POWER INEQUALITIES FOR THE NUMERICAL RADIUS IN TERMS OF GENERALIZED ALUTHGE TRANSFORM OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let H be a complex Hilbert space. In this paper we show among others that, if $S, V \in \mathcal{B}(H), r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then $$
\omega^{2 r}(S V) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|S^{*}\right|^{2 p r}+\frac{1}{q}|V|^{2 q r}\right\|+\omega^{r}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right)
$$

Moreover, if $T=U|T|$ is the polar decomposition of the bounded linear operator T with U a partial isometry, then $$
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq \frac{1}{2}\left(\left\|\frac{1}{p}|T|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\|T\|^{2 r}\right)
$$ where $\Delta_{t}(T):=|T|^{t} U|T|^{1-t}, t \in[0,1]$ is the generalized Aluthge transform.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} . \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} . \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [13], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) . \tag{1.4}
\end{equation*}
$$

[^0]Utilizing the Cartesian decomposition for operators, F. Kittaneh in [14] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [11]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [10] and [5].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T with U a partial isometry. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=$ $|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $\omega(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[15]$.

Utilizing this transform T. Yamazaki, [15] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in B(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
For $t \in(0,1)$

$$
\Delta_{t}(T):=|T|^{t} U|T|^{1-t}
$$

is the generalized Aluthge transform introduced in by Cho and Tanahashi in [9].
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right) \tag{1.11}
\end{equation*}
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.12}
\end{equation*}
$$

Also, if we put $|T|^{0}=I$, then $\Delta_{0}(T):=U|T|=T$.
In [4] Bunia et al. also proved that

$$
\begin{equation*}
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\} \tag{1.13}
\end{equation*}
$$

which for $t=1 / 2$ gives (1.10) as well.
Motivated by the above results, in this paper we show among others that, if S, $V \in \mathcal{B}(H), r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then

$$
\omega^{2 r}(S V) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|S^{*}\right|^{2 p r}+\frac{1}{q}|V|^{2 q r}\right\|+\omega^{r}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right)
$$

Moreover, we have

$$
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq \frac{1}{2}\left(\left\|\frac{1}{p}|T|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\|T\|^{2 r}\right)
$$

for $t \in[0,1]$

2. Main Results

We recall the following vector inequality for positive operators $A \geq 0$, obtained by C. A. McCarthy in [8]

$$
\langle A x, x\rangle^{p} \leq\left\langle A^{p} x, x\right\rangle, p \geq 1
$$

for $x \in H,\|x\|=1$ and Buzano's inequality [7],

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle x, e\rangle\langle e, y\rangle| \tag{2.1}
\end{equation*}
$$

that holds for any $x, y, e \in H$ with $\|e\|=1$.
Also recall the following result for operator matrices obtained by F. Kittaneh in [12]:

Lemma 1. Let $A, B, C \in \mathcal{B}(H)$ with $A, B \geq 0$. Then the operator matrix

$$
\left[\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive, if and only if

$$
|\langle C x, y\rangle|^{2} \leq\langle A x, x\rangle\langle B y, y\rangle
$$

for all $x, y \in H$.
We need the following results that are of interest in themselves:
Lemma 2. Let $A, B, C \in \mathcal{B}(H)$ with $A, B \geq 0$. If the operator matrix

$$
\left[\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right] \in B(H \oplus H)
$$

is positive then for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$,

$$
\begin{equation*}
\omega^{2 r}(C) \leq\left\|\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right\| \tag{2.2}
\end{equation*}
$$

If $r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(C) \leq \frac{1}{2}\left[\|A\|^{r}\|B\|^{r}+\omega^{r}(B A)\right] \tag{2.3}
\end{equation*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{equation*}
\omega^{2 r}(C) \leq \frac{1}{2}\left(\left\|\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right\|+\omega^{r}(B A)\right) \tag{2.4}
\end{equation*}
$$

Proof. Let $x \in H$ with $\|x\|=1$. Then by Lemma 1 we get

$$
|\langle C x, x\rangle|^{2} \leq\langle A x, x\rangle\langle B x, x\rangle
$$

If we take the power $r>0$, we get, by Young and McCarthy inequalities that

$$
\begin{aligned}
|\langle C x, x\rangle|^{2 r} & \leq\langle A x, x\rangle^{r}\langle B x, x\rangle^{r} \leq \frac{1}{p}\langle A x, x\rangle^{p r}+\frac{1}{q}\langle B x, x\rangle^{q r} \\
& \leq \frac{1}{p}\left\langle A^{p r} x, x\right\rangle+\frac{1}{q}\left\langle B^{q r} x, x\right\rangle=\left\langle\left(\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right) x, x\right\rangle
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$, then we get that

$$
\begin{aligned}
\omega^{2 r}(C) & =\sup _{\|x\|=1}|\langle C x, x\rangle|^{2 r} \leq \sup _{\|x\|=1}\left\langle\left(\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right) x, x\right\rangle \\
& =\left\|\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right\|
\end{aligned}
$$

which proves (2.2).
Further, using Buzano's inequality, we have

$$
|\langle C x, x\rangle|^{2} \leq\langle A x, x\rangle\langle B x, x\rangle \leq \frac{\|A x\|\|B x\|+|\langle A x, B x\rangle|}{2}
$$

By taking the power $r \geq 1$ and using the convexity of the power function, we get

$$
\begin{align*}
|\langle C x, x\rangle|^{2 r} & \leq\left(\frac{\|A x\|\|B x\|+|\langle A x, B x\rangle|}{2}\right)^{r} \tag{2.5}\\
& \leq \frac{\|A x\|^{r}\|B x\|^{r}+|\langle A x, B x\rangle|^{r}}{2}=\frac{\|A x\|^{r}\|B x\|^{r}+|\langle B A x, x\rangle|^{r}}{2}
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$, then we get that

$$
\begin{aligned}
\omega^{2 r}(C) & =\sup _{\|x\|=1}|\langle C x, x\rangle|^{2 r} \leq \sup _{\|x\|=1}\left(\frac{\|A x\|^{r}\|B x\|^{r}+|\langle B A x, x\rangle|^{r}}{2}\right) \\
& \leq \frac{1}{2}\left(\sup _{\|x\|=1}\left\{\|A x\|^{r}\|B x\|^{r}\right\}+\sup _{\|x\|=1}|\langle B A x, x\rangle|^{r}\right) \\
& \leq \frac{1}{2}\left(\sup _{\|x\|=1}\|A x\|^{r} \sup _{\|x\|=1}\|B x\|^{r}+\sup _{\|x\|=1}|\langle B A x, x\rangle|^{r}\right) \\
& =\frac{1}{2}\left(\|A\|^{r}\|B\|^{r}+\omega^{r}(B A)\right)
\end{aligned}
$$

and the inequality (2.3) is proved.

From (2.5) we also have

$$
\begin{aligned}
|\langle C x, x\rangle|^{2 r} & \leq \frac{1}{2}\left(\|A x\|^{r}\|B x\|^{r}+|\langle A x, B x\rangle|^{r}\right) \\
& \leq \frac{1}{2}\left(\frac{1}{p}\|A x\|^{p r}+\frac{1}{q}\|B x\|^{q r}+|\langle A x, B x\rangle|^{r}\right) \\
& =\frac{1}{2}\left(\frac{1}{p}\|A x\|^{\frac{p r}{2}}+\frac{1}{q}\|B x\|^{2 \frac{q r}{2}}+|\langle A x, B x\rangle|^{r}\right) \\
& =\frac{1}{2}\left(\frac{1}{p}\left\langle A^{2} x, x\right\rangle^{\frac{p r}{2}}+\frac{1}{q}\left\langle B^{2} x, x\right\rangle^{\frac{q r}{2}}+|\langle A x, B x\rangle|^{r}\right) \\
& \leq \frac{1}{2}\left(\frac{1}{p}\left\langle A^{p r} x, x\right\rangle+\frac{1}{q}\left\langle B^{q r} x, x\right\rangle+|\langle A x, B x\rangle|^{r}\right) \\
& =\frac{1}{2}\left(\left\langle\left(\frac{1}{p} A^{p r}+\frac{1}{q} B^{q r}\right) x, x\right\rangle+|\langle A x, B x\rangle|^{r}\right)
\end{aligned}
$$

and by taking the supremum over $\|x\|=1$, we derive (2.4).
Remark 1. With the assumptions in Lemma 2, if we take $p=q=2$ and assume that $r \geq \frac{1}{2}$, then from (2.2) we get

$$
\omega^{2 r}(C) \leq \frac{1}{2}\left\|A^{2 r}+B^{2 r}\right\|
$$

which for $r=\frac{1}{2}$ gives

$$
\omega(C) \leq \frac{1}{2}\|A+B\|
$$

while for $r=1$ gives the result from [3]

$$
\omega^{2}(C) \leq \frac{1}{2}\left\|A^{2}+B^{2}\right\|
$$

If we take in (2.2) $r=1$, then we get

$$
\omega^{2}(C) \leq\left\|\frac{1}{p} A^{p}+\frac{1}{q} B^{q}\right\|
$$

for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
If we take $r=1$ in (2.3) then we get the result from [3]

$$
\omega^{2}(C) \leq \frac{1}{2}[\|A\|\|B\|+\omega(B A)]
$$

while for $r=2$,

$$
\omega^{4}(C) \leq \frac{1}{2}\left[\|A\|^{2}\|B\|^{2}+\omega^{2}(B A)\right] .
$$

Also, if we take $p=q=2$ and $r \geq 1$ in (2.4), then we get

$$
\omega^{2 r}(C) \leq \frac{1}{2}\left(\frac{1}{2}\left\|A^{2 r}+B^{2 r}\right\|+\omega^{r}(B A)\right)
$$

In particular, for $r=1$ we derive the result obtained in [3]

$$
\omega^{2}(C) \leq \frac{1}{2}\left(\frac{1}{2}\left\|A^{2}+B^{2}\right\|+\omega(B A)\right)
$$

Moreover, if $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and take $r=2$ in (2.4), then we derive the inequality

$$
\omega^{4}(C) \leq \frac{1}{2}\left(\left\|\frac{1}{p} A^{2 p}+\frac{1}{q} B^{2 q}\right\|+\omega^{2}(B A)\right)
$$

which for $p=q=2$ provides

$$
\omega^{4}(C) \leq \frac{1}{2}\left(\frac{1}{2}\left\|A^{4}+B^{4}\right\|+\omega^{2}(B A)\right)
$$

We also have:
Theorem 1. Let $S, V \in \mathcal{B}(H)$, then for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$,

$$
\begin{equation*}
\omega^{2 r}(S V) \leq\left\|\frac{1}{p}\left|S^{*}\right|^{2 p r}+\frac{1}{q}|V|^{2 q r}\right\| \tag{2.6}
\end{equation*}
$$

If $r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(S V) \leq \frac{1}{2}\left[\|S\|^{2 r}\|V\|^{2 r}+\omega^{r}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right] \tag{2.7}
\end{equation*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{equation*}
\omega^{2 r}(S V) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|S^{*}\right|^{2 p r}+\frac{1}{q}|V|^{2 q r}\right\|+\omega^{r}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right) \tag{2.8}
\end{equation*}
$$

Proof. Observe that the operator matrix

$$
\left[\begin{array}{cc}
S S^{*} & S V \\
V^{*} S^{*} & V^{*} V
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive. Then by Lemma 2 for $A=\left|S^{*}\right|^{2}, B=|V|^{2}$ and $C=V^{*} S^{*}$ we get the desired inequalities (2.6)-(2.8).

Remark 2. With the assumptions of Theorem 1, if we take $p=q=2$ and assume that $r \geq \frac{1}{2}$, then from (2.6) we get

$$
\omega^{2 r}(S V) \leq \frac{1}{2}\left\|\left|S^{*}\right|^{4 r}+|V|^{4 r}\right\|
$$

If we take $r=\frac{1}{2}$, then we obtain the known result

$$
\omega(S V) \leq \frac{1}{2}\left\|\left|S^{*}\right|^{2}+|V|^{2}\right\|
$$

while for $r=1$, the result from [3]

$$
\omega^{2}(S V) \leq \frac{1}{2}\left\|\left|S^{*}\right|^{4}+|V|^{4}\right\|
$$

If we take in (2.6) $r=1$, then we get

$$
\omega^{2}(S V) \leq\left\|\frac{1}{p}\left|S^{*}\right|^{2 p}+\frac{1}{q}|V|^{2 q}\right\|
$$

where $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
If we take $r=1$ in (2.7), then we get, see also [3]

$$
\omega^{2}(S V) \leq \frac{1}{2}\left[\|S\|^{2}\|V\|^{2}+\omega\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right]
$$

while for $r=2$,

$$
\omega^{4}(S V) \leq \frac{1}{2}\left[\|S\|^{4}\|V\|^{4}+\omega^{2}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right]
$$

Also, if we take $p=q=2$ and $r \geq 1$ in (2.8), then we get

$$
\omega^{2 r}(S V) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|S^{*}\right|^{4 r}+|V|^{4 r}\right\|+\omega^{r}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right)
$$

In particular, for $r=1$ we derive the result obtained in [3]

$$
\omega^{2}(S V) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|S^{*}\right|^{4}+|V|^{4}\right\|+\omega\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right) .
$$

Moreover, if $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and take $r=2$ in (2.8), then we derive the inequality

$$
\omega^{4}(S V) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|S^{*}\right|^{4 p}+\frac{1}{q}|V|^{4 q}\right\|+\omega^{2}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right)
$$

which for $p=q=2$ provides

$$
\omega^{4}(S V) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|S^{*}\right|^{8}+\frac{1}{q}|V|^{8}\right\|+\omega^{2}\left(|V|^{2}\left|S^{*}\right|^{2}\right)\right)
$$

We also have:
Lemma 3. Let $A, B, C \in \mathcal{B}(H)$ with $A, B \geq 0$. If the operator matrix

$$
\left[\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right] \in B(H \oplus H)
$$

is positive then for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\begin{equation*}
\omega^{2}(C) \leq\left\|(1-\alpha) A^{r}+\alpha B^{r}\right\|^{1 / r}\|A\|^{\alpha}\|B\|^{1-\alpha} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2}(C) \leq\left\|(1-\alpha) A^{r}+\alpha B^{r}\right\|^{1 / r}\left\|\alpha A^{r}+(1-\alpha) B^{r}\right\|^{1 / r} \tag{2.10}
\end{equation*}
$$

Proof. From Lemma 1 we have for $\alpha \in[0,1]$ that

$$
\begin{aligned}
|\langle C x, x\rangle|^{2} & \leq\langle A x, x\rangle\langle B x, x\rangle=\langle A x, x\rangle^{1-\alpha}\langle B x, x\rangle^{\alpha}\langle A x, x\rangle^{\alpha}\langle B x, x\rangle^{1-\alpha} \\
& \leq[(1-\alpha)\langle A x, x\rangle+\alpha\langle B x, x\rangle]\langle A x, x\rangle^{\alpha}\langle B x, x\rangle^{1-\alpha}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
If we take the power $r \geq 1$, then we get by the convexity of power r

$$
\begin{align*}
|\langle C x, x\rangle|^{2 r} & \leq[(1-\alpha)\langle A x, x\rangle+\alpha\langle B x, x\rangle]^{r}\langle A x, x\rangle^{r \alpha}\langle B x, x\rangle^{r(1-\alpha)} \tag{2.11}\\
& \leq\left[(1-\alpha)\langle A x, x\rangle^{r}+\alpha\langle B x, x\rangle^{r}\right]\langle A x, x\rangle^{r \alpha}\langle B x, x\rangle^{r(1-\alpha)} .
\end{align*}
$$

If we use McCarthy inequality for power $r \geq 1$, then we get

$$
\begin{aligned}
(1-\alpha)\langle A x, x\rangle^{r}+\alpha\langle B x, x\rangle^{r} & \leq(1-\alpha)\left\langle A^{r} x, x\right\rangle+\alpha\left\langle B^{r} x, x\right\rangle \\
& =\left\langle\left[(1-\alpha) A^{r}+\alpha B^{r}\right] x, x\right\rangle
\end{aligned}
$$

and by (2.11), we obtain

$$
\begin{aligned}
|\langle C x, x\rangle|^{2 r} & \leq[(1-\alpha)\langle A x, x\rangle+\alpha\langle B x, x\rangle]^{r}\langle A x, x\rangle^{r \alpha}\langle B x, x\rangle^{r(1-\alpha)} \\
& \leq\left\langle\left[(1-\alpha) A^{r}+\alpha B^{r}\right] x, x\right\rangle\langle A x, x\rangle^{r \alpha}\langle B x, x\rangle^{r(1-\alpha)}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
If we take the supremum over $\|x\|=1$, then we get

$$
\begin{aligned}
\omega^{2 r}(C) & =\sup _{\|x\|=1}|\langle C x, x\rangle|^{2 r} \\
& \leq \sup _{\|x\|=1}\left\{\left\langle\left[(1-\alpha) A^{r}+\alpha B^{r}\right] x, x\right\rangle\langle A x, x\rangle^{r \alpha}\langle B x, x\rangle^{r(1-\alpha)}\right\} \\
& \leq \sup _{\|x\|=1}\left\{\left\langle\left[(1-\alpha) A^{r}+\alpha B^{r}\right] x, x\right\rangle\right\} \sup _{\|x\|=1}\langle B A x, x\rangle^{r \alpha} \sup _{\|x\|=1}\langle B x, x\rangle^{r(1-\alpha)} \\
& =\left\|(1-\alpha) A^{r}+\alpha B^{r}\right\|\|A\|^{r \alpha}\|B\|^{r(1-\alpha)},
\end{aligned}
$$

which is equivalent to (2.9).
Similarly

$$
\begin{aligned}
|\langle C x, x\rangle|^{2} & \leq\langle A x, x\rangle\langle B x, x\rangle=\langle A x, x\rangle^{1-\alpha}\langle B x, x\rangle^{\alpha}\langle A x, x\rangle^{\alpha}\langle B x, x\rangle^{1-\alpha} \\
& \leq[(1-\alpha)\langle A x, x\rangle+\alpha\langle B x, x\rangle][\alpha\langle A x, x\rangle+(1-\alpha)\langle B x, x\rangle]
\end{aligned}
$$

which gives that

$$
|\langle C x, x\rangle|^{2 r} \leq\left\langle\left[(1-\alpha) A^{r}+\alpha B^{r}\right] x, x\right\rangle\left\langle\left[\alpha A^{r}+(1-\alpha) B^{r}\right] x, x\right\rangle
$$

for all $x \in H,\|x\|=1$. This proves (2.10).
Corollary 1. With the assumption of Lemma 3, we have

$$
\begin{equation*}
\omega^{2}(C) \leq \frac{1}{2^{1 / r}}\left\|A^{r}+B^{r}\right\|^{1 / r}\|A\|^{1 / 2}\|B\|^{1 / 2} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(C) \leq \frac{1}{2^{1 / r}}\left\|A^{r}+B^{r}\right\|^{1 / r} \tag{2.13}
\end{equation*}
$$

We have:
Theorem 2. Let $S, V \in \mathcal{B}(H)$, then for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\begin{equation*}
\omega^{2}(S V) \leq\left\|(1-\alpha)\left|S^{*}\right|^{2 r}+\alpha|V|^{2 r}\right\|^{1 / r}\|S\|^{2 \alpha}\|V\|^{2(1-\alpha)} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2}(S V) \leq\left\|(1-\alpha)\left|S^{*}\right|^{2 r}+\alpha|V|^{2 r}\right\|^{1 / r}\left\|\alpha\left|S^{*}\right|^{2 r}+(1-\alpha)|V|^{2 r}\right\|^{1 / r} \tag{2.15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\omega^{2}(S V) \leq \frac{1}{2^{1 / r}}\left\|\left|S^{*}\right|^{2 r}+|V|^{2 r}\right\|^{1 / r}\|S\|\|V\| \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(S V) \leq \frac{1}{2^{1 / r}}\left\|\left|S^{*}\right|^{2 r}+|V|^{2 r}\right\|^{1 / r} \tag{2.17}
\end{equation*}
$$

Proof. We take in Lemma $3 A=\left|S^{*}\right|^{2}, B=|V|^{2}$ and $C=V^{*} S^{*}$ to get the desired inequalities.

3. Applications for Generalized Aluthge Transform

We have the following inequalities for one operator:
Theorem 3. Let $T \in \mathcal{B}(H)$ and $t \in[0,1]$, then

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\frac{1}{p}\left|T^{*}\right|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\| \tag{3.1}
\end{equation*}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
Also, for $r \geq 1$,

$$
\begin{equation*}
\omega^{2 r}(T) \leq \frac{1}{2}\left[\|T\|^{2 r}+\omega^{r}\left(|T|^{2(1-t)}\left|T^{*}\right|^{2 t}\right)\right] \tag{3.2}
\end{equation*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then

$$
\begin{equation*}
\omega^{2 r}(T) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|T^{*}\right|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\omega^{r}\left(|T|^{2(1-t)}\left|T^{*}\right|^{2 t}\right)\right) \tag{3.3}
\end{equation*}
$$

Moreover, if $\alpha \in[0,1]$ and $r \geq 1$, then

$$
\begin{equation*}
\omega^{2}(T) \leq\left\|(1-\alpha)\left|T^{*}\right|^{2 t r}+\alpha|T|^{2(1-t) r}\right\|^{1 / r}\|T\|^{2[t \alpha+(1-t)(1-\alpha)]} \tag{3.4}
\end{equation*}
$$

Proof. If we take $S=U|T|^{t}$ and $V=|T|^{1-t}$ in (2.6) and observe that $S V=$ $U|T|=T$,

$$
\left|S^{*}\right|^{2}=S S^{*}=U|T|^{t}|T|^{t} U^{*}=U|T|^{2 t} U^{*}=\left|T^{*}\right|^{2 t}
$$

then

$$
\omega^{2 r}(T) \leq\left\|\frac{1}{p}\left|T^{*}\right|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|
$$

which proves (3.1).
The same choice of S and V in (2.7) gives

$$
\begin{equation*}
\omega^{2 r}(T) \leq \frac{1}{2}\left[\left\|U|T|^{t}\right\|^{2 r}\|T\|^{2(1-t) r}+\omega^{r}\left(|T|^{2(1-t)}\left|T^{*}\right|^{2 t}\right)\right] \tag{3.5}
\end{equation*}
$$

Observe that

$$
|S|^{2}=S^{*} S=|T|^{t} U^{*} U|T|^{t}=|T|^{t}|T|^{t}=|T|^{2 t}
$$

since U is an isometry on $\operatorname{ran}(|T|)$. Then $\left\|U|T|^{t}\right\|^{2 r}=\|T\|^{2 r t}$ and by (3.5) we get (3.2).

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then by (2.8) we get (3.3).
Further, if we use (2.14) for $S=U|T|^{t}$ and $V=|T|^{1-t}$ we also get for $\alpha \in[0,1]$ and $r \geq 1$ that

$$
\begin{aligned}
\omega^{2}(T) & \leq\left\|(1-\alpha)\left|T^{*}\right|^{2 t r}+\alpha|T|^{2(1-t) r}\right\|^{1 / r}\|T\|^{2 t \alpha}\|T\|^{2(1-t)(1-\alpha)} \\
& =\left\|(1-\alpha)\left|T^{*}\right|^{2 t r}+\alpha|T|^{2(1-t) r}\right\|^{1 / r}\|T\|^{2[t \alpha+(1-t)(1-\alpha)]}
\end{aligned}
$$

which proves (3.4).
Corollary 2. Let $T \in \mathcal{B}(H)$, then

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\frac{1}{p}\left|T^{*}\right|^{p r}+\frac{1}{q}|T|^{q r}\right\| \tag{3.6}
\end{equation*}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.

Also, for $r \geq 1$

$$
\begin{equation*}
\omega^{2 r}(T) \leq \frac{1}{2}\left[\|T\|^{2 r}+\omega^{r}\left(|T|\left|T^{*}\right|\right)\right] \tag{3.7}
\end{equation*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then

$$
\begin{equation*}
\omega^{2 r}(T) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|T^{*}\right|^{p r}+\frac{1}{q}|T|^{q r}\right\|+\omega^{r}\left(|T|\left|T^{*}\right|\right)\right) . \tag{3.8}
\end{equation*}
$$

Moreover, if $\alpha \in[0,1]$ and $r \geq 1$, then

$$
\begin{equation*}
\omega^{2}(T) \leq\left\|(1-\alpha)\left|T^{*}\right|^{r}+\alpha|T|^{r}\right\|^{1 / r}\|T\| \tag{3.9}
\end{equation*}
$$

Remark 3. If we take $r=1$ in (3.6), then we get

$$
\omega^{2}(T) \leq\left\|\frac{1}{p}\left|T^{*}\right|^{p}+\frac{1}{q}|T|^{q}\right\|
$$

for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. In particular, for $p=q=2$ we get

$$
\omega^{2}(T) \leq \frac{1}{2}\left\|\left|T^{*}\right|^{2}+|T|^{2}\right\|
$$

If we take $r=1$ in (3.2), then we get

$$
\omega^{2}(T) \leq \frac{1}{2}\left[\|T\|^{2}+\omega\left(|T|^{2(1-t)}\left|T^{*}\right|^{2 t}\right)\right]
$$

If $r=1$ and $p=q=2$, then by (3.8) we get

$$
\omega^{2}(T) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|T^{*}\right|^{2}+|T|^{2}\right\|+\omega\left(|T|\left|T^{*}\right|\right)\right)
$$

If we take $r=2$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ in (3.8), then we obtain

$$
\omega^{4}(T) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|T^{*}\right|^{2 p}+\frac{1}{q}|T|^{2 q}\right\|+\omega^{2}\left(|T|\left|T^{*}\right|\right)\right)
$$

which for $p=q=2$ gives

$$
\omega^{4}(T) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|T^{*}\right|^{4}+|T|^{4}\right\|+\omega^{2}\left(|T|\left|T^{*}\right|\right)\right)
$$

We also have:
Theorem 4. Let $T \in \mathcal{B}(H)$ and $t \in[0,1]$, then

$$
\begin{equation*}
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq\left\|\left.\left.\frac{1}{p}\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\| \tag{3.10}
\end{equation*}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
Also

$$
\begin{equation*}
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq \frac{1}{2}\left[\|T\|^{2 r}+\omega^{r}\left(|T|^{2-t} U U^{*}|T|^{t}\right)\right] \tag{3.11}
\end{equation*}
$$

for $r \geq 1$.
Moreover,

$$
\begin{align*}
& \omega^{2 r}\left(\Delta_{t}(T)\right) \tag{3.12}\\
& \leq \frac{1}{2}\left(\left\|\left.\left.\frac{1}{p}\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\omega^{r}\left(|T|^{2-t} U U^{*}|T|^{t}\right)\right)
\end{align*}
$$

for $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$.
Also, for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\begin{equation*}
\omega^{2}\left(\Delta_{t}(T)\right) \leq\left\|\left.\left.(1-\alpha)\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\alpha|T|^{2(1-t) q r}\right\|^{1 / r}\|T\|^{2[t \alpha+(1-t)(1-\alpha)]} \tag{3.13}
\end{equation*}
$$

Proof. If we take $S=|T|^{t} U$ and $V=|T|^{1-t}$ in (2.6) and observe that $S V=$ $|T|^{t} U|T|^{1-t}=\Delta_{t}(T)$, then we get

$$
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq\left\|\left.\left.\frac{1}{p}\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|
$$

With the same choice and by using (2.7) we derive

$$
\begin{aligned}
\omega^{2 r}\left(\Delta_{t}(T)\right) & \leq \frac{1}{2}\left[\left\||T|^{t} U\right\|^{2 r}\|T\|^{2(1-t) r}+\omega^{r}\left(|T|^{2(1-t)}|T|^{t} U U^{*}|T|^{t}\right)\right] \\
& =\frac{1}{2}\left[\left\||T|^{t} U\right\|^{2 r}\|T\|^{2(1-t) r}+\omega^{r}\left(|T|^{2-t} U U^{*}|T|^{t}\right)\right] \\
& \leq \frac{1}{2}\left[\|T\|^{2 t r}\|T\|^{2(1-t) r}+\omega^{r}\left(|T|^{2-t} U U^{*}|T|^{t}\right)\right] \\
& =\frac{1}{2}\left[\|T\|^{2 r}+\omega^{r}\left(|T|^{2-t} U U^{*}|T|^{t}\right)\right]
\end{aligned}
$$

which proves (3.11).
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then from (2.8) we get (3.12).
If we take $S=|T|^{t} U$ and $V=|T|^{1-t}$ in (2.14) then for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\begin{aligned}
& \omega^{2}\left(\Delta_{t}(T)\right) \\
& \leq\left\|\left.\left.(1-\alpha)\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\alpha|T|^{2(1-t) q r}\right\|^{1 / r}\left\||T|^{t} U\right\|^{2 \alpha}\|T\|^{2(1-t)(1-\alpha)} \\
& \leq\left\|\left.\left.(1-\alpha)\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\alpha|T|^{2(1-t) q r}\right\|^{1 / r}\|T\|^{2 t \alpha}\|T\|^{2(1-t)(1-\alpha)} \\
& =\left\|\left.\left.(1-\alpha)\left|U^{*}\right| T\right|^{t}\right|^{2 p r}+\alpha|T|^{2(1-t) q r}\right\|^{1 / r}\|T\|^{2[t \alpha+(1-t)(1-\alpha)]}
\end{aligned}
$$

which proves (3.13).
For $t=1 / 2$ we obtain the following inequalities for the Aluthge transform \widetilde{T}.
Corollary 3. Let $T \in \mathcal{B}(H)$, then

$$
\begin{equation*}
\omega^{2 r}(\widetilde{T}) \leq\left\|\left.\left.\frac{1}{p}\left|U^{*}\right| T\right|^{1 / 2}\right|^{2 p r}+\frac{1}{q}|T|^{q r}\right\| \tag{3.14}
\end{equation*}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
Also

$$
\begin{equation*}
\omega^{2 r}(\widetilde{T}) \leq \frac{1}{2}\left[\|T\|^{2 r}+\omega^{r}\left(|T|^{3 / 2} U U^{*}|T|^{1 / 2}\right)\right] \tag{3.15}
\end{equation*}
$$

for $r \geq 1$.
Moreover,

$$
\begin{equation*}
\omega^{2 r}(\widetilde{T}) \leq \frac{1}{2}\left(\left\|\left.\left.\frac{1}{p}\left|U^{*}\right| T\right|^{1 / 2}\right|^{2 p r}+\frac{1}{q}|T|^{q r}\right\|+\omega^{r}\left(|T|^{3 / 2} U U^{*}|T|^{1 / 2}\right)\right) \tag{3.16}
\end{equation*}
$$

for $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$.
Also, for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\begin{equation*}
\omega^{2}(\widetilde{T}) \leq\left\|\left.\left.(1-\alpha)\left|U^{*}\right| T\right|^{1 / 2}\right|^{2 p r}+\alpha|T|^{q r}\right\|^{1 / r}\|T\| \tag{3.17}
\end{equation*}
$$

For $t=1$ we also obtain the following results for the Dougal transform \widehat{T}.
Corollary 4. Let $T \in \mathcal{B}(H)$, then

$$
\omega^{2 r}(\widehat{T}) \leq\left\|\frac{1}{p}\left|(\widehat{T})^{*}\right|^{2 p r}+\frac{1}{q} I\right\|
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
Also

$$
\omega^{2 r}(\widehat{T}) \leq \frac{1}{2}\left[\|T\|^{2 r}+\|\widehat{T}\|^{2 r}\right]
$$

for $r \geq 1$.
Moreover,

$$
\omega^{2 r}(\widehat{T}) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|(\widehat{T})^{*}\right|^{2 p r}+\frac{1}{q} I\right\|+\|\widehat{T}\|^{2 r}\right)
$$

for $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$.
Also, for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\omega^{2}(\widehat{T}) \leq\left\|(1-\alpha)\left|(\widehat{T})^{*}\right|^{2 p r}+\alpha I\right\|^{1 / r}\|T\|^{2 \alpha}
$$

For $t=0$ we also get:
Corollary 5. Let $T \in \mathcal{B}(H)$, then

$$
\omega^{2 r}(T) \leq\left\|\frac{1}{p}\left|U^{*}\right|^{2 p r}+\frac{1}{q}|T|^{2 q r}\right\|
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
Also

$$
\omega^{2 r}(T) \leq \frac{1}{2}\left[\|T\|^{2 r}+\omega^{r}\left(|T|^{2} U U^{*}\right)\right]
$$

for $r \geq 1$.
Moreover,

$$
\omega^{2 r}(T) \leq \frac{1}{2}\left(\left\|\frac{1}{p}\left|U^{*}\right|^{2 p r}+\frac{1}{q}|T|^{2 q r}\right\|+\omega^{r}\left(|T|^{2} U U^{*}\right)\right)
$$

for $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$.
Also, for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\omega^{2}(T) \leq\left\|(1-\alpha)\left|U^{*}\right|^{2 p r}+\alpha|T|^{2 q r}\right\|^{1 / r}\|T\|^{2(1-\alpha)}
$$

We also have the following upper bounds for the numerical radius of generalized Aluthge transform:

Theorem 5. Let $T \in \mathcal{B}(H)$ and $t \in[0,1]$, then

$$
\begin{equation*}
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq\left\|\frac{1}{p}|T|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\| \tag{3.18}
\end{equation*}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then

$$
\begin{equation*}
\omega^{2 r}\left(\Delta_{t}(T)\right) \leq \frac{1}{2}\left(\left\|\frac{1}{p}|T|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\|T\|^{2 r}\right) \tag{3.19}
\end{equation*}
$$

Also, for $\alpha \in[0,1]$ and $r \geq 1$,

$$
\begin{equation*}
\omega^{2}\left(\Delta_{t}(T)\right) \leq\left\|(1-\alpha)|T|^{2 t r}+\alpha|T|^{2(1-t) r}\right\|^{1 / r}\|T\|^{2[t \alpha+(1-t)(1-\alpha)]} \tag{3.20}
\end{equation*}
$$

Proof. If we take $S=|T|^{t}$ and $V=U|T|^{1-t}$ and observe that $S V=|T|^{t} U|T|^{1-t}=$ $\Delta_{t}(T)$,

$$
|V|^{2 q r}=\left(V^{*} V\right)^{q r}=\left(|T|^{1-t} U^{*} U|T|^{1-t}\right)^{q r}=|T|^{2(1-t) q r}
$$

then by (2.6) we get (3.18).
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then by the same choices in (2.8) we obtain

$$
\begin{aligned}
\omega^{2 r}\left(\Delta_{t}(T)\right) & \leq \frac{1}{2}\left(\left\|\frac{1}{p}|T|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\omega^{r}\left(|T|^{2(1-t)}|T|^{2 t}\right)\right) \\
& =\frac{1}{2}\left(\left\|\frac{1}{p}|T|^{2 t p r}+\frac{1}{q}|T|^{2(1-t) q r}\right\|+\|T\|^{2 r}\right)
\end{aligned}
$$

which proves (3.19).
For $\alpha \in[0,1]$ and $r \geq 1$, then by (2.14) we get

$$
\begin{aligned}
\omega^{2}\left(\Delta_{t}(T)\right) & \leq\left\|(1-\alpha)|T|^{2 t r}+\alpha|T|^{2(1-t) r}\right\|^{1 / r}\|T\|^{2 t \alpha}\|T\|^{2(1-t)(1-\alpha)} \\
& =\left\|(1-\alpha)|T|^{2 t r}+\alpha|T|^{2(1-t) r}\right\|^{1 / r}\|T\|^{2[t \alpha+(1-t)(1-\alpha)]}
\end{aligned}
$$

which proves (3.20).

Remark 4. If we take $t=1 / 2$ in (3.18) then we get

$$
\begin{equation*}
\omega^{2 r}(\widetilde{T}) \leq\left\|\frac{1}{p}|T|^{p r}+\frac{1}{q}|T|^{q r}\right\| \tag{3.21}
\end{equation*}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then by (3.19) we obtain

$$
\begin{equation*}
\omega^{2 r}(\widetilde{T}) \leq \frac{1}{2}\left(\left\|\frac{1}{p}|T|^{p r}+\frac{1}{q}|T|^{q r}\right\|+\|T\|^{2 r}\right) \tag{3.22}
\end{equation*}
$$

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bunia, Improved bounds for the numerical radius via polar decomposition of operators, Preprint, http://arxiv.org/abs/2303.03051v1
[4] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[5] P. Bhunia , S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[6] P. Bhunia, K. Feki and K. Paul, Numerical radius inequalities for products and sums of semi-Hilberian space operators, Filomat Vol 36 (2022), No. 4.
[7] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
[8] C. A. McCarthy, C_{p}, Israel J. Math. 5 (1967), 249-271.
[9] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[10] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[11] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[12] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
[13] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[14] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
[15] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dougal transform, Partial isometry, Numerical radius.

