A GENERALIZATION OF BUZANO'S INEQUALITY IN TERMS OF TWO OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract. Let H be a complex Hilbert space. If $A, B \in \mathcal{B}(H)$ such that

$$
\nabla(B, A):=2 \operatorname{Re}\left(B^{*} A\right)-|B|^{2} \geq 0
$$

then for $x, y \in H$,

$$
\left.\left.\left.\left.\frac{1}{2}\left[\left.\langle | A\right|^{2} x, x\right\rangle^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}+|\langle | A|^{2} x, y\right\rangle \mid\right] \geq|\langle\nabla(B, A) x, y\rangle| .
$$

For $A=I$ and $B=P$, we get the recent generalization of Buzano inequlity for projections,

$$
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle P x, y\rangle|
$$

Applications for operator norm and numerical radius inequalities are also provided.

1. Introduction

Let $(H,\langle\cdot, \cdot\rangle)$ be an inner product space over the real or complex numbers field \mathbb{K}. The following inequality is well known in literature as the Schwarz inequality

$$
\begin{equation*}
\|x\|\|y\| \geq|\langle x, y\rangle| \text { for any } x, y \in H \tag{1.1}
\end{equation*}
$$

The equality case holds in (1.1) if and only if there exists a constant $\lambda \in \mathbb{K}$ such that $x=\lambda y$.

In 1985 the author [3] (see also [5, p. 38]) established the following refinement of (1.1):

$$
\begin{equation*}
\|x\|\|y\| \geq|\langle x, y\rangle-\langle x, e\rangle\langle e, y\rangle|+|\langle x, e\rangle\langle e, y\rangle| \geq|\langle x, y\rangle| \tag{1.2}
\end{equation*}
$$

for any $x, y, e \in H$ with $\|e\|=1$.
Using the triangle inequality for modulus we have by (1.2) that

$$
\|x\|\|y\| \geq|\langle x, y\rangle-\langle x, e\rangle\langle e, y\rangle|+|\langle x, e\rangle\langle e, y\rangle| \geq 2|\langle x, e\rangle\langle e, y\rangle|-|\langle x, y\rangle|,
$$

which implies the Buzano inequality [2]

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle x, e\rangle\langle e, y\rangle| \tag{1.3}
\end{equation*}
$$

that holds for any $x, y, e \in H$ with $\|e\|=1$.
In [8] we obtained the following result that extends Buzano's inequality for projections:

[^0]Theorem 1. Let $P: H \rightarrow H$ be an orthogonal projection on H. Then for any $x, y \in H$ we have the inequality

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle P x, y\rangle| \tag{1.4}
\end{equation*}
$$

For many inequalities related to Schwarz's inequality in inner product spaces, see [4] and [5].

Let $(H ;\langle\cdot, \cdot\rangle)$ be a complex Hilbert space. The numerical range of an operator T is the subset of the complex numbers \mathbb{C} given by $[9, \mathrm{p} .1]$:

$$
W(T)=\{\langle T x, x\rangle, x \in H,\|x\|=1\}
$$

The numerical radius $\omega(T)$ of an operator T on H is defined by [9, p. 8]:

$$
\omega(T)=\sup \{|\lambda|, \lambda \in W(T)\}=\sup \{|\langle T x, x\rangle|,\|x\|=1\}
$$

It is well known that $\omega(\cdot)$ is a norm on the Banach algebra $B(H)$ and the following inequality holds true

$$
\omega(T) \leq\|T\| \leq 2 \omega(T), \text { for any } T \in B(H)
$$

Utilizing Buzano's inequality (1.3) we obtained the following inequality for the numerical radius [6]:
Theorem 2. Let $(H ;\langle\cdot, \cdot\rangle)$ be a Hilbert space and $T: H \rightarrow H$ a bounded linear operator on H. Then

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left[\omega\left(T^{2}\right)+\|T\|^{2}\right] \tag{1.5}
\end{equation*}
$$

The constant $\frac{1}{2}$ is best possible in (1.5).
By utilizing Theorem 1 we also obtained in [8] the following result as well:
Theorem 3. Let $P: H \rightarrow H$ be an orthogonal projection on the Hilbert space $(H,\langle\cdot, \cdot\rangle)$. If A, B are two bounded linear operators on H, then

$$
\begin{equation*}
\omega(B P A) \leq \frac{1}{2}[\|A\|\|B\|+\omega(B A)] \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|B P A\| \leq \frac{1}{2}[\|A\|\|B\|+\|B A\|] \tag{1.7}
\end{equation*}
$$

Also, we have:
Corollary 1. Let $P: H \rightarrow H$ be an orthogonal projection on the Hilbert space $(H,\langle\cdot, \cdot\rangle)$. If A, B are two bounded linear operators on H, then

$$
\begin{equation*}
w(B P A) \leq \frac{1}{2} w(B A)+\frac{1}{4}\left\||A|^{2}+\left|B^{*}\right|^{2}\right\| \tag{1.8}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
w(A P A) \leq \frac{1}{2} w\left(A^{2}\right)+\frac{1}{4}\left\||A|^{2}+\left|A^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For several inequalities related to the numerical radius, see [7] and the recent monograph [1].

Motivated by the above results, we provide in this paper a generalization of Buzano's inequality for two operators satisfying a certain condition that incorporates the case when one is a projection and then also extends the previous result
(1.4). Applications for operator norm and numerical radius inequalities are also provided.

2. Main Results

We start to the following result:
Theorem 4. Let $A, B \in \mathcal{B}(H)$ such that $|B-A|^{2} \leq|A|^{2}$ or, equivalently

$$
\nabla(B, A):=2 \operatorname{Re}\left(B^{*} A\right)-|B|^{2} \geq 0
$$

Then for $x, y \in H$,

$$
\begin{align*}
& \left.\left.\left.\langle | A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2} \tag{2.1}\\
& \left.\geq|\langle\nabla(B, A) x, y\rangle|+|\langle | A|^{2} x, y\right\rangle-\langle\nabla(B, A) x, y\rangle\left|\geq|\langle | A|^{2} x, y\right\rangle \mid
\end{align*}
$$

Also

$$
\begin{equation*}
\left.\left.\left.\left.\frac{1}{2}\left[\left.\langle | A\right|^{2} x, x\right\rangle^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}+|\langle | A|^{2} x, y\right\rangle \mid\right] \geq|\langle\nabla(B, A) x, y\rangle| \tag{2.2}
\end{equation*}
$$

for $x, y \in H$.
Proof. Observe that for $x \in H$,

$$
\begin{aligned}
\|A x-B x\|^{2} & =\langle A x, A x\rangle-\langle A x, B x\rangle-\langle B x, A x\rangle+\langle B x, B x\rangle \\
& =\left\langle A^{*} A x, x\right\rangle-\left\langle B^{*} A x, x\right\rangle-\overline{\left\langle B^{*} A x, x\right\rangle}+\left\langle B^{*} B x, x\right\rangle \\
& \left.\left.=\left.\langle | A\right|^{2} x, x\right\rangle-2 \operatorname{Re}\left\langle B^{*} A x, x\right\rangle+\left.\langle | B\right|^{2} x, x\right\rangle
\end{aligned}
$$

Also

$$
\begin{aligned}
\left\langle 2 \operatorname{Re}\left(B^{*} A\right) x, x\right\rangle & =\left\langle\left(B^{*} A+A^{*} B\right) x, x\right\rangle=\left\langle B^{*} A x, x\right\rangle+\left\langle A^{*} B x, x\right\rangle \\
& =\left\langle B^{*} A x, x\right\rangle+\left\langle x, B^{*} A x\right\rangle=\left\langle B^{*} A x, x\right\rangle+\overline{\left\langle B^{*} A x, x\right\rangle} \\
& =2 \operatorname{Re}\left\langle B^{*} A x, x\right\rangle
\end{aligned}
$$

which gives that

$$
\begin{aligned}
\|A x-B x\|^{2} & \left.\left.=\left.\langle | A\right|^{2} x, x\right\rangle-\left\langle 2 \operatorname{Re}\left(B^{*} A\right) x, x\right\rangle+\left.\langle | B\right|^{2} x, x\right\rangle \\
& \left.=\left.\langle | A\right|^{2} x, x\right\rangle-\left\langle\left[2 \operatorname{Re}\left(B^{*} A\right)-|B|^{2}\right] x, x\right\rangle \\
& \left.=\left.\langle | A\right|^{2} x, x\right\rangle-\langle\nabla(B, A) x, x\rangle \geq 0
\end{aligned}
$$

for $x \in H$.
Similarly, for all $y \in H$,

$$
\left.\|A y-B y\|^{2}=\left.\langle | A\right|^{2} y, y\right\rangle-\langle\nabla(B, A) y, y\rangle \geq 0
$$

Also, we have

$$
\begin{aligned}
\langle A x-B x, A y-B y\rangle & =\langle A x, A y\rangle-\langle B x, A y\rangle-\langle A x, B y\rangle+\langle B x, B y\rangle \\
& \left.\left.=\left.\langle | A\right|^{2} x, y\right\rangle-\left\langle A^{*} B x, y\right\rangle-\left\langle B^{*} A x, y\right\rangle+\left.\langle | B\right|^{2} x, y\right\rangle \\
& \left.=\left.\langle | A\right|^{2} x, y\right\rangle-\left\langle\left[A^{*} B+B^{*} A-|B|^{2}\right] x, y\right\rangle \\
& \left.=\left.\langle | A\right|^{2} x, y\right\rangle-\left\langle\left[2 \operatorname{Re}\left(B^{*} A\right)-|B|^{2}\right] x, y\right\rangle \\
& \left.=\left.\langle | A\right|^{2} x, y\right\rangle-\langle\nabla(B, A) x, y\rangle
\end{aligned}
$$

for all $x, y \in H$.
By Schwarz's inequality, we get

$$
\|A x-B x\|^{2}\|A y-B y\|^{2} \geq|\langle A x-B x, A y-B y\rangle|^{2}
$$

which gives that

$$
\begin{align*}
& \left.\left.\left(\left.\langle | A\right|^{2} x, x\right\rangle-\langle\nabla(B, A) x, x\rangle\right)\left(\left.\langle | A\right|^{2} y, y\right\rangle-\langle\nabla(B, A) y, y\rangle\right) \tag{2.3}\\
& \left.\geq|\langle | A|^{2} x, y\right\rangle-\left.\langle\nabla(B, A) x, y\rangle\right|^{2}
\end{align*}
$$

for all $x, y \in H$.
By the elementary inequality $(a c-b d)^{2} \geq\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)$, which holds for any real numbers a, b, c, d,

$$
\begin{align*}
& \left.\left.\left.\left(\left.\langle | A\right|^{2} x, x\right\rangle^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}-\langle\nabla(B, A) x, x\rangle^{1 / 2}\langle\nabla(B, A) y, y\rangle^{1 / 2}\right)^{2} \tag{2.4}\\
& \left.\left.\geq\left(\left.\langle | A\right|^{2} x, x\right\rangle-\langle\nabla(B, A) x, x\rangle\right)\left(\left.\langle | A\right|^{2} y, y\right\rangle-\langle\nabla(B, A) y, y\rangle\right)
\end{align*}
$$

for all $x, y \in H$.
Since $\left.\left.\langle | A\right|^{2} x, x\right\rangle^{1 / 2} \geq\langle\nabla(B, A) x, x\rangle^{1 / 2}$ and $\left.\left.\langle | A\right|^{2} y, y\right\rangle^{1 / 2} \geq\langle\nabla(B, A) y, y\rangle^{1 / 2}$, then

$$
\left.\left.\left.\langle | A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}-\langle\nabla(B, A) x, x\rangle^{1 / 2}\langle\nabla(B, A) y, y\rangle^{1 / 2} \geq 0
$$

for all $x, y \in H$.
By (2.3) and (2.4) we get

$$
\begin{aligned}
& \left.\left.\left.\left(\left.\langle | A\right|^{2} x, x\right\rangle^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}-\langle\nabla(B, A) x, x\rangle^{1 / 2}\langle\nabla(B, A) y, y\rangle^{1 / 2}\right)^{2} \\
& \left.\geq|\langle | A|^{2} x, y\right\rangle-\left.\langle\nabla(B, A) x, y\rangle\right|^{2}
\end{aligned}
$$

for all $x, y \in H$, and by taking the square root, we get

$$
\begin{aligned}
& \left.\left.\left.\langle | A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}-\langle\nabla(B, A) x, x\rangle^{1 / 2}\langle\nabla(B, A) y, y\rangle^{1 / 2} \\
& \left.\geq|\langle | A|^{2} x, y\right\rangle-\langle\nabla(B, A) x, y\rangle \mid
\end{aligned}
$$

which gives that

$$
\begin{align*}
& \left.\left.\left.\langle | A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2} \tag{2.5}\\
& \left.\geq\langle\nabla(B, A) x, x\rangle^{1 / 2}\langle\nabla(B, A) y, y\rangle^{1 / 2}+|\langle | A|^{2} x, y\right\rangle-\langle\nabla(B, A) x, y\rangle \mid
\end{align*}
$$

for all $x, y \in H$.
By the Schwarz inequality for nonnegative operators we have

$$
\begin{equation*}
\langle\nabla(B, A) x, x\rangle^{1 / 2}\langle\nabla(B, A) y, y\rangle^{1 / 2} \geq|\langle\nabla(B, A) x, y\rangle| \tag{2.6}
\end{equation*}
$$

for all $x, y \in H$.
By utilizing (2.5) and (2.6) we deduce the first inequality in (2.1). By the triangle inequality for the modulus we deduce the last part of (2.1).

Since, by the triangle inequality

$$
\left.|\langle | A|^{2} x, y\right\rangle-\langle\nabla(B, A) x, y\rangle\left|\geq|\langle\nabla(B, A) x, y\rangle|-|\langle | A|^{2} x, y\right\rangle \mid
$$

then

$$
\begin{aligned}
& \left.|\langle\nabla(B, A) x, y\rangle|+|\langle | A|^{2} x, y\right\rangle-\langle\nabla(B, A) x, y\rangle \mid \\
& \left.\geq 2|\langle\nabla(B, A) x, y\rangle|-|\langle | A|^{2} x, y\right\rangle \mid
\end{aligned}
$$

which produces (2.2).
Corollary 2. Let $B \in \mathcal{B}(H)$ such that $|B-I|^{2} \leq I$ or, equivalently

$$
\nabla(B):=2 \operatorname{Re}\left(B^{*}\right)-|B|^{2} \geq 0
$$

Then for $x, y \in H$,

$$
\begin{equation*}
\|x\|\|y\| \geq|\langle\nabla(B) x, y\rangle|+|\langle x, y\rangle-\langle\nabla(B) x, y\rangle| \geq|\langle x, y\rangle| \tag{2.7}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle\nabla(B) x, y\rangle| \tag{2.8}
\end{equation*}
$$

for $x, y \in H$.
Remark 1. If $B=P$, a projector, then

$$
\nabla(P)=2 P-P^{2}=2 P-P=P \geq 0
$$

and by (2.7) and (2.8) we derive the results obtained in [8]

$$
\begin{equation*}
\|x\|\|y\| \geq|\langle P x, y\rangle|+|\langle x, y\rangle-\langle P x, y\rangle| \geq|\langle x, y\rangle| \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle P x, y\rangle| \tag{2.10}
\end{equation*}
$$

for $x, y \in H$.
Corollary 3. Let $A \in \mathcal{B}(H)$ such that $|A-I|^{2} \leq|A|^{2}$ or, equivalently,

$$
\nabla(A):=2 \operatorname{Re}(A)-I \geq 0
$$

Then for $x, y \in H$,

$$
\begin{align*}
\left.\left.\left.\langle | A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2} & \left.\geq|\langle\nabla(A) x, y\rangle|+|\langle | A|^{2} x, y\right\rangle-\langle\nabla(A) x, y\rangle \mid \tag{2.11}\\
& \left.\geq|\langle | A|^{2} x, y\right\rangle \mid
\end{align*}
$$

Also

$$
\begin{equation*}
\left.\left.\left.\left.\frac{1}{2}\left[\left.\langle | A\right|^{2} x, x\right\rangle^{1 / 2}\langle | A\right|^{2} y, y\right\rangle^{1 / 2}+|\langle | A|^{2} x, y\right\rangle \mid\right] \geq|\langle\nabla(A) x, y\rangle| \tag{2.12}
\end{equation*}
$$

for $x, y \in H$.
Remark 2. Let $C \in \mathcal{B}(H)$ such that $\operatorname{Re} C \geq 0$. By taking $A=\frac{1}{2}(I+C)$, we get that

$$
\nabla\left(\frac{1}{2}(I+C)\right):=2 \operatorname{Re}\left(\frac{1}{2}(I+C)\right)-I=\operatorname{Re} C \geq 0
$$

and by (2.12) we get

$$
\left.\left.\left.\frac{1}{8}\left[\langle | I+\left.C\right|^{2} x, x\right\rangle^{1 / 2}\langle | I+\left.C\right|^{2} y, y\right\rangle^{1 / 2}+|\langle | I+C|^{2} x, y\right\rangle \mid\right] \geq|\langle\operatorname{Re} C x, y\rangle|
$$

for $x, y \in H$.
This is equivalent to

$$
\begin{equation*}
\left.\left.\frac{1}{8}\left[\|x+C x\|\|y+C y\|+|\langle | I+C|^{2} x, y\right\rangle \right\rvert\,\right] \geq|\langle\operatorname{Re} C x, y\rangle| \tag{2.13}
\end{equation*}
$$

for $x, y \in H$.
If $Q \geq 0$, then by (2.13) we get

$$
\begin{equation*}
\frac{1}{8}\left[\|x+Q x\|\|y+Q y\|+\left|\left\langle(I+Q)^{2} x, y\right\rangle\right|\right] \geq|\langle Q x, y\rangle| \tag{2.14}
\end{equation*}
$$

for $x, y \in H$.

3. Applications for Numerical Radius

We have the following inequalities for the operator norm and numerical radius:
Theorem 5. Let $A, B \in \mathcal{B}(H)$ such that $\nabla(B, A):=2 \operatorname{Re}\left(B^{*} A\right)-|B|^{2} \geq 0$. Then for all $T, V \in \mathcal{B}(H)$

$$
\begin{equation*}
\|V \nabla(B, A) T\| \leq \frac{1}{2}\left(\||A| T\|\|V|A|\|+\left\|V|A|^{2} T\right\|\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(V \nabla(B, A) T) \leq \frac{1}{2}\left(\||A| T\|\|V|A|\|+\omega\left(V|A|^{2} T\right)\right) \tag{3.2}
\end{equation*}
$$

Proof. From (2.2) we get, by replacing x with $T x$ and y with $V^{*} y$, that

$$
\begin{aligned}
& \left.\left.\left.\left.\frac{1}{2}\left[\left.\langle | A\right|^{2} T x, T x\right\rangle^{1 / 2}\langle | A\right|^{2} V^{*} y, V^{*} y\right\rangle^{1 / 2}+|\langle | A|^{2} T x, V^{*} y\right\rangle \mid\right] \\
& \geq\left|\left\langle\nabla(B, A) T x, V^{*} y\right\rangle\right|
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
& \left.\left.\left.\left.\frac{1}{2}\left[\left.\left\langle T^{*}\right| A\right|^{2} T x, x\right\rangle^{1 / 2}\langle V| A\right|^{2} V^{*} y, y\right\rangle^{1 / 2}+|\langle V| A|^{2} T x, y\right\rangle \mid\right] \tag{3.3}\\
& \geq|\langle V \nabla(B, A) T x, y\rangle|,
\end{align*}
$$

for $x, y \in H$.
Observe that $T^{*}|A|^{2} T=\| A|T|^{2}$ and $V|A|^{2} V^{*}=\| A\left|V^{*}\right|^{2}$ and by (3.3) we obtain

$$
\begin{align*}
& |\langle V \nabla(B, A) T x, y\rangle| \tag{3.4}\\
& \left.\left.\left.\leq\left.\frac{1}{2}\left[\left.\langle ||A| T\right|^{2} x, x\right\rangle^{1 / 2}\langle ||A| V^{*}\right|^{2} y, y\right\rangle^{1 / 2}+|\langle V| A|^{2} T x, y\right\rangle \mid\right]
\end{align*}
$$

for $x, y \in H$.
Now, if we take the supremum over $\|x\|=\|y\|=1$, then we get

$$
\begin{aligned}
& \|V \nabla(B, A) T\| \\
& =\sup _{\|x\|=\|y\|=1}|\langle V \nabla(B, A) T x, y\rangle| \\
& \left.\left.\left.\leq\left.\frac{1}{2} \sup _{\|x\|=\|y\|=1}\left[\left.\langle\| A| T\right|^{2} x, x\right\rangle^{1 / 2}\langle\| A| V^{*}\right|^{2} y, y\right\rangle^{1 / 2}+|\langle V| A|^{2} T x, y\right\rangle \mid\right] \\
& \left.\left.\leq\left.\frac{1}{2} \sup _{\|x\|=\|y\|=1}\left[\left.\langle\| A| T\right|^{2} x, x\right\rangle^{1 / 2}\langle\| A| V^{*}\right|^{2} y, y\right\rangle^{1 / 2}\right] \\
& \left.+\frac{1}{2} \sup _{\|x\|=\|y\|=1}|\langle V| A|^{2} T x, y\right\rangle\left.\right|^{1 / 2}\| \| A\left|V^{*}\right|^{2}\left\|^{1 / 2}+\frac{1}{2}\right\| V|A|^{2} T \| \\
& =\frac{1}{2}\| \| A|T|^{2}\left\|^{1 / 2}\right\| \| \\
& =\frac{1}{2}\left(\||A| T\|\|V|A|\|+\left\|V|A|^{2} T\right\|\right),
\end{aligned}
$$

which proves (3.1).
From (3.4) we also have

$$
\begin{align*}
& |\langle V \nabla(B, A) T x, x\rangle| \tag{3.5}\\
& \left.\left.\left.\leq\left.\frac{1}{2}\left[\left.\langle ||A| T\right|^{2} x, x\right\rangle^{1 / 2}\langle ||A| V^{*}\right|^{2} x, x\right\rangle^{1 / 2}+|\langle V| A|^{2} T x, x\right\rangle \mid\right]
\end{align*}
$$

for $x \in H$.
If we take the supremum over $\|x\|=1$, then we get

$$
\begin{aligned}
& \omega(V \nabla(B, A) T) \\
& =\sup _{\|x\|=1}|\langle V \nabla(B, A) T x, x\rangle| \\
& \left.\left.\left.\leq\left.\frac{1}{2} \sup _{\|x\|=1}\left[\left.\langle\| A| T\right|^{2} x, x\right\rangle^{1 / 2}\langle\| A| V^{*}\right|^{2} x, x\right\rangle^{1 / 2}+|\langle V| A|^{2} T x, x\right\rangle \mid\right] \\
& \left.\left.\leq\left.\frac{1}{2} \sup _{\|x\|=1}\langle\| A| T\right|^{2} x, x\right\rangle\left.^{1 / 2} \sup _{\|x\|=1}\langle\| A| V^{*}\right|^{2} x, x\right\rangle^{1 / 2} \\
& \left.+\frac{1}{2} \sup _{\|x\|=1}|\langle V| A|^{2} T x, x\right\rangle\left.\right|^{1 / 2} \\
& =\frac{1}{2}\left[\| \| A|T|^{2}\left\|^{1 / 2}\right\|\left\|A\left|V^{*}\right|^{2}\right\|^{1 / 2}+\omega\left(V|A|^{2} T\right)\right] \\
& =\frac{1}{2}\left(\||A| T\|\|V|A|\|+\omega\left(V|A|^{2} T\right)\right)
\end{aligned}
$$

which proves (3.2).

Corollary 4. Let $B \in \mathcal{B}(H)$ such that $\nabla(B):=2 \operatorname{Re}\left(B^{*}\right)-|B|^{2} \geq 0$. Then for all $T, V \in \mathcal{B}(H)$

$$
\|V \nabla(B) T\| \leq \frac{1}{2}(\|T\|\|V\|+\|V T\|)
$$

and

$$
\omega(V \nabla(B) T) \leq \frac{1}{2}(\|T\|\|V\|+\omega(V T)) .
$$

Remark 3. If we take $B=P$, a projection in H, in Corollary 4, then we recapture the results from Theorem 3.
Corollary 5. Let $A \in \mathcal{B}(H)$ such that $\nabla(A):=2 \operatorname{Re}(A)-I \geq 0$. Then for all $T, V \in \mathcal{B}(H)$

$$
\|V \nabla(A) T\| \leq \frac{1}{2}\left(\||A| T\|\|V|A|\|+\left\|V|A|^{2} T\right\|\right)
$$

and

$$
\omega(V \nabla(A) T) \leq \frac{1}{2}\left(\||A| T\|\|V|A|\|+\omega\left(V|A|^{2} T\right)\right) .
$$

Remark 4. Let $C \in \mathcal{B}(H)$ such that $\operatorname{Re} C \geq 0$. Then for all $T, V \in \mathcal{B}(H)$

$$
\|V(\operatorname{Re} C) T\| \leq \frac{1}{8}\left(\||I+C| T\|\|V|I+C|\|+\left\|V|I+C|^{2} T\right\|\right)
$$

and

$$
\omega(V(\operatorname{Re} C) T) \leq \frac{1}{8}\left(\||I+C| T\|\|V|I+C|\|+\omega\left(V|I+C|^{2} T\right)\right) .
$$

If $Q \geq 0$, then by taking $C=Q$, we get

$$
\|V Q T\| \leq \frac{1}{8}\left(\|(I+Q) T\|\|V(I+Q)\|+\left\|V(I+Q)^{2} T\right\|\right)
$$

and

$$
\omega(V Q T) \leq \frac{1}{8}\left(\|(I+Q) T\|\|V(I+Q)\|+\omega\left(V(I+Q)^{2} T\right)\right) .
$$

Also we have:
Theorem 6. Let $A, B \in \mathcal{B}(H)$ such that $\nabla(B, A):=2 \operatorname{Re}\left(B^{*} A\right)-|B|^{2} \geq 0$. Then for all $T, V \in \mathcal{B}(H)$

$$
\begin{equation*}
\omega(V \nabla(B, A) T) \leq \frac{1}{2}\left[\left\|\frac{\left\|A|T|^{2}+\right\| A\left|V^{*}\right|^{2}}{2}\right\|+\omega\left(V|A|^{2} T\right)\right] . \tag{3.6}
\end{equation*}
$$

Proof. Observe that

$$
\begin{aligned}
\left.\left.\left.\langle\| A| T\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle\| A| V^{*}\right|^{2} x, x\right\rangle^{1 / 2} & \left.\left.\leq \frac{1}{2}\left(\left.\langle\| A| T\right|^{2} x, x\right\rangle+\left.\langle ||A| V^{*}\right|^{2} x, x\right\rangle\right) \\
& =\left\langle\frac{\left\|A|T|^{2}+\right\| A\left|V^{*}\right|^{2}}{2} x, x\right\rangle
\end{aligned}
$$

for $x \in H,\|x\|=1$.
By using (3.5) we get

$$
\left.\left.|\langle V \nabla(B, A) T x, x\rangle| \leq \frac{1}{2}\left[\left\langle\frac{\left\|A|T|^{2}+\right\| A\left|V^{*}\right|^{2}}{2} x, x\right\rangle+|\langle V| A|^{2} T x, x\right\rangle \right\rvert\,\right],
$$

for $x \in H,\|x\|=1$.

If we take the supremum over $\|x\|=1$, then we get

$$
\begin{aligned}
\omega(V \nabla(B, A) T) & =\sup _{\|x\|=1}|\langle V \nabla(B, A) T x, x\rangle| \\
& \left.\left.\leq \frac{1}{2} \sup _{\|x\|=1}\left[\left\langle\frac{\left\|A|T|^{2}+\right\| A\left|V^{*}\right|^{2}}{2} x, x\right\rangle+|\langle V| A|^{2} T x, x\right\rangle \right\rvert\,\right] \\
& \left.\left.\leq \frac{1}{2}\left[\sup _{\|x\|=1}\left\langle\frac{\left\|A|T|^{2}+\right\| A\left|V^{*}\right|^{2}}{2} x, x\right\rangle+\sup _{\|x\|=1}|\langle V| A|^{2} T x, x\right\rangle \right\rvert\,\right] \\
& =\frac{1}{2}\left[\left\|\frac{\left\|A|T|^{2}+\right\| A\left|V^{*}\right|^{2}}{2}\right\|+\omega\left(V|A|^{2} T\right)\right]
\end{aligned}
$$

which proves (3.6).
Corollary 6. Let $B \in \mathcal{B}(H)$ such that $\nabla(B):=2 \operatorname{Re}\left(B^{*}\right)-|B|^{2} \geq 0$. Then for all $T, V \in \mathcal{B}(H)$,

$$
\omega(V \nabla(B) T) \leq \frac{1}{2}\left[\left\|\frac{|T|^{2}+\left|V^{*}\right|^{2}}{2}\right\|+\omega(V T)\right]
$$

Remark 5. If we take $B=P$, a projection in H, in Corollary 6, then we recapture a result from Corollary 1, [8]

$$
\omega(V P T) \leq \frac{1}{2}\left[\left\|\frac{|T|^{2}+\left|V^{*}\right|^{2}}{2}\right\|+\omega(V T)\right]
$$

Corollary 7. Let $A \in \mathcal{B}(H)$ such that $\nabla(A):=2 \operatorname{Re}(A)-I \geq 0$. Then for all $T, V \in \mathcal{B}(H)$,

$$
\omega(V \nabla(A) T) \leq \frac{1}{2}\left[\left\|\frac{\| A|T|^{2}+\left||A| V^{*}\right|^{2}}{2}\right\|+\omega\left(V|A|^{2} T\right)\right]
$$

Let $C \in \mathcal{B}(H)$ such that $\operatorname{Re} C \geq 0$. Then for all $T, V \in \mathcal{B}(H)$

$$
\omega(V(\operatorname{Re} C) T) \leq \frac{1}{4}\left[\left\|\frac{\left\|I+C|T|^{2}+\right\| I+C\left|V^{*}\right|^{2}}{2}\right\|+\frac{1}{2} \omega\left(V|I+C|^{2} T\right)\right]
$$

If $Q \geq 0$, then by taking $C=Q$, we get

$$
\begin{gathered}
\omega(V Q T) \leq \frac{1}{4}\left[\left\|\frac{|(I+Q) T|^{2}+\left|(I+Q) V^{*}\right|^{2}}{2}\right\|+\frac{1}{2} \omega\left(V(I+Q)^{2} T\right)\right] . \\
\text { REFERENCES }
\end{gathered}
$$

[1] P. Bhunia, S. S. Dragomir, M. S. Moslehian, and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, 2022, XII+ 209 pp. ISBN: 978-3-031-13670-2. https://doi.org/10.1007/978-3-031-13670-2
[2] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
[3] S. S. Dragomir, Some refinements of Schwartz inequality, Simpozionul de Matematici şi Aplicaţii, Timişoara, Romania, 1-2 Noiembrie 1985, 13-16.
[4] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces. Nova Science Publishers, Inc., Hauppauge, NY, 2005. viii+249 pp. ISBN: 1-59454-202-3.
[5] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, Inc., NY, 2007, 243 pages. ISBN-10: 1594549036, ISBN-13: 978-1594549038.
[6] S. S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces. Demonstratio Math. 40 (2007), no. 2, 411-417.
[7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces. Springer Briefs in Mathematics. Springer, 2013. x+120 pp. ISBN: 978-3-319-01447-0; 978-3-319-01448-7.
[8] S. S. Dragomir, Buzano's inequality holds for any projection, Bulletin of the Australian Mathematical Society, Volume 93, Issue 3, June 2016, pp. 504-510.
[9] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.
${ }^{1}$ Mathematics, College of Sport, Health \& Engineering,, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded linear operators, Numerical radius, Schwarz inequality, Buzano inequality.

