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Abstract

Based on trigonometric and hyperbolic Taylor�s type formulae we es-
tablish related Shisha-Mond form inequalities leading to interesting Ko-
rovkin theorems. We deal with the high order of approximation of positive
linear operators to the unit operator. The results are quantitative via the
modulus of continuity. We �nish with applications to Bernstein operators.
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1 Introduction

In this article mainly we are motivated by the following result.

Theorem 1 (P.P. Korovkin [3], (1960), p. 14) Let [a; b] be a closed interval in
R and (Ln)n2N be a sequence of positive linear operators mapping C ([a; b]) into
itself. Suppose that (Lnf) converges uniformly to f for the three test functions
f = 1; x; x2. Then (Lnf) converges uniformly to f on [a; b] for all functions
f 2 C ([a; b]).

Let f 2 C ([a; b]) and 0 � h � b� a. The �rst modulus of continuity of f at
h is given by

!1 (f; h) = sup
x;y2[a;b]
jx�yj�h

jf (x)� f (y)j :

If h > b� a, then we de�ne !1 (f; h) = !1 (f; b� a) :
Another motivation is the following.

Theorem 2 (Shisha and Mond [4], (1968)) Let [a; b] � R a closed interval.
Let fLngn2N be a sequence of positive linear operators acting on C ([a; b]) into
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itself. For n = 1; :::; suppose Ln (1) is bounded. Let f 2 C ([a; b]). Then for
n = 1; 2; :::; we have
(i)

kLnf � fk1 � kfk1 kLn1� 1k1 + kLn1 + 1k1 !1 (f; �n)

where

�n =
Ln ((t� x))2 (x) 1

2

1

and k�k1 stands for the sup-norm over [a; b] :
One can easily see, for n = 1; 2; :::
(ii)

�2n �
Ln �t2;x�� x21 + 2c kLn (t;x)� xk1 + c2 kLn (1;x)� 1k1 ;

where c = max (jaj ; jbj) :

Thus, given the Korovkin assumptions (see Theorem 1) as n!1 we get by
(ii) that �n ! 0, and by (i) that kLnf � fk1 ! 0 for any f 2 C ([a; b]). That
is one derives the Korovkin conclusion in a quantitative way and with rates of
convergence.
Here by the use of trigonometric and hyperbolic Taylor�s formulae we derive

a higher order of quantitative approximation for sequences of positive linear
operators converging to the unit operator. This is along with the related Shisha-
Mond type inequalities and corresponding Korovkin theorems.

2 Main Results

2.1 Trigonometric approximation by positive linear oper-
ators

We present the following quantitative results.

Theorem 3 Let f 2 C2 ([a; b]), x0 2 [a; b], and a sequence of positive linear op-

erators (Ln)n2N from C ([a; b]) into itself, r > 0, and D3 (x0) :=
�
Ln

�
j� � x0j3

�
(x0)

� 1
3

.

Then
(i)

jLn (f) (x0)� f (x0)j � jf (x0)j jLn (1) (x0)� 1j+

jf 0 (x0)j jLn (sin (� � x0)) (x0)j+ 2 jf 00 (x0)j
�
Ln

�
sin2

�
� � x0
2

��
(x0)

�
+
!1 (f

00 + f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
; (1)
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(ii)
kLn (f)� fk1 � kfk1 kLn (1)� 1k1+

kf 0k1 kLn (sin (� � x0)) (x0)k1 + 2 kf 00k1
Ln�sin2� � � x02

��
(x0)


1

+
!1 (f

00 + f; r kD3k1)
2

kD3k21
�
kLn (1)k

1
3
1 +

1

3r

�
; (2)

(iii) if Ln (1) = 1, and f 0 (x0) = f 00 (x0) = 0 for some x0 2 [a; b], we obtain

jLn (f) (x0)� f (x0)j �

!1 (f
00 + f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
; (3)

and
(iv)

jLn (f) (x0)� f (x0)Ln (1) (x0)� f 0 (x0)Ln (sin (� � x0)) (x0)

�2f 00 (x0)Ln
�
sin2

�
� � x0
2

��
(x0)

���� �
!1 (f

00 + f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
: (4)

Proof. Here f 2 C2 ([a; b]), with x; x0 2 [a; b]. By [2], we have that

f (x)� f (x0) = f 0 (x0) sin (x� x0) + 2f 00 (x0) sin2
�
x� x0
2

�
+

Z x

x0

[(f 00 (t) + f (t))� (f 00 (x0) + f (x0))] sin (x� t) dt: (5)

Denote by

R (x; x0) :=

Z x

x0

[(f 00 (t) + f (t))� (f 00 (x0) + f (x0))] sin (x� t) dt: (6)

Clearly, we have that

j(f 00 (t) + f (t))� (f 00 (x0) + f (x0))j �

!1 (f
00 + f; h)

�
1 +

jt� x0j
h

�
; all t 2 [a; b] , h > 0: (7)

Let x � x0, then

jR (x; x0)j �
Z x

x0

j(f 00 (t) + f (t))� (f 00 (x0) + f (x0))j jsin (x� t)j dt
(7)
� (8)
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(using jsinxj � jxj, 8 x 2 R)

!1 (f
00 + f; h)

Z x

x0

�
1 +

(t� x0)
h

�
(x� t) dt =

!1 (f
00 + f; h)

�Z x

x0

(x� t) dt+ 1

h

Z x

x0

(x� t) (t� x0) dt
�
=

!1 (f
00 + f; h)

"
(x� x0)2

2
+
(x� x0)3

6h

#
: (9)

So, if x � x0, we got that

jR (x; x0)j �
!1 (f

00 + f; h)

2

"
(x� x0)2 +

(x� x0)3

3h

#
; h > 0: (10)

Let now x < x0, then

jR (x; x0)j =
����Z x0

x

[(f 00 (t) + f (t))� (f 00 (x0) + f (x0))] sin (x� t) dt
���� �Z x0

x

j(f 00 (t) + f (t))� (f 00 (x0) + f (x0))j jsin (x� t)j dt � (11)

!1 (f
00 + f; h)

Z x0

x

�
1 +

(x0 � t)
h

�
(t� x) dt =

!1 (f
00 + f; h)

�Z x0

x

(t� x) dt+ 1

h

Z x0

x

(x0 � t) (t� x) dt
�
=

!1 (f
00 + f; h)

"
(x0 � x)2

2
+
(x0 � x)3

6h

#
: (12)

So, if x < x0, we got that

jR (x; x0)j �
!1 (f

00 + f; h)

2

"
(x0 � x)2 +

(x0 � x)3

3h

#
: (13)

Thus, it holds

jR (x; x0)j �
!1 (f

00 + f; h)

2

"
(x� x0)2 +

jx� x0j3

3h

#
; h > 0; (14)

8 x; x0 2 [a; b] :
Let a sequence of positive linear operators (Ln)n2N from C ([a; b]) into itself.
We notice that

jR (x; x0)j � jR (x; x0)j ; i¤ � jR (x; x0)j � R (x; x0) � jR (x; x0)j ;

4



and
�Ln (jR (x; x0)j) � Ln (R (x; x0)) � Ln (jR (x; x0)j) :

That is
jLn (R (x; x0))j � Ln (jR (x; x0)j) : (15)

By (5) we can write

f (�)� f (x0) = f 0 (x0) sin (� � x0) + 2f 00 (x0) sin2
�
� � x0
2

�
+R (�; x0) : (16)

Thus, it holds
Ln (f) (x0)� f (x0)Ln (1) (x0) =

f 0 (x0)Ln (sin (� � x0)) (x0)+2f 00 (x0)Ln
�
sin2

�
� � x0
2

��
(x0)+Ln (R (�; x0)) (x0) ;

(17)
8 x0 2 [a; b] :
Consequently we have

jLn (f) (x0)� f (x0)Ln (1) (x0)j
(17)
�

jf 0 (x0)j jLn (sin (� � x0)) (x0)j+ 2 jf 00 (x0)j (Ln
�
sin2

�
� � x0
2

��
(x0))

+Ln (jR (�; x0)j) � (18)

(by (14))

jf 0 (x0)j jLn (sin (� � x0)) (x0)j+ 2 jf 00 (x0)j (Ln
�
sin2

�
� � x0
2

��
(x0))+

!1 (f
00 + f; h)

2

24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 ; (19)

8 x0 2 [a; b] :
We observe that

jLn (f) (x0)� f (x0)j =

jLn (f) (x0)� f (x0)� f (x0)Ln (1)x0 + f (x0)Ln (1) (x0)j =

j(Ln (f) (x0)� f (x0)Ln (1) (x0)) + f (x0) (Ln (1) (x0)� 1)j �

jLn (f) (x0)� f (x0)Ln (1) (x0)j+ jf (x0)j jLn (1) (x0)� 1j : (20)

We have found that (by (19), (20))

jLn (f) (x0)� f (x0)j � jf (x0)j jLn (1) (x0)� 1j+
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jf 0 (x0)j jLn (sin (� � x0)) (x0)j+ 2 jf 00 (x0)j
�
Ln

�
sin2

�
� � x0
2

��
(x0)

�

+
!1 (f

00 + f; h)

2

24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 � (21)

jf (x0)j jLn (1) (x0)� 1j+jf 0 (x0)jLn (j� � x0j) (x0)+
jf 00 (x0)j

2
Ln

�
(� � x0)2

�
(x0)

+
!1 (f

00 + f; h)

2

24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 =: ( ) ; (22)

8 x0 2 [a; b], h > 0:
By Riesz representation theorem and Hölder�s inequality we get

Ln

�
(� � x0)2

�
(x0) �

�
Ln

�
j� � x0j3

�
(x0)

� 2
3

(Ln (1) (x0))
1
3 ; (23)

8 x0 2 [a; b] :
Let r > 0, and take

h := r
�
Ln

�
j� � x0j3

�
(x0)

� 1
3

= rD3 (x0) ; (24)

where

D3 (x0) :=
�
Ln j� � x0j3 (x0)

� 1
3

: (25)

That is �
Ln (� � x0)2

�
(x0) � D2

3 (x0) (Ln (1) (x0))
1
3 : (26)

Momentarily we assume that D3 (x0) > 0. Therefore it holds24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 �
�
D2
3 (x0) (Ln (1) (x0))

1
3 +

D3
3 (x0)

3rD3 (x0)

�
= (27)

D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
:

We continue as follows

jLn (f) (x0)� f (x0)j � ( )
(27)
� jf (x0)j jLn (1) (x0)� 1j+

jf 0 (x0)jLn (j� � x0j) (x0) +
jf 00 (x0)j

2
Ln

�
(� � x0)2

�
(x0)+
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!1 (f
00 + f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
: (28)

Notice also in general that

Ln (j� � x0j) (x0) �
�
Ln

�
(� � x0)2

�
(x0)

� 1
2

(Ln (1) (x0))
1
2 � (29)

D3 (x0) (Ln (1) (x0))
2
3 :

In case of D3 (x0) = 0, by (22), we have that

jLn (f) (x0)� f (x0)j � jf (x0)j jLn (1) (x0)� 1j : (30)

By Riesz representation theorem we have that

Ln (f) (x0) =

Z
[a;b]

f (t) d�x0 (t) ; (31)

where �x0 is a positive �nite Borel measure such that �x0 ([a; b]) = M > 0.
Notice that M = Ln (1) (x0).
So, here we have that

D3
3 (x0) = Ln

�
j� � x0j3

�
(x0) =

Z
[a;b]

jt� x0j3 d�x0 (t) = 0; (32)

which implies t = x0, a.e, consequently we have that �x0 = �x0M , where �x0 is
the Dirac measure at x0.
Thus

Ln (f) (x0) = f (x0)M = f (x0)Ln (1) (x0) : (33)

Hence we derive

jLn (f) (x0)� f (x0)j = jf (x0)Ln (1) (x0)� f (x0)j = jf (x0)j jLn (1) (x0)� 1j :
(34)

So (30) becomes equality. Thus, (28) is valid always.

By [1], p. 388, Ln
�
j� � x0j3

�
(x0) is continuous in x0 2 [a; b] :

The theorem is proved.
It follows a Korovkin type theorem.

Theorem 4 Here all as in Theorem 3. Assume that Ln (1)! 1, and Ln
�
j� � x0j3

�
(x0)!

0, both uniformly convergent, as n ! 1. Then Ln (f) ! f , uniformly conver-
gent, as n!1, 8 f 2 C2 ([a; b]) :

Proof. By (2); using (23), (29), and that every uniformly convergent se-
quence of bounded functions is uniformly bounded. Also that !1 (f 00 + f; r kD3k1)!
0, as n!1:
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2.2 Hyperbolic approximation by positive linear opera-
tors

We give the following related results.

Theorem 5 Let f 2 C2 ([a; b]), x0 2 [a; b], and a sequence of positive linear op-

erators (Ln)n2N from C ([a; b]) into itself, r > 0, and D3 (x0) :=
�
Ln

�
j� � x0j3

�
(x0)

� 1
3

.

Then
(i)

jLn (f) (x0)� f (x0)j � jf (x0)j jLn (1) (x0)� 1j+

jf 0 (x0)j jLn (sinh (� � x0)) (x0)j+ 2 jf 00 (x0)j
�
Ln

�
sinh2

�
� � x0
2

��
(x0)

�
+
cosh (b� a)!1 (f 00 � f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
; (35)

(ii)
kLn (f)� fk1 � kfk1 kLn (1)� 1k1+

kf 0k1 kLn (sinh (� � x0)) (x0)k1 + 2 kf 00k1
Ln�sinh2� � � x02

��
(x0)


1

+
cosh (b� a)!1 (f 00 � f; r kD3k1)

2
kD3k21

�
kLn (1)k

1
3
1 +

1

3r

�
; (36)

(iii) if Ln (1) = 1, and f 0 (x0) = f 00 (x0) = 0 for some x0 2 [a; b], we obtain

jLn (f) (x0)� f (x0)j �

cosh (b� a)!1 (f 00 � f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
; (37)

and
(iv)

jLn (f) (x0)� f (x0)Ln (1) (x0)� f 0 (x0)Ln (sinh (� � x0)) (x0)

�2f 00 (x0)Ln
�
sinh2

�
� � x0
2

��
(x0)

���� �
cosh (b� a)!1 (f 00 � f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
: (38)

Proof. Here f 2 C2 ([a; b]), with x; x0 2 [a; b]. By [2], we have that

f (x)� f (x0) = f 0 (x0) sinh (x� x0) + 2f 00 (x0) sinh2
�
x� x0
2

�
+

Z x

x0

[(f 00 (t)� f (t))� (f 00 (x0)� f (x0))] sinh (x� t) dt: (39)

8



By the mean value theorem we derive that

jsinhxj � cosh (b� a) jxj , 8 x 2 [� (b� a) ; b� a] : (40)

Denote by

R (x; x0) :=

Z x

x0

[(f 00 (t)� f (t))� (f 00 (x0)� f (x0))] sinh (x� t) dt: (41)

Clearly, we have that

j(f 00 (t)� f (t))� (f 00 (x0)� f (x0))j �

!1 (f
00 � f; h)

�
1 +

jt� x0j
h

�
; all t 2 [a; b] , h > 0: (42)

Let x � x0, then��R (x; x0)�� � Z x

x0

j(f 00 (t)� f (t))� (f 00 (x0)� f (x0))j jsinh (x� t)j dt
(by (41), (42))

�

!1 (f
00 � f; h) cosh (b� a)

Z x

x0

�
1 +

(t� x0)
h

�
(x� t) dt =

cosh (b� a)!1 (f 00 � f; h)
�Z x

x0

(x� t) dt+ 1

h

Z x

x0

(x� t) (t� x0) dt
�
=

cosh (b� a)!1 (f 00 � f; h)
"
(x� x0)2

2
+
(x� x0)3

6h

#
: (43)

So, if x � x0, we got that

��R (x; x0)�� � cosh (b� a)!1 (f 00 � f; h)
2

"
(x� x0)2 +

(x� x0)3

3h

#
; h > 0:

(44)
In case of x < x0, we �nd similarly, that

��R (x; x0)�� � cosh (b� a)!1 (f 00 � f; h)
2

"
(x0 � x)2 +

(x0 � x)3

3h

#
: (45)

Thus, it holds

��R (x; x0)�� � cosh (b� a)!1 (f 00 � f; h)
2

"
(x� x0)2 +

jx� x0j3

3h

#
; h > 0;

(46)
8 x; x0 2 [a; b] :
Let a sequence of positive linear operators (Ln)n2N from C ([a; b]) into itself.
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Clearly we have ��Ln �R (x; x0)��� � Ln
���R (x; x0)��� : (47)

By (39) we can write

f (�)� f (x0) = f 0 (x0) sinh (� � x0) + 2f 00 (x0) sinh2
�
� � x0
2

�
+R (�; x0) : (48)

Thus, it holds
Ln (f) (x0)� f (x0)Ln (1) (x0) =

f 0 (x0)Ln (sinh (� � x0)) (x0) + 2f 00 (x0)Ln
�
sinh2

�
� � x0
2

��
(x0)

+Ln
�
R (�; x0)

�
(x0) ; (49)

8 x0 2 [a; b] :
Consequently we have

jLn (f) (x0)� f (x0)Ln (1) (x0)j
(49)
�

jf 0 (x0)j jLn (sinh (� � x0)) (x0)j+ 2 jf 00 (x0)j
����Ln�sinh2� � � x02

��
(x0)

����
+Ln

���R (�; x0)��� � (50)

jf 0 (x0)j jLn (sinh (� � x0)) (x0)j+ 2 jf 00 (x0)j
����Ln�sinh2� � � x02

��
(x0)

����+
cosh (b� a)!1 (f 00 � f; h)

2

24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 ; (51)
8 x0 2 [a; b] :
As in (20), we again have that

jLn (f) (x0)� f (x0)j �

j(Ln (f) (x0)� f (x0)Ln (1) (x0))j+ jf (x0)j jLn (1) (x0)� 1j :

It turns out that (by (51), (20))

jLn (f) (x0)� f (x0)j � jf (x0)j jLn (1) (x0)� 1j+

jf 0 (x0)j jLn (sinh (� � x0)) (x0)j+ 2 jf 00 (x0)j
�
Ln

�
sinh2

�
� � x0
2

��
(x0)

�

+
cosh (b� a)!1 (f 00 � f; h)

2

24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 �
(52)
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jf (x0)j jLn (1) (x0)� 1j+ cosh (b� a) jf 0 (x0)jLn (j� � x0j) (x0)+

cosh2 (b� a) jf 00 (x0)j
2

Ln

�
(� � x0)2

�
(x0)+

cosh (b� a)!1 (f 00 � f; h)
2

24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 =: (�) ;
(53)

8 x0 2 [a; b], h > 0:
As in (23) we have

Ln

�
(� � x0)2

�
(x0) �

�
Ln (j� � x0j)3 (x0)

� 2
3

(Ln (1) (x0))
1
3 ; (54)

8 x0 2 [a; b] :
Let r > 0, and take

h := r
�
Ln

�
j� � x0j3

�
(x0)

� 1
3

= rD3 (x0) ; (55)

where

D3 (x0) :=
�
Ln

�
j� � x0j3

�
(x0)

� 1
3

: (56)

As in (26) we have�
Ln (� � x0)2

�
(x0) � D2

3 (x0) (Ln (1) (x0))
1
3 : (57)

At the moment we assume that D3 (x0) > 0. As in (27) we get24Ln �(� � x0)2� (x0) + Ln

�
j� � x0j3

�
(x0)

3h

35 �
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
: (58)

It follows that

jLn (f) (x0)� f (x0)j � (�)
(58)
� jf (x0)j jLn (1) (x0)� 1j+

cosh (b� a) jf 0 (x0)jLn (j� � x0j) (x0)+
cosh2 (b� a) jf 00 (x0)j

2
Ln

�
(� � x0)2

�
(x0)

+
cosh (b� a)!1 (f 00 � f; rD3 (x0))

2
D2
3 (x0)

�
(Ln (1) (x0))

1
3 +

1

3r

�
: (59)

As in (29) we get that

Ln (j� � x0j) (x0) � D3 (x0) (Ln (1) (x0))
2
3 : (60)
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In case of D3 (x0) = 0, by (53), we have that

jLn (f) (x0)� f (x0)j � jf (x0)j jLn (1) (x0)� 1j : (61)

The last is valid as equality as in the proof of Theorem 3.
The proof of this theorem now is completed.
Next comes a Korovkin type result.

Theorem 6 All as in Theorem 5. Assume that Ln (1)! 1, and Ln
�
j� � x0j3

�
(x0)!

0, both uniformly convergent, as n ! 1. Then Ln (f) ! f , uniformly conver-
gent, as n!1, 8 f 2 C2 ([a; b]) :

Proof. By (36); using (54), (60), and that every uniformly convergent se-
quence of bounded functions is uniformly bounded. Also that !1 (f 00 � f; r kD3k1)!
0, as n!1:

3 Applications

Let f 2 C ([0; 1]), x 2 [0; 1], and the Bernstein polynomials

Bn (f) (x) =

nX
k=0

f

�
k

n

��
n

k

�
xk (1� x)n�k : (62)

We have that Bn (1) = 1, and

Bn

�
(� � x)2

�
(x) =

x (1� x)
n

� 1

4n
: (63)

Clearly it holds

Bn

�
j� � xj3

�
(x) � Bn

�
(� � x)2

�
(x) � 1

4n
; (64)

8 n 2 N.
We have that

D�
3 (x0) :=

�
Bn

�
j� � x0j3

�
(x)
� 1
3 � 1

3
p
4n
; (65)

8 x0 2 [0; 1], n 2 N.
By (29) we get that

Bn (j� � x0j) (x) �
1

3
p
4n
; 8 x0 2 [0; 1] ; n 2 N: (66)

Consequently we obtainBn �(� � x0)2� (x0)
1
� 1

4n
; (67)

12



and
kD�

3k �
1

3
p
4n
; (68)

with
kBn (j� � x0j) (x0)k1 � 1

3
p
4n
; 8 n 2 N: (69)

By (28) and the above we derive

Proposition 7 Let f 2 C2 ([0; 1]), r > 0. Then

kBn (f)� fk1 � kf 0k1
3
p
4n

+
kf 00k1
8n

+
!1

�
f 00 + f; r

3p4n

�
2 (4n)

2
3

�
1 +

1

3r

�
: (70)

By (59) and the above we obtain

Proposition 8 Let f 2 C2 ([0; 1]), r > 0. Then

kBn (f)� fk1 �

cosh 1

24kf 0k1
3
p
4n

+
cosh 1 kf 00k1

8n
+
!1

�
f 00 � f; r

3p4n

�
2 (4n)

2
3

�
1 +

1

3r

�35 : (71)

From (70) and/or (71), we obtain that Bn (f)! f , uniformly, as n!1, 8
f 2 C2 ([0; 1]) :
We also get (use of (28))

Corollary 9 Let f 2 C2 ([0; 1]), r > 0, with f 0 (x0) = f 00 (x0) = 0, for some
x0 2 [0; 1]. Then

jBn (f) (x0)� f (x0)j �
!1

�
f 00 + f; r

3p4n

�
2 (4n)

2
3

�
1 +

1

3r

�
: (72)

We �nally give (use of (59))

Corollary 10 All as in Corollary 9. Then

jBn (f) (x0)� f (x0)j �
cosh 1!1

�
f 00 � f; r

3p4n

�
2 (4n)

2
3

�
1 +

1

3r

�
: (73)

By (72), (73), we have lim
n!1

Bn (f) (x0) = f (x0), pointwise, at the high speed
1
n :

13
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