GENERAL INEQUALITIES FOR THE NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } H \text { be a complex Hilbert space. Assume that } f \text { and } g \text { are non- } \\
& \text { negative functions on }[0, \infty) \text { which are continuous and satisfying the relation } \\
& f(t) g(t)=t \text { for all } t \in[0, \infty) \text {. In this paper we show among others that, if } A \text {, } \\
& B, T \in \mathcal{B}(H) \text { and } r \geq 1 \text {, then } \\
& \qquad \omega^{2 r}(B T A) \\
& \quad \leq \frac{1}{2}\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

In particular, for $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$, we derive

$$
\begin{aligned}
& \omega^{2 r}(B T A) \\
& \leq \frac{1}{2}\left(\left\||T|^{\lambda} A\right\|^{2 r}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2 r}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|^{r}\right)
\end{aligned}
$$

for $r \geq 1$.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [6], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

[^0]Utilizing the Cartesian decomposition for operators, F. Kittaneh in [7] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [3]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [2] and [1].

In 1988, F. Kittaneh obtained the following generalization of Schwarz inequality [5]:

Theorem 1. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. For any $T \in \mathcal{B}(H)$

$$
\begin{equation*}
|\langle T x, y\rangle| \leq\|f(|T|) x\|\left\|g\left(\left|T^{*}\right|\right) y\right\| \tag{1.10}
\end{equation*}
$$

for all $x, y \in H$.
If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$, then we obtain Kato's inequality [4]

$$
\begin{equation*}
|\langle T x, y\rangle| \leq\left\||T|^{\lambda} x\right\|\left\|\left|T^{*}\right|^{1-\lambda} y\right\| \tag{1.11}
\end{equation*}
$$

for all $x, y \in H$.
Motivated by the above results, in this paper we obtain among others the following inequalities for the numerical radius

$$
\begin{aligned}
& \omega^{2 r}(B T A) \\
& \leq \frac{1}{2}\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

where f and g are non-negative functions on $[0, \infty)$ that are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty), A, B, T \in \mathcal{B}(H)$ and $r \geq 1$.

2. Main Results

We start with the following result:
Theorem 2. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. For any A, B, $T \in \mathcal{B}(H)$ we have

$$
\begin{equation*}
\|B T A\| \leq\|f(|T|) A\|\left\|B g\left(\left|T^{*}\right|\right)\right\| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(B T A) \leq \frac{1}{2}\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\| \tag{2.2}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\omega^{2}(B T A) \leq \frac{1}{2}\left[\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right] \tag{2.3}
\end{equation*}
$$

Proof. Observe that by (1.10) we have

$$
\begin{aligned}
|\langle T x, y\rangle|^{2} & \leq\|f(|T|) x\|^{2}\left\|g\left(\left|T^{*}\right|\right) y\right\|^{2} \\
& =\langle f(|T|) x, f(|T|) x\rangle\left\langle g\left(\left|T^{*}\right|\right) y, g\left(\left|T^{*}\right|\right) y\right\rangle \\
& =\left\langle f^{2}(|T|) x, x\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) y, y\right\rangle
\end{aligned}
$$

for all $x, y \in H$.
If we take $A x$ instead of x and $B^{*} y$ instead of y, then we get

$$
\begin{aligned}
\left|\left\langle T A x, B^{*} y\right\rangle\right|^{2} & \leq\left\langle f^{2}(|T|) A x, A x\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) B^{*} y, B^{*} y\right\rangle \\
& =\left\langle A^{*} f^{2}(|T|) A x, x\right\rangle\left\langle B g^{2}\left(\left|T^{*}\right|\right) B^{*} y, y\right\rangle \\
& =\left\langle(f(|T|) A x)^{*} f(|T|) A x, x\right\rangle\left\langle\left(g\left(\left|T^{*}\right|\right) B^{*}\right)^{*} g\left(\left|T^{*}\right|\right) B^{*} y, y\right\rangle \\
& \left.\left.=\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle
\end{aligned}
$$

namely

$$
\begin{equation*}
\left.\left.|\langle B T A x, y\rangle|^{2} \leq\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle \tag{2.4}
\end{equation*}
$$

for all $x, y \in H$.
Therefore

$$
\begin{aligned}
\|B T A\|^{2} & =\sup _{\|x\|=\|y\|=1}|\langle B T A x, y\rangle|^{2} \\
& \left.\left.\leq\left.\sup _{\|x\|=\|y\|=1}\left[\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle\right] \\
& \left.\left.=\left.\sup _{\|x\|=1}\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\sup _{\|y\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle \\
& =\left\||f(|T|) A|^{2}\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|=\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2} \\
& =\|f(|T|) A\|^{2}\left\|B g\left(\left|T^{*}\right|\right)\right\|^{2}
\end{aligned}
$$

which is equivalent to (2.1).
From (2.4) we also have

$$
\begin{equation*}
\left.\left.|\langle B T A x, x\rangle|^{2} \leq\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle \tag{2.5}
\end{equation*}
$$

for all $x \in H$.

By the $A-G$ inequality, we also have

$$
\begin{aligned}
|\langle B T A x, x\rangle| & \left.\left.\leq\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1 / 2} \\
& \left.\left.\leq \frac{1}{2}\left[\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& =\left\langle\left(\frac{|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}}{2}\right) x, x\right\rangle
\end{aligned}
$$

for all $x \in H$.
By taking the supremum, we get

$$
\begin{aligned}
\omega(B T A) & =\sup _{\|x\|=1}|\langle B T A x, x\rangle| \\
& \leq \sup _{\|x\|=1}\left\langle\left(\frac{|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}}{2}\right) x, x\right\rangle \\
& =\left\|\frac{|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}}{2}\right\|
\end{aligned}
$$

which proves (2.2).
Let $x \in H,\|x\|=1$, then by Buzano's inequality, we recall that

$$
\frac{1}{2}[\|u\|\|v\|+|\langle u, v\rangle|] \geq|\langle u, e\rangle\langle e, v\rangle|
$$

holds for any $u, v, e \in H$ with $\|e\|=1$, we derive

$$
\begin{aligned}
& \left.\left.\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle x,| g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\rangle \\
& \left.\leq \frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | f(|T|) A\right|^{2} x,\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\rangle\right] \\
& \left.=\frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] .
\end{aligned}
$$

By making use of (2.5) we get
(2.6) $\quad|\langle B T A x, x\rangle|^{2}$

$$
\left.\leq \frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right]
$$

for $x \in H,\|x\|=1$.

If we take the supremum, then we obtain

$$
\begin{aligned}
\omega^{2}(B T A) & =\sup _{\|x\|=1}|\langle B T A x, x\rangle| \\
& \leq \frac{1}{2} \sup _{\|x\|=1}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] \\
& \leq \frac{1}{2}\left[\sup _{\|x\|=1}\left\||f(|T|) A|^{2} x\right\| \sup _{\|x\|=1}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|\right. \\
& \left.\left.+\left.\sup _{\|x\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] \\
& =\frac{1}{2}\left[\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right]
\end{aligned}
$$

which proves (2.3).
Remark 1. If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Theorem 2, then we get for any $A, B, T \in \mathcal{B}(H)$,

$$
\|B T A\| \leq\left\||T|^{\lambda} A\right\|\left\|B\left|T^{*}\right|^{1-\lambda}\right\|
$$

and

$$
\begin{equation*}
\omega(B T A) \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\| \tag{2.7}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\omega^{2}(B T A) \leq \frac{1}{2}\left[\left\||T|^{\lambda} A\right\|^{2}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|\right] \tag{2.8}
\end{equation*}
$$

Moreover, if we take $\lambda=1 / 2$, then we get

$$
\|B T A\| \leq\left\||T|^{1 / 2} A\right\|\left\|B\left|T^{*}\right|^{1 / 2}\right\|
$$

and

$$
\omega(B T A) \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{1 / 2} A\right|^{2}+\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}\right\|
$$

Also,

$$
\omega^{2}(B T A) \leq \frac{1}{2}\left[\left\||T|^{1 / 2} A\right\|^{2}\left\|\left|T^{*}\right|^{1 / 2} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}| | T\right|^{1 / 2} A\right|^{2}\right\|\right]
$$

Theorem 3. Assume that the conditions of Theorem 2 are satisfied. If $r>0, p$, $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(B T A) \leq\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\| \tag{2.9}
\end{equation*}
$$

If $r \geq 1$, then

$$
\begin{align*}
& \omega^{2 r}(B T A) \tag{2.10}\\
& \leq \frac{1}{2}\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
\omega^{2 r}(B T A) & \leq \frac{1}{2}\left(\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|\right. \tag{2.11}\\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{align*}
$$

Proof. If we take the power $r>0$ in 2.5, then we get, by Young and McCarthy inequalities that

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2 r} & \left.\left.\leq\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r} \\
& \left.\left.\leq\left.\frac{1}{p}\langle | f(|T|) A\right|^{2} x, x\right\rangle^{p r}+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{q r} \\
& \left.\left.\leq\left.\frac{1}{p}\langle | f(|T|) A\right|^{2 p r} x, x\right\rangle+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} x, x\right\rangle \\
& =\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$, then we get that

$$
\begin{aligned}
\omega^{2 r}(B T A) & =\sup _{\|x\|=1}|\langle B T A x, x\rangle|^{2 r} \\
& \leq \sup _{\|x\|=1}\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle \\
& =\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|
\end{aligned}
$$

which proves (2.9).
By taking the power $r \geq 1$ in (2.6) and using the convexity of the power function, we get
(2.12) $|\langle B T A x, x\rangle|^{2 r}$

$$
\begin{aligned}
& \leq\left[\frac{\left.\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle}{2}\right]^{r} \\
& \leq \frac{\left.\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}}{2}
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.

By taking the supremum over $\|x\|=1$, then we get that

$$
\begin{aligned}
& \omega^{2 r}(B T A) \\
& \leq \sup _{\|x\|=1}\left(\frac{1}{2}\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\frac{1}{2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right) \\
& \leq \frac{1}{2} \sup _{\|x\|=1}\left\||f(|T|) A|^{2} x\right\|^{r} \sup _{\|x\|=1}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r} \\
& \left.+\left.\frac{1}{2} \sup _{\|x\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r} \\
& =\frac{1}{2}\left(\left\||f(|T|) A|^{2}\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|^{r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right) \\
& =\frac{1}{2}\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right),
\end{aligned}
$$

which proves (2.10).
Also, observe that

$$
\begin{aligned}
& \left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r} \\
& \leq \frac{1}{p}\left\||f(|T|) A|^{2} x\right\|^{p r}+\frac{1}{q}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{q r} \\
& =\frac{1}{p}\left\||f(|T|) A|^{2} x\right\|^{2 \frac{p r}{2}}+\frac{1}{q}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{2 \frac{q r}{2}} \\
& \left.\left.=\left.\frac{1}{p}\langle | f(|T|) A\right|^{4} x, x\right\rangle^{\frac{p r}{2}}+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{4} x, x\right\rangle^{\frac{q r}{2}} \\
& \left.\left.\leq\left.\frac{1}{p}\langle | f(|T|) A\right|^{2 p r} x, x\right\rangle+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} x, x\right\rangle \\
& =\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{\left.\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}}{2} \\
& \leq \frac{1}{2}\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle \\
& \left.+\left.\frac{1}{2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}
\end{aligned}
$$

and by (2.12) we get

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2 r} & \leq \frac{1}{2}\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle \\
& \left.+\left.\frac{1}{2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}
\end{aligned}
$$

or $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$, we derive (2.11).

Remark 2. Consider $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Theorem 3. If $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(B T A) \leq\left\|\left.\left.\frac{1}{p}| | T\right|^{\lambda} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r}\right\| . \tag{2.13}
\end{equation*}
$$

In particular,

$$
\omega^{2 r}(B T A) \leq\left\|\left.\left.\frac{1}{p}| | T\right|^{1 / 2} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 q r}\right\|
$$

If $r \geq 1$, then

$$
\begin{align*}
& \omega^{2 r}(B T A) \tag{2.14}\\
& \leq \frac{1}{2}\left(\left\||T|^{\lambda} A\right\|^{2 r}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2 r}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|^{r}\right)
\end{align*}
$$

In particular,

$$
\begin{aligned}
& \omega^{2 r}(B T A) \\
& \leq \frac{1}{2}\left(\left\||T|^{1 / 2} A\right\|^{2 r}\left\|\left|T^{*}\right|^{1 / 2} B^{*}\right\|^{2 r}+\left\|\left.\left.\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}| | T\right|^{1 / 2} A\right|^{2}\right\|^{r}\right)
\end{aligned}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

In particular,

Remark 3. If we take $p=q=2$ and assume that $r \geq \frac{1}{2}$, then from (2.9) we get

$$
\omega^{2 r}(B T A) \leq \frac{1}{2}\left\||f(|T|) A|^{4 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4 r}\right\|
$$

which for $r=\frac{1}{2}$ gives

$$
\omega(B T A) \leq \frac{1}{2}\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|
$$

while for $r=1$ gives

$$
\omega^{2}(B T A) \leq \frac{1}{2}\left\||f(|T|) A|^{4}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4}\right\| .
$$

If we take $r=1$ in (2.9), then we get

$$
\omega^{2}(B T A) \leq\left\|\frac{1}{p}|f(|T|) A|^{2 p}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q}\right\|
$$

for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.

If we take $r=1$ in (2.10) then we get

$$
\begin{aligned}
& \omega^{2}(B T A) \\
& \leq \frac{1}{2}\left(\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right)
\end{aligned}
$$

while for $r=2$,

$$
\begin{aligned}
& \omega^{4}(B T A) \\
& \leq \frac{1}{2}\left(\|f(|T|) A\|^{8}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{8}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{2}\right)
\end{aligned}
$$

Also, if we take $p=q=2$ and $r \geq 1$ in (2.11), then we get

$$
\begin{aligned}
\omega^{2 r}(B T A) & \leq \frac{1}{2}\left(\frac{1}{2}\left\||f(|T|) A|^{4 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4 r}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

In particular, for $r=1$ we derive

$$
\begin{aligned}
\omega^{2}(B T A) & \leq \frac{1}{2}\left(\frac{1}{2}\left\||f(|T|) A|^{4}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right)
\end{aligned}
$$

Moreover, if $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and take $r=2$ in (2.11), then we derive the inequality

$$
\begin{aligned}
\omega^{4}(B T A) & \leq \frac{1}{2}\left(\left\|\frac{1}{p}|f(|T|) A|^{4 p}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4 q}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{2}\right)
\end{aligned}
$$

which for $p=q=2$ provides

$$
\begin{aligned}
\omega^{4}(B T A) & \leq \frac{1}{2}\left(\frac{1}{2}\left\||f(|T|) A|^{8}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{8}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{2}\right)
\end{aligned}
$$

If in Remark 3 we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ then we can get other similar inequalities. The details are omitted.

Theorem 4. With the assumptions of Theorem 2, we have for $r \geq 1$ that

$$
\begin{align*}
\omega^{2}(B T A) & \leq\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{2.16}\\
& \times\|f(|T|) A\|^{2 \alpha}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2(1-\alpha)}
\end{align*}
$$

for all $\alpha \in[0,1]$.
Also, we have

$$
\begin{align*}
\omega^{2}(B T A) & \leq\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{2.17}\\
& \times\left\|\alpha|f(|T|) A|^{2 r}+(1-\alpha)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.

Proof. From (2.5) we have for all $\alpha \in[0,1]$ that

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2} & \left.\left.\leq\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle \\
& \left.\left.=\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1-\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{\alpha} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\alpha} \\
& \left.\left.\leq\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\alpha}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
If we take the power $r \geq 1$, then we get by the convexity of power r that

$$
\begin{align*}
|\langle B T A x, x\rangle|^{2 r} & \left.\left.\leq\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right]^{r} \tag{2.18}\\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)} \\
& \left.\left.\leq\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle^{r}+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r}\right] \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
If we use McCarthy inequality for power $r \geq 1$, then we get

$$
\begin{aligned}
& \left.\left.\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle^{r}+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r} \\
& \left.\left.\leq\left.(1-\alpha)\langle | f(|T|) A\right|^{2 r} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r} x, x\right\rangle \\
& =\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle
\end{aligned}
$$

and by (2.18)

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2 r} & \leq\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.

If we take the supremum over $\|x\|=1$, then we get

$$
\begin{aligned}
\omega^{2 r}(B T A) & =\sup _{\|x\|=1}|\langle B T A x, x\rangle|^{2 r} \\
& \leq \sup _{\|x\|=1}\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \left.\left.\times\left.\sup _{\|x\|=1}\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha} \sup _{\|x\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)} \\
& =\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\| \\
& \times\left\||f(|T|) A|^{2}\right\|^{r \alpha}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|^{r(1-\alpha)} \\
& =\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\| \\
& \times\|f(|T|) A\|^{2 r \alpha}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r(1-\alpha)},
\end{aligned}
$$

which proves (2.16).
We also have

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2} & \left.\left.\leq\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1-\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{\alpha} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\alpha} \\
& \left.\left.\leq\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& \left.\left.\times\left[\left.\alpha\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.(1-\alpha)\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right]
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
This implies in the same way that

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2 r} & \leq\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \times\left\langle\left[\alpha|f(|T|) A|^{2 r}+(1-\alpha)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle
\end{aligned}
$$

for all $x \in H,\|x\|=1$, which proves (2.17).
Remark 4. Consider $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Theorem 4, then

$$
\begin{aligned}
\omega^{2}(B T A) & \leq\left\|\left.\left.(1-\alpha)| | T\right|^{\lambda} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\||T|^{\lambda} A\right\|^{2 \alpha}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2(1-\alpha)}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}(B T A) & \leq\left\|\left.\left.(1-\alpha)| | T\right|^{\lambda} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\left.\left.\alpha| | T\right|^{\lambda} A\right|^{2 r}+\left.\left.(1-\alpha)| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r}
\end{aligned}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.

In particular, for $\lambda=1 / 2$ we obtain

$$
\begin{aligned}
\omega^{2}(B T A) & \leq\left\|\left.\left.(1-\alpha)| | T\right|^{1 / 2} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\||T|^{1 / 2} A\right\|^{2 \alpha}\left\|\left|T^{*}\right|^{1 / 2} B^{*}\right\|^{2(1-\alpha)}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}(B T A) & \leq\left\|\left.\left.(1-\alpha)| | T\right|^{1 / 2} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\left.\left.\alpha| | T\right|^{1 / 2} A\right|^{2 r}+\left.\left.(1-\alpha)| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 r}\right\|^{1 / r}
\end{aligned}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.
Corollary 1. With the assumptions of Theorem 2 we have

$$
\omega^{2}(B T A) \leq \frac{1}{2^{1 / r}}\left\||f(|T|) A|^{2 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}\|f(|T|) A\|\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|
$$

for all $r \geq 1$.
Also, we have

$$
\omega(B T A) \leq \frac{1}{2^{1 / r}}\left\||f(|T|) A|^{2 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}
$$

for all $r \geq 1$.
In particular, we have

$$
\omega^{2}(B T A) \leq \frac{1}{2}\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|\|f(|T|) A\|\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|
$$

and

$$
\omega(B T A) \leq \frac{1}{2}\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|
$$

If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Corollary 1 , then we get

$$
\omega^{2}(B T A) \leq \frac{1}{2^{1 / r}}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2 r}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r}\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|
$$

for all $r \geq 1$.
Also, we have

$$
\omega(B T A) \leq \frac{1}{2^{1 / r}}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2 r}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r}
$$

for all $r \geq 1$.
In particular, we obtain

$$
\begin{equation*}
\omega^{2}(B T A) \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\|\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\| \tag{2.19}
\end{equation*}
$$

and

$$
\omega(B T A) \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\|
$$

3. Some Further Bounds

In this section we provide some simpler upper bounds for the numerical radius of the product of three operators:
Proposition 1. For any $A, B, T \in \mathcal{B}(H)$, we have

$$
\begin{align*}
\omega(B T A) & \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\| \tag{3.1}\\
& \leq \frac{1}{2}\| \| T\left\|^{2 \lambda}|A|^{2}+\right\| T\left\|^{2(1-\lambda)}\left|B^{*}\right|^{2}\right\| \leq \frac{1}{2}\|T\|^{2}\left\||A|^{2}+\left|B^{*}\right|^{2}\right\|
\end{align*}
$$

and, for $\lambda=1 / 2$,

$$
\omega(B T A) \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{1 / 2} A\right|^{2}+\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}\right\| \leq \frac{1}{2}\|T\|\left\||A|^{2}+\left|B^{*}\right|^{2}\right\|
$$

Also

$$
\begin{align*}
& \omega^{2}(B T A) \tag{3.2}\\
& \leq \frac{1}{2}\left[\left\||T|^{\lambda} A\right\|^{2}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|\right] \\
& \leq \frac{1}{2}\left[\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|\left(\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|+\|T\|\|A B\|\right)\right] \\
& \leq \frac{1}{2}\|T\|^{2}\|A\|\|B\|(\|A\|\|B\|+\|A B\|)
\end{align*}
$$

for all $\lambda \in[0,1]$.
Proof. Observe that, since $|T| \leq\|T\| I$ and $\left|T^{*}\right| \leq\|T\| I$, then

$$
\begin{aligned}
\left||T|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2} & =A^{*}|T|^{2 \lambda} A+B\left|T^{*}\right|^{2(1-\lambda)} B^{*} \\
& \leq\|T\|^{2 \lambda} A^{*} A+\|T\|^{2(1-\lambda)} B B^{*} \\
& \leq\|T\|^{2}\left(A^{*} A+B B^{*}\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left\|\left||T|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\| & \leq\| \| T\left\|^{2 \lambda} A^{*} A+\right\| T\left\|^{2(1-\lambda)} B B^{*}\right\| \\
& \leq\|T\|^{2}\| \||A|^{2}+\left|B^{*}\right|^{2}\| \|
\end{aligned}
$$

and by (2.7) we get (3.1).
Further, observe that

$$
\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}=B\left|T^{*}\right|^{1-\lambda}\left|T^{*}\right|^{1-\lambda} B^{*} A^{*}|T|^{\lambda}|T|^{\lambda} A
$$

By taking the norm, we get

$$
\begin{aligned}
\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\| & \leq\left\|B\left|T^{*}\right|^{1-\lambda}\right\|\left\|\left|T^{*}\right|^{1-\lambda}\right\|\left\|B^{*} A^{*}\right\|\left\||T|^{\lambda}\right\|\left\||T|^{\lambda} A\right\| \\
& =\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|\|T\|^{1-\lambda}\|A B\|\|T\|^{\lambda}\left\||T|^{\lambda} A\right\| \\
& =\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|\|T\|\|A B\|
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\||T|^{\lambda} A\right\|^{2}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\| \\
& \leq\left\||T|^{\lambda} A\right\|^{2}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2}+\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|\|T\|\|A B\| \\
& =\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|\left(\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|+\|T\|\|A B\|\right) \\
& \leq\|T\|^{\lambda}\|T\|^{1-\lambda}\|A\|\|B\|\left(\|T\|^{\lambda}\|T\|^{1-\lambda}\|A\|\|B\|+\|T\|\|A B\|\right) \\
& =\|T\|\|A\|\|B\|(\|T\|\|A\|\|B\|+\|T\|\|A B\|) \\
& =\|T\|^{2}\|A\|\|B\|(\|A\|\|B\|+\|T\|\|A B\|)
\end{aligned}
$$

which proves (3.2).

We also have:

Proposition 2. For any $A, B, T \in \mathcal{B}(H)$, we have

$$
\begin{equation*}
\omega^{2 r}(B T A) \leq \frac{1}{2}\|T\|^{2 r}\|A\|^{r}\|B\|^{r}\left(\|A\|^{r}\|B\|^{r}+\|A B\|^{r}\right) \tag{3.3}
\end{equation*}
$$

for $r \geq 1$.
In particular, for $r=2$ we obtain

$$
\omega^{4}(B T A) \leq \frac{1}{2}\|T\|^{4}\|A\|^{2}\|B\|^{2}\left(\|A\|^{2}\|B\|^{2}+\|A B\|^{2}\right)
$$

Also, for $\lambda \in[0,1]$

$$
\begin{align*}
\omega^{2}(B T A) & \leq \frac{1}{2}\|T\|\| \| T\left\|^{2 \lambda}|A|^{2}+\right\| T\left\|^{2(1-\lambda)}\left|B^{*}\right|^{2}\right\|\|A\|\|B\| \tag{3.4}\\
& \leq \frac{1}{2}\|T\|^{3}\|A\|\|B\|\left\||A|^{2}+\left|B^{*}\right|^{2}\right\|
\end{align*}
$$

and for $\lambda=1 / 2$ we get

$$
\omega^{2}(B T A) \leq \frac{1}{2}\|T\|^{2}\|A\|\|B\|\left\||A|^{2}+\left|B^{*}\right|^{2}\right\|
$$

Proof. As in the proof of Proposition 1 we have by (2.14) that

$$
\begin{aligned}
& \omega^{2 r}(B T A) \\
& \leq \frac{1}{2}\left(\left\||T|^{\lambda} A\right\|^{2 r}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2 r}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|^{r}\right) \\
& =\frac{1}{2}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}\right\|^{r}\left\|\left.\left.| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\|^{r} \\
& +\frac{1}{2}\left\|B\left|T^{*}\right|^{1-\lambda}\left|T^{*}\right|^{1-\lambda} B^{*} A^{*}|T|^{\lambda}|T|^{\lambda} A\right\|^{r} \\
& =\frac{1}{2}\left\|A^{*}|T|^{2 \lambda} A\right\|^{r}\left\|B\left|T^{*}\right|^{2(1-\lambda)} B^{*}\right\|^{r} \\
& +\frac{1}{2}\left\|B\left|T^{*}\right|^{1-\lambda}\left|T^{*}\right|^{1-\lambda} B^{*} A^{*}|T|^{\lambda}|T|^{\lambda} A\right\|^{r} \\
& \leq \frac{1}{2}\|T\|^{2 \lambda r}\|A\|^{2 r}\|T\|^{2(1-\lambda) r}\|B\|^{2 r} \\
& +\frac{1}{2}\|B\|^{r}\|T\|^{2(1-\lambda) r}\left\|B^{*} A^{*}\right\|^{r}\|T\|^{2 \lambda r}\|A\|^{r} \\
& =\frac{1}{2}\|T\|^{2 r}\|A\|^{2 r}\|B\|^{2 r}+\frac{1}{2}\|B\|^{r}\|T\|^{2 r}\|A B\|^{r}\|A\|^{r} \\
& =\frac{1}{2}\|T\|^{2 r}\|A\|^{r}\|B\|^{r}\left(\|A\|^{r}\|B\|^{r}+\|A B\|^{r}\right)
\end{aligned}
$$

which proves (3.3).
Also, from (2.19) we get

$$
\begin{aligned}
\omega^{2}(B T A) & \leq \frac{1}{2}\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\|\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\| \\
& \leq \frac{1}{2}\| \| T\left\|^{2 \lambda}|A|^{2}+\right\| T\left\|^{2(1-\lambda)}\left|B^{*}\right|^{2}\right\|\|T\|^{\lambda}\|A\|\|T\|^{1-\lambda}\|B\| \\
& =\frac{1}{2}\|T\|\| \| T\left\|^{2 \lambda}|A|^{2}+\right\| T\left\|^{2(1-\lambda)}\left|B^{*}\right|^{2}\right\|\|A\|\|B\| \\
& \leq \frac{1}{2}\|T\|^{3}\left\||A|^{2}+\left|B^{*}\right|^{2}\right\|\|A\|\|B\|
\end{aligned}
$$

which proves (3.4).

References

[1] P. Bhunia, S. S. Dragomir, M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[2] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[3] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[4] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212.
[5] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
[6] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[7] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dougal transform, Partial isometry, Numerical radius.

