Trigonometric and Hyperbolic Poincaré, Sobolev
and Hilbert-Pachpatte type inequalities

George A. Anastassiou
Department of Mathematical Sciences, University of Memphis,
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

In this article based on trigonometric and hyperbolic type Taylor for-
mulae we establish Poincaré, Sobolev and Hilbert-Pachpatte type inequal-
ities of different kinds specific and general.
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1 Main Results

We start with a collection of Poincaré type inequalities.

Theorem 1 Let f € C?([a,b],K), where K = R or C, such that f(a) =

f'(a) =0, andp,q>1:%+%:1. Then

b T % é
||fHLq([a,b]) < (/ (/ sin (x —¢)[” dt) da:) Ilf+ f”||Lq([a,b])' (1)

Proof. Since f (a) = [’ (a) = 0, by Corollary 3.4 of [1] we have

Fa= [0+ s o) (@)

Vaelab.
It follows by Holder’s inequality that

F@l< [ 1070+ £ @) inGe - ol <
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(/ |sin(x—t)|pdt); (/:I(f”+f) <t)|th)3 < )

1
x )
( [ inta- t)lpdt) 1+ Pl o -
a

Hence

|f ()" < (/ Jsin (@ — )" dt) N AL, 0ty - (4)

nd
b b z iz
/|f(a:)qu§</ </ |sin(3c—t)|pdt> da:) TR T

We have proved that

b b b z z i
(/ If(:v)qu) s(/ ( / |sin<x—t>|pdt) dz) 17"+ Il o -

(6)

a;

[
It follows

Theorem 2 All as in Theorem 1. Then

1
b T % q
||f||Lq<[a,st< / ( / |sinh<x—t>”dt) dx) = e ()

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.5 of
[1]. =
We continue with

Theorem 3 Let f € C*([a,b],K), where K = R or C, such that f(a) =
f'(@)=f"(a)=f"(a)=0, and p,qg > 1: % + % =1. Then

12y (fae)) <

Ny 4 N7
2(/ (/ |sinh(x—t)—sin(x—t)|pdt> dx) 1= " oy )

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.6 of
1]. =
It follows



= R or C, such that f(a) =

Theorem 4 Let f € C*([a,b],K), where K
+ = =1. Also let a, 8 € R with

f'a) = 5" (@) = £ (a) =0, and p,g > 1+ }
af (a2 — ﬁz) #0. Then

1
q
1L, (fap)) <

b x % é
A </ ([ psintate =) asin@ @ - o)ra) da;)
Hf//// + (a2 +62) f// +042B2f”Lq([a7b]) . (9)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.7 of

1]. =

Next comes
) (a) =0,

Theorem 5 Let f € C*([a,b],K), where K =R or C, such that f) (a)
1=0,1,2,3, andp,q>1:%+%:1;ae]l§,a7é0. Then

Iz, (o)) <

1

o </b ([ b0 -a@-nesiat- t))|pdt> % dx> E

|79+ 202"+ a (10)

Ly([a,b])
Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.8 of

[1]. =
We continue with

Theorem 6 All as in Theorem 4. Then
1L, (fap)) <

1 </b (/“z josinh (8 (w = )) = Bsinh ( (z = )" dt) % dx) |

laf 18] |87 — 2]
(11)

wa (o + %) 1" + 5" Ly(lab)

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.9 of

[1]. =
We also give



Theorem 7 All as in Theorem 5. Then

11z, (aey <

2;'3 (/b (/ja(azt)cosh(a(mt))sinh(a(zt))|pdt>pdx>;

ot

=)

(12)

Ly([ab])

Proof. As similar to Theorem 1 is omitted. It is based on Corollary 3.10 of
1]. =
We make

Remark 8 The following come from [1]. Let K denote R or C, [a,b] C R.
For ¢ = (cg,...,cn) € K" with ¢, = 1, let the n-th order linear differential

operator
D.:C"([a,b],K) — C ([a,b],K)

be defined by the formula
D.(f) =caf ™+ .. +af +cof (f€C(ab],K)).
Let w. € C™ (R, C) denote the unique solution of the initial value problem
De(we) =0, WD (0) =0,y (€{0,...;n—1}). (13)
The function w. will be called the characteristic solution of D, (w) = 0.

Define

(Ta,cf) (z) = i (f(j) (@) Y cipgpw (@ — a)) ; (14)

) i=0
if fU)(a)=0,5=0,1,...,n— 1, then
(Taef) () =0, VY z € [a,b].

Theorem 9 ([1]) Let n € N, ¢ = (co, ..., ¢,) € K™ with ¢, = 1. Then for all
f ecn ([avb] >K); HAS [a,b], we have

f(@)=Toef) @)+ [ Dc(f)(t)we(z—1t)dt. (15)
If f9 (a)=0,7=0,1,...,n — 1, then
f@)= [ Dc(f) Q) we(z—1t)dt, (16)

V€ la,b.



We give the following general Poincaré type inequality.

Theorem 10 All as in Remark 8 and f9) (a) =0, j=10,1,...,n—1,p,g>1:
% + % = 1. Then

b T % %
|f||Lq([a7st( / ( / |wc<x—t>|pdt) dx> 1D (Dl any - (A7)

Proof. As similar to Theorem 1 is omitted. It is based on Remark 8 and
Theorem 9. m
Next follow Sobolev type inequalities.

Theorem 11 All as in Theorem 1, r > 0. Then

b T % %
||f||LT([a,b]>s< / ( / |sin<xt>f’dt> dz) 1"+ Floesy - (8)

Proof. As in (3) we have

p@l< ([ b= o) 174 s o (19)
and (by r > 0)
por s ([ sne-ora) 1 . @
V€ la,b].
Thus

r

b b z »
/ If(:v)lrdw<</ ([ inte- o) d:c> I+ W taay > D
d

1

b r b T %
(/ |f<x>|de> s(/ ( / |sin<x—t>|?dt) da:) TS .

(22)

ar

Slm

proving the claim. m

Theorem 12 All as in Theorem 2, r > 0. Then

1

b z 5 T
L. ([a,b]) < (/a (/a |sinh (z — t)|p dt) dm) Ilf — fHHLq([a,b]) . (23)

/]




Proof. As similar to Theorem 11 is omitted. m

Theorem 13 All as in Theorem 8, r > 0. Then

1 b T % %
2</ ([ ot~ 1) =sin (o - o ) dx> 1 ="y 2

Proof. As similar to Theorem 11 is omitted. m

Theorem 14 All as in Theorem 4, r > 0. Then

Iz, (fap)y <
1 by oqa N
o] 181167 - 02| </ (/ 1Bsin ( (= — 1)) — arsin (8 (= - t>>|”dt) dm)
||f//// + (a2 + 62) f// + a262f”Lq([a7b]) . (25)

Proof. As similar to Theorem 11 is omitted. m

Theorem 15 All as in Theorem 5, r > 0. Then

||f||LT([a,b]) <

1
T

o </ ([ a0 —at—teosaa- t))|pdt> % dx> |

Hf(4 +20&2f”+04

2
Ly ([a,b]) (6)

Proof. As similar to Theorem 11 is omitted. m

Theorem 16 All as in Theorem 6, r > 0. Then

|04|5|!;2—042| </b (/” |asinh (6 (¢ — ¢)) — sinh (@ (z —¢))” dt) ’ d:c) %

Hf (a® +B°) f" + B

. 27
Lg([a,b]) 27)

Proof. As similar to Theorem 11 is omitted. m



Theorem 17 All as in Theorem 7, r > 0. Then

1L, () <

1
T

2;3 </ab (/:la(x_t)COSh(a(x_t))_Sinh(a(a:—t))v’dt);dx)"

Hf(4 2a2f"+a

2
Ly ([a,b]) (8)

Proof. It is omitted. m

Theorem 18 All as in Theorem 10, r > 0. Then

b T % %
Iz, oy < (/ (/ we (z = )[° dt) dl’) I1De (DL, apy - (29

Proof. It is omitted. m
We continue with a collection of Hilbert-Pachaptted inequalities.

Theorem 19 Here j = 1,2. Let f; € C? (laj,b;], K), where K =R or C, such
that f; (a;) = fj(a;) =0, and p,q > 1: % + % =1. Then

/bl /bz |f1 (@1)]|f2 (22)] d21das <
|:f$1|sm(zl t1)|Pdts N 22 |sin(wa— tg)lth2:| -

q

(b1 — a1) (b2 — a2) |17 + fill ooy 15+ 2l (fazba)) - (30)

Proof. As in (3) we have

If1(z1)] < (/ |sin (z1 —t1)[" dt1> I+ fillz, an b)) - (31)

1

Vi € [ahbl] s
and

1
T2 E
el < ([ leinon - ) U Rl G2
as

Vo € [G,Q,bg] .
Hence we have

el < ([ - epan)” ([ e - wra)”

I+ fillz, o 12+ £l (fag ey < (33)



1 1

(using Young’s inequality for a,b > 0, a¥bs < £ + 2)

[ffs sin (1 — t1)|" dt; N ff; |sin (zg — t2)|th2]

SRS

p q

1Y+ Fullzy oo 15+ F2ll L (fazba)) - (34)

So far we have

[f1 ()] |f2 (x2)]
Jotlsin(@i—t)[Pdty - [72sin(za—t)]%dty | T
[t , Tt

1A+ Sl ey 12+ F2ll L, (as.ba)) > (35)

A (ml,xg) € [al,bl] X [ag,bg} .
The denominator in (35) can be zero only when both 21 = a1 and 23 = as.
Therefore we obtain (30), by integrating (35) over [a1,b1] X [ag,b2]. =

Theorem 20 All as in Theorem 19. Then
/b1 /b2 |f1 (x1)] | f2 (w2)] dz1dzs

fT1|bmh(z1 t1)|Pdt1 n f:;\sinh(xg—tg)\thg
q

(b1 —a1) (b2 — a2) || f1 — {/HLQ([al,bl]) 1f2 = §,||Lp([a2,b2}) : (36)
Proof. As similar to Theorem 19 is omitted. m

Theorem 21 Here j = 1,2. Let f; € C*([aj,b;],K), where K =R or C, such
that £\ (a;) =0, i=0,1,2,3, andp,q>1: 2 + 1 =1. Then

" [f1 @01z (2)]| dada §
|:f’151nh(1c1 t1)—sin(z1—t1)|Pdt1 n f:;sinh(wQ—tz)—sin(xQ—t2)|th2:| -

q

(b1 — al)

“p g

|2 - 5

(37)

q([a1,b1]) p([az,b2])

Proof. As similar to Theorem 19 is omitted. m
Theorem 22 Here j = 1,2. Let f; € C*([a;,b

that fj(z) (aj)=0,7=0,1,2,3, and p,qg > 1:
ap (o — %) #0. Then

K), where K =R or C, such

il
%4—%—1, Alsi let a, B € R with

/b1 /b2 |f1 (@) |f2 (z2)| dz1das
|: 1|8 sin(a(x1—t1))—asin(B(x1—t1))|Pdty n f:;|Bsin(a(wg—tg))—asin(ﬁ(a:g—tg))\thg

p q



(bl - al) b2 - a2

a2f? (8% -

Hfl (o2 +8%) J{ + a*B 1y

Lq([a1,b1])

Hf(4)+ o? + 8%) [} + a?p?

38
L ( ag,bz] ( )

Proof. It is omitted. m

Theorem 23 Here j = 1,2. Let f; € C*([aj,b;],K), where K =R or C, such
that f;z) (a;) =0,9=0,1,2,3, and p,q > 1: %—&—%: 1L, aeR, a#0. Then

/b1 /b2 Lf1 (z)] | f2 (2)] dardas
|:f11|s1n(a(7:1 t1)) a(rl t1) cos(a(xi—t1))|Pdty +f{ff\sin(a(:cz—tz))—a(mz—tz)cos(a(mg—tz))lthg

q

(b1 —a1) (b
dab

0 sars s

2~ 02) Hf1(4) +2a2f] + ot fy

Lq([a1,b1])

Ly([az,b2))

Proof. It is omitted. m

Theorem 24 All as in Theorem 22. Then

/bl /b2 |f1 (@1)] [ f2 (z2)| dz1dxo
a1 Jas |:ff11|asinh(ﬁ(:vltl))ﬁsinh(a(xltl))”dtl " fam;‘OéSinh(B(sztz))fﬁSillh(a(mgftz))lthg
P q

(b1 - al) b2 - CL2

a?f? (8% -

Hh (o2 + %) Ji + a*?

L ([(Ll,bl

H Y= (0?4 8% f + 2B (40)

L (a2 bg]

Proof. It is omitted. m

Theorem 25 All as in Theorem 23. Then

/bl /b2 ‘fl (-Tl)‘ |f2 (x2)| dmldﬂfg
[f‘1|a x1—t1) cosh(a(z,— t1)) sinh(o(z1—t1))|Pdty f:22|04(12 t) cosh(a(za—ts))—sinh(a(zs—ts))|9dts
q

(b1 —a1) (be
408

175 = 2025 + 0o

! Hf1(4) —20°f' +a'fy

Lq([a1,b1])

(41)

Ly([az,b2))

Proof. It is omitted. m
‘We finish with



Theorem 26 Let j = 1,2. Here f; € C*([aj,b;],K), where K = R or C,
and f]@ (aj) = 0,4 =0,1,...,n — 1. All the rest are as in Remark 8 and
p,q>1:%—|—1 =1. Then

|

le\Wc(M t1)|Pdty +f;22\wc(l2 t2)|?dt2
q

/b1 /b2 |f1 (x1)] | f2 (22)] dz1dzs

(b1 — a1) (b2 — a2) | De (fl)”Lq([al,bl]) |De (f2)||L,,([a2,b2]) : (42)

Proof. It is omitted. m
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