Z x2

a2

jsin (x2 � t2)jq dt2
� 1

q

kf 001 + f1kLq([a1;b1]) kf
00
2 + f2kLp([a2;b2]) � (33)
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(using Young�s inequality for a; b � 0, a
1
p b

1
q � a

p +
b
q )"R x1

a1
jsin (x1 � t1)jp dt1

p
+

R x2
a2
jsin (x2 � t2)jq dt2

q

#

kf 001 + f1kLq([a1;b1]) kf
00
2 + f2kLp([a2;b2]) : (34)

So far we have

jf1 (x1)j jf2 (x2)j� R x1
a1
jsin(x1�t1)jpdt1

p +

R x2
a2
jsin(x2�t2)jqdt2

q

� �
kf 001 + f1kLq([a1;b1]) kf

00
2 + f2kLp([a2;b2]) ; (35)

8 (x1; x2) 2 [a1; b1]� [a2; b2] :
The denominator in (35) can be zero only when both x1 = a1 and x2 = a2:
Therefore we obtain (30), by integrating (35) over [a1; b1]� [a2; b2] :

Theorem 20 All as in Theorem 19. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
jsinh(x1�t1)jpdt1

p +

R x2
a2
jsinh(x2�t2)jqdt2

q

� �
(b1 � a1) (b2 � a2) kf1 � f 001 kLq([a1;b1]) kf2 � f

00
2 kLp([a2;b2]) : (36)

Proof. As similar to Theorem 19 is omitted.

Theorem 21 Here j = 1; 2. Let fj 2 C4 ([aj ; bj ] ;K), where K = R or C, such
that f (i)j (aj) = 0, i = 0; 1; 2; 3; and p; q > 1 : 1p +

1
q = 1. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
jsinh(x1�t1)�sin(x1�t1)jpdt1

p +

R x2
a2
jsinh(x2�t2)�sin(x2�t2)jqdt2

q

� �
(b1 � a1) (b2 � a2)

4




f1 � f (4)1





Lq([a1;b1])




f2 � f (4)2





Lp([a2;b2])

: (37)

Proof. As similar to Theorem 19 is omitted.

Theorem 22 Here j = 1; 2. Let fj 2 C4 ([aj ; bj ] ;K), where K = R or C, such
that f (i)j (aj) = 0, i = 0; 1; 2; 3; and p; q > 1 : 1p +

1
q = 1. Alsi let �; � 2 R with

��
�
�2 � �2

�
6= 0. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
j� sin(�(x1�t1))�� sin(�(x1�t1))jpdt1

p +

R x2
a2
j� sin(�(x2�t2))�� sin(�(x2�t2))jqdt2

q

� �
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(b1 � a1) (b2 � a2)
�2�2

�
�2 � �2

�2 


f (4)1 +
�
�2 + �2

�
f 001 + �

2�2f1





Lq([a1;b1])


f (4)2 +

�
�2 + �2

�
f 002 + �

2�2f2





Lp([a2;b2])

: (38)

Proof. It is omitted.

Theorem 23 Here j = 1; 2. Let fj 2 C4 ([aj ; bj ] ;K), where K = R or C, such
that f (i)j (aj) = 0, i = 0; 1; 2; 3; and p; q > 1 : 1p +

1
q = 1; � 2 R; � 6= 0. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
jsin(�(x1�t1))��(x1�t1) cos(�(x1�t1))jpdt1

p +

R x2
a2
jsin(�(x2�t2))��(x2�t2) cos(�(x2�t2))jqdt2

q

� �
(b1 � a1) (b2 � a2)

4�6




f (4)1 + 2�2f 001 + �
4f1





Lq([a1;b1])


f (4)2 + 2�2f 002 + �

4f2





Lp([a2;b2])

: (39)

Proof. It is omitted.

Theorem 24 All as in Theorem 22. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
j� sinh(�(x1�t1))�� sinh(�(x1�t1))jpdt1

p +

R x2
a2
j� sinh(�(x2�t2))�� sinh(�(x2�t2))jqdt2

q

� �
(b1 � a1) (b2 � a2)
�2�2

�
�2 � �2

�2 


f (4)1 �
�
�2 + �2

�
f 001 + �

2�2f1





Lq([a1;b1])


f (4)2 �

�
�2 + �2

�
f 002 + �

2�2f2





Lp([a2;b2])

: (40)

Proof. It is omitted.

Theorem 25 All as in Theorem 23. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
j�(x1�t1) cosh(�(x1�t1))�sinh(�(x1�t1))jpdt1

p +

R x2
a2
j�(x2�t2) cosh(�(x2�t2))�sinh(�(x2�t2))jqdt2

q

� �
(b1 � a1) (b2 � a2)

4�6




f (4)1 � 2�2f 001 + �4f1




Lq([a1;b1])


f (4)2 � 2�2f 002 + �4f2





Lp([a2;b2])

: (41)

Proof. It is omitted.
We �nish with
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Theorem 26 Let j = 1; 2. Here fj 2 C4 ([aj ; bj ] ;K), where K = R or C,
and f (i)j (aj) = 0, i = 0; 1; :::; n � 1. All the rest are as in Remark 8 and
p; q > 1 : 1p +

1
q = 1. ThenZ b1

a1

Z b2

a2

jf1 (x1)j jf2 (x2)j dx1dx2� R x1
a1
j!c(x1�t1)jpdt1

p +

R x2
a2
j!c(x2�t2)jqdt2

q

� �
(b1 � a1) (b2 � a2) kDc (f1)kLq([a1;b1]) kDc (f2)kLp([a2;b2]) : (42)

Proof. It is omitted.
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