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Abstract

The first author recently derived several approximation results by neural network op-

erators see the new monograph [19]. There, the approximation methods derived from the

parametrized and deformed neural networks induced by the q−deformed and λ−parametrized

logistic and hyperbolic tangent activation functions. The results we apply here are uni-

variate on a compact interval, regular and fractional. The outcome is the quantitative

approximation of Brownian motion over the three dimensional sphere. We derive several

Jackson type inequalities estimating the degree of convergence of our neural network op-

erators to a general expectation function of Brownian motion. We give a detailed list of

approximation applications regarding the expectation of well known functions of Brown-

ian motion. Smoothness of our functions is taken into account producing higher speeds of

approximation.

2020 AMS Subject Classification: 26A33, 41A17, 41A25, 60G15, 60G22

Keywords and Phrases: Neural network operators, Brownian motion, Expectation,

Quantitative approximation.

1 Introduction

The first author in [1] and [2], see chapters 2 − 5, was the first to establish neural network

approximation to continuous functions with rates by very specifically defined neural network

operators of Cardaliaguet-Euvrard and ’Squasing’ types, by employing the modulus of conti-

nuity of the engaged function or its high order derivative, and producing very tight Jackson
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type inequalities. He treats there both the univariate and multivariate cases. The defining

these operators ’bell-shaped’ and ’squashing’ functions are assumed to be compact support.

Also the first author inspired by [23], continued his studies on neural networks approximation

by introducing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic

tangent type which resulted into [4], [5], [6], [7] and [9], by treating both the univariate and

multivariate cases. He did also the corresponding fractional cases [8], [10] and [14].

In [17], [19] the first author continued similar studies for Banach space valued functions for

activation functions deriving from the q−deformed and λ−parametrized logistic and hyper-

bolic tangent sigmoid functions. The authors based and inspired by [27] perform here neural

network quantitative approximations to Brownian motion over the three dimensional sphere.

They present a series of Jackson type inequalities estimating the error of approximation to a

general expectation function of the Brownian motion and its derivative. They produce regular

and fractional calculus results. They finish with a lot of important applications.

2 About Parametrized and Deformed Neural Networks

2.1 About the q-deformed and λ-parametrized logistic activation function

Here we follow [21].

We consider here the q-deformed and λ-parametrized function acting as an activation function

φq,λ (x) =
1

1 + qA−λx
, x ∈ R, where q, λ > 0, A > 1. (1)

This is an A-generalized logistic type function.

We easily observe that

lim
x−→+∞

φq,λ (x) = 1, lim
x−→−∞

φq,λ (x) = 0. (2)

Furthermore we have

φq,λ (x) = 1− φ 1
q
,λ (−x) . (3)

We also have that

φq,λ (0) =
1

1 + q
and φ 1

q
,λ (0) =

q

1 + q
. (4)

We have

φ′
q,λ (x) = qλ (lnA)

(
1 + qA−λx

)−2
A−λx > 0. (5)

So that φq,λ is a striclty increasing function over R. Furthermore it holds

φ′′
q,λ (x) = qλ2 (lnA)2

(
Aλx + q2A−λx + 2q

)−2 (
q2A−λx −Aλx

)
∈ C (R) . (6)

φ′′
q,λ (x) > 0, for x < logA q

λ and there φq,λ is concave up.

When x > logA q
λ , we have φ′′

q,λ (x) < 0 and φq,λ is concave down.

Of course

φ′′
q,λ

(
logA q

λ

)
= 0.
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So, φq,λ is a sigmoid function, see [18].

Consider the function

Gq,λ (x) :=
1

2
(φq,λ (x+ 1)− φq,λ (x− 1)) , x ∈ R. (7)

Then

Gq,λ (−x) = G 1
q
,λ (x) , ∀ x ∈ R. (8)

We have that

G′
q,λ (x) =

1

2

(
φ′
q,λ (x+ 1)− φ′

q,λ (x− 1)
)
. (9)

G′
q,λ > 0, i.e. Gq,λ is striclty increasing over

(
−∞, logA q

λ − 1
)
. Gq,λ is strictly decreasing

over
(
logA q

λ ,+∞
)
. Gq,λ is strictly concave down over

(
logA q

λ − 1, logA q
λ + 1

)
.

Overall Gq,λ is a bell-shaped function over R. logA q
λ is the only critical number of Gq,λ over

R. Therefore Gq,λ

(
logA q

λ

)
is the maximum of Gq,λ.

The global maximul of Gq,λ is

Gq,λ

(
logA q

λ

)
=

Aλ − 1

2 (Aλ + 1)
. (10)

Finally we have that

lim
x→+∞

Gq,λ (x) =
1

2
(φq,λ (+∞)− φq,λ (+∞)) = 0, (11)

and

lim
x→−∞

Gq,λ (x) =
1

2
(φq,λ (−∞)− φq,λ (−∞)) = 0. (12)

Consequently the x-axis is the horizontal asymptote of Gq,λ. Of course Gq,λ (x) > 0, ∀ x ∈ R.
We need

Theorem 1. ([22]) It holds

∞∑
i=−∞

Gq,λ (x− i) = 1, ∀ x ∈ R, ∀ q, λ > 0, A > 1. (13)

Furthermore,

Theorem 2. ([22]) It holds∫ ∞

−∞
Gq,λ (x) dx = 1, λ, q > 0, A > 1. (14)

So that Gq,λ is a density function on R; λ, q > 0, A > 1.

We need the following result

Theorem 3. ([22]) Let 0 < α < 1, and n ∈ N with n1−α > 2. Then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Gq,λ (nx− k) < max

{
q,

1

q

}
1

Aλ(n1−α−2)
= γA−λ(n1−α−2), (15)

where q, λ > 0, A > 1; γ := max
{
q, 1q

}
.
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Let ⌈·⌉ the ceiling of the number, and ⌊·⌋ the integral part of the number.

We also need

Theorem 4. ([22]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. For q > 0, λ > 0,

A > 1, we consider the number λq > z0 > 0 with Gq,λ (z0) = Gq,λ (0) and λq > 1. Then

1
⌊nb⌋∑

k=⌈na⌉
Gq,λ (nx− k)

< max

 1

Gq,λ (λq)
,

1

G 1
q
,λ

(
λ 1

q

)
 =: K (q) . (16)

We finally mention

Remark 5. ([22]) (i) We have that

lim
n→+∞

⌊nb⌋∑
k=⌈na⌉

Gq,λ (nx− k) ̸= 1, for at least some x ∈ [a, b] , (17)

where λ, q > 0.

(ii) Let [a, b] ⊂ R. For large n we always have ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff

⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds

⌊nb⌋∑
k=⌈na⌉

Gq,λ (nx− k) ≤ 1. (18)

Definition 6. Let f ∈ C ([a, b]) and n ∈ N : ⌈na⌉ ≤ ⌊nb⌋. We introduce and define the

X-valued linear neural network operators

Ln (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f
(
k
n

)
Gq,λ (nx− k)

⌊nb⌋∑
k=⌈na⌉

Gq,λ (nx− k)

, x ∈ [a, b] . (19)

Clearly here Ln (f, x) ∈ C ([a, b]). We study here the pointwise and uniform convergence

of Ln (f, x) to f (x) with rates.

For convenience, also we call

L∗
n (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f

(
k

n

)
Gq,λ (nx− k) , (20)

Ln (f, x) :=
L∗
n (f, x)

⌊nb⌋∑
k=⌈na⌉

Gq,λ (nx− k)

. (21)

So that

Ln (f, x)− f (x) =
L∗
n (f, x)

⌊nb⌋∑
k=⌈na⌉

Gq,λ (nx− k)

− f (x) = (22)
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L∗
n (f, x)− f (x)

(
⌊nb⌋∑

k=⌈na⌉
Gq,λ (nx− k)

)
⌊nb⌋∑

k=⌈na⌉
Gq,λ (nx− k)

.

Consequently, we derive that

|Ln (f, x)− f (x)| ≤ K (q)

∣∣∣∣∣∣L∗
n (f, x)− f (x)

 ⌊nb⌋∑
k=⌈na⌉

Gq,λ (nx− k)

∣∣∣∣∣∣ =

K (q)

∣∣∣∣∣∣
⌊nb⌋∑

k=⌈na⌉

(
f

(
k

n

)
− f (x)

)
Gq,λ (nx− k)

∣∣∣∣∣∣ . (23)

We will estimate the right hand side of the last quantity.

For that we need, for f ∈ C ([a, b]) the first modulus of continuity

ω1 (f, δ) := sup

x, y ∈ [a, b]

|x− y| ≤ δ

|f (x)− f (y)| , δ > 0. (24)

Similarly, it is defined ω1 for f ∈ CuB (R) (uniformly continuous and bounded functions

from R into R), for f ∈ CB (R) (continuous and bounded real valued), and for f ∈ Cu (R)
(uniformly continuous).

The fact f ∈ C ([a, b]) or f ∈ Cu (R), is equivalent to lim
δ→0

ω1 (f, δ) = 0, see [13].

We present a set of real valued neural network approximations to a function given with

rates.

Theorem 7. ([21]) Let f ∈ C ([a, b]), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] . Then

i)

|Ln (f, x)− f (x)| ≤ K (q)

[
ω1

(
f,

1

nα

)
+ 2 ∥f∥∞ γA−λ(n1−α−2)

]
=: ρ, (25)

and

ii)

∥Ln (f)− f∥∞ ≤ ρ. (26)

We get that lim
n→∞

Ln (f) = f , pointwise and uniformly.

We need

Definition 8. ([11], [24]) Let [a, b] ⊂ R, α > 0; m = ⌈α⌉ ∈ N, (⌈·⌉ is the ceiling of the

number), f : [a, b] → R. We assume that f (m) ∈ L1 ([a, b]). We call the Caputo left fractional

derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a
(x− t)m−α−1 f (m) (t) dt, ∀ x ∈ [a, b] . (27)

If α ∈ N, we set Dα
∗af := f (m) the ordinary real valued derivative and also set D0

∗af := f.
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By [11], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈ L1 ([a, b]).

If
∥∥f (m)

∥∥
L∞([a,b])

< ∞, then by [11], Dα
∗af ∈ C ([a, b]) , hence ∥Dα

∗af∥ ∈ C ([a, b]) .

We mention

Definition 9. ([12]) Let [a, b] ⊂ R, α > 0, m := ⌈α⌉. We assume that f (m) ∈ L1 ([a, b]),

where f : [a, b] → R. We call the Caputo right fractional derivative of order α:

(
Dα

b−f
)
(x) :=

(−1)m

Γ (m− α)

∫ b

x
(z − x)m−α−1 f (m) (z) dz, ∀ x ∈ [a, b] . (28)

We observe that
(
Dm

b−f
)
(x) = (−1)m f (m) (x) , for m ∈ N, and

(
D0

b−f
)
(x) = f (x) .

By [12],
(
Dα

b−f
)
(x) exists almost everywhere on [a, b] and

(
Dα

b−f
)
∈ L1 ([a, b]).

If
∥∥f (m)

∥∥
L∞([a,b],X)

< ∞, and α /∈ N, by [12], Dα
b−f ∈ C ([a, b]) , hence

∥∥Dα
b−f
∥∥ ∈ C ([a, b]) .

Next we present

Theorem 10. ([21])Let 0 < α, β < 1, f ∈ C1 ([a, b]), x ∈ [a, b], n ∈ N : n1−β > 2. Then

i)

|Ln (f, x)− f (x)| ≤

K (q)
1

Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

γA−λ(n1−β−2)
(∥∥Dα

x−f
∥∥
∞,[a,x]

(x− a)α + ∥Dα
∗xf∥∞,[x,b] (b− x)α

)}
, (29)

and

ii)

∥Lnf − f∥∞ ≤ K (q)
1

Γ (α+ 1)
·

(
sup

x∈[a,b]
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(b− a)α γA−λ(n1−β−2)

(
sup

x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥Dα
∗xf∥∞,[x,b]

)}
. (30)

2.2 About q-deformed and λ−parametrized hyperbolic tangent activation

function gq,λ

Here all this background comes from [16]. We use gq,λ, see (29), and exhibit that it is a sigmoid

activation function and we will present several of its properties related to the approximation

by neural network operators. So, let us consider the function

gq,λ (x) :=
eλx − qe−λx

eλx + qe−λx
, λ, q > 0, x ∈ R. (31)

We have that

gq,λ (0) =
1− q

1 + q
. (32)
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We also have

gq,λ (−x) = −g 1
q
,λ (x) , ∀ x ∈ R, (33)

Furthermore

lim
x→−∞

gq,λ (x) = −1, and lim
x→+∞

gq,λ (x) = +1 (34)

We find that

g′q,λ (x) =
4qλe2λx

(e2λx + q)
2 > 0, (35)

therefore gq,λ is striclty increasing.

Next we obtain (x ∈ R)

g′′q,λ (x) = 8qλ2e2λx

(
q − e2λx

(e2λx + q)
3

)
∈ C (R) . (36)

So, in case of x < ln q
2λ , we have that gq,λ is strictly concave up, with g′′q,λ

(
ln q
2λ

)
= 0. And

in case of x > ln q
2λ , we have that gq,λ is strictly concave down.

Clearly, gq,λ is a shifted sigmoid function with gq,λ (0) =
1−q
1+q , and gq,λ (−x) = −gq−1,λ (x),

(a semi-odd function), see also [18].

By 1 > −1, x+ 1 > x− 1, we consider the activation function

Mq.λ (x) :=
1

4
(gq,λ (x+ 1)− gq,λ (x− 1)) > 0, (37)

∀x ∈ R; q, λ > 0. Notice that Mq,λ (±∞) = 0, so the x-axis is horizontal asymptote. We have

that

Mq,λ (−x) = M 1
q
,λ (x) , ∀ x ∈ R; q, λ > 0, (38)

a deformed symmetry.

Furthermore Mq,λ is strictly decreasing over
(
ln q
2λ + 1,+∞

)
. Mq,λ is concave down over[

ln q
2λ − 1, ln q

2λ + 1
]
, and strictly concave down over

(
ln q
2λ − 1, ln q

2λ + 1
)
.

Consequently Mq,λ has a bell-type shape over R.
At x = ln q

2λ , Mq,λ achieves its global maximum, which is

Mq,λ

(
ln q

2λ

)
=

tanh (λ)

2
, λ > 0. (39)

We mention

Theorem 11. ([20]) We have that

∞∑
i=−∞

Mq,λ (x− i) = 1, ∀ x ∈ R, ∀ λ, q > 0. (40)

It follows

Theorem 12. ([20]) It holds ∫ ∞

−∞
Mq,λ (x) dx = 1, λ, q > 0. (41)
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So that Mq,λ is a density function on R; λ, q > 0.

We need the following result

Theorem 13. ([20]) Let 0 < α < 1, and n ∈ N with n1−α > 2; q, λ > 0. Then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Mq,λ (nx− k) < max

{
q,

1

q

}
e4λe−2λn(1−α)

= Te−2λn(1−α)
, (42)

where T := max
{
q, 1q

}
e4λ.

Let ⌈·⌉ the ceiling of the number, and ⌊·⌋ the integral part of the number.

Theorem 14. ([20]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. For q > 0, λ > 0, we

consider the number λq > z0 > 0 with Mq,λ (z0) = Mq,λ (0) and λq > 1. Then

1
⌊nb⌋∑

k=⌈na⌉
Mq,λ (nx− k)

< max

 1

Mq,λ (λq)
,

1

M 1
q
,λ

(
λ 1

q

)
 =: ∆ (q) . (43)

We also mention

Remark 15. ([20]) (i) We have that

lim
n→+∞

⌊nb⌋∑
k=⌈na⌉

Mq,λ (nx− k) ̸= 1, for at least some x ∈ [a, b] , (44)

where λ, q > 0.

(ii) Let [a, b] ⊂ R. For large n we always have ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff

⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds

⌊nb⌋∑
k=⌈na⌉

Mq,λ (nx− k) ≤ 1. (45)

Definition 16. Let f ∈ C ([a, b]) and n ∈ N : ⌈na⌉ ≤ ⌊nb⌋. We introduce and define the real

valued linear neural network operators

Hn (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f
(
k
n

)
Mq,λ (nx− k)

⌊nb⌋∑
k=⌈na⌉

Mq,λ (nx− k)

, x ∈ [a, b] ; q > 0, q ̸= 1. (46)

For large enough n we always obtain ⌈na⌉ ≤ ⌊nb⌋ . Also a ≤ k
n ≤ b, iff ⌈na⌉ ≤ k ≤ ⌊nb⌋.

We study here the pointwise and uniform convergence of Hn (f, x) to f (x) with rates.

For convenience, also we call

H∗
n (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f

(
k

n

)
Mq,λ (nx− k) , (47)
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that is

Hn (f, x) :=
H∗

n (f, x)
⌊nb⌋∑

k=⌈na⌉
Mq,λ (nx− k)

. (48)

So that

Hn (f, x)− f (x) =
H∗

n (f, x)
⌊nb⌋∑

k=⌈na⌉
Mq,λ (nx− k)

− f (x) = (49)

H∗
n (f, x)− f (x)

(
⌊nb⌋∑

k=⌈na⌉
Mq,λ (nx− k)

)
⌊nb⌋∑

k=⌈na⌉
Mq,λ (nx− k)

.

Consequently, we derive that

|Hn (f, x)− f (x)| ≤ ∆(q)

∣∣∣∣∣∣H∗
n (f, x)− f (x)

 ⌊nb⌋∑
k=⌈na⌉

Mq,λ (nx− k)

∣∣∣∣∣∣ =

∆(q)

∣∣∣∣∣∣
⌊nb⌋∑

k=⌈na⌉

(
f

(
k

n

)
− f (x)

)
Mq,λ (nx− k)

∣∣∣∣∣∣ , (50)

where ∆ (q) as in (43). We will estimate the right hand side of the last quantity.

We present a set of real valued neural network approximations to a function given with

rates.

Theorem 17. ([16])Let f ∈ C ([a, b]), 0 < α < 1, n ∈ N : n1−α > 2, q > 0, q ̸= 1, x ∈ [a, b] .

Then

i)

|Hn (f, x)− f (x)| ≤ ∆(q)

[
ω1

(
f,

1

nα

)
+ 2 ∥f∥∞ Te−2λn(1−α)

]
=: τ, (51)

where T := max
{
q, 1q

}
e4λ.

and

ii)

∥Hn (f)− f∥∞ ≤ τ. (52)

We get that lim
n→∞

Hn (f) = f , pointwise and uniformly.

Next present

Theorem 18. ([16]) Let 0 < α, β < 1, q > 0, q ̸= 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N :

n1−β > 2. Then

i)

|Hn (f, x)− f (x)| ≤

∆(q)

Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

9



Te−2λn(1−β)
(∥∥Dα

x−f
∥∥
∞,[a,x]

(x− a)α + ∥Dα
∗xf∥∞,[x,b] (b− x)α

)}
, (53)

and

ii)

∥Hnf − f∥∞ ≤ ∆(q)

Γ (α+ 1)

(
sup

x∈[a,b]
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(b− a)α Te−2λn(1−β)

(
sup

x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥Dα
∗xf∥∞,[x,b]

)}
. (54)

Here, T := max
{
q, 1q

}
e4λ.

3 Combine 2.1 and 2.2

Let a, b ∈ R, f ∈ C ([a, b]). Let also q, λ > 0, A > 1, γ = max
{
q, 1q

}
as in previous sections.

For the next theorems we call

1Ln (f, x) := Ln (f, x) , x ∈ [a, b]

2Ln (f, x) := Hn (f, x) , x ∈ [a, b] .

Also we set

K1 (q) = K (q)

K2 (q) = ∆ (q) .

Furthermore we set

β̂1,n (λ, α) = A−λ(n1−α−2), n ∈ N, 0 < α < 1.

β̂2,n (λ, α) = e4λ−2λn1−α
, n ∈ N, 0 < α < 1.

We present

Theorem 19. Let f ∈ C ([a, b]), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] . Then for i = 1, 2

i)

|iLn (f, x)− f (x)| ≤ Ki (q)

[
ω1

(
f,

1

nα

)
+ 2 ∥f∥∞ γβ̂i,n (λ, α)

]
=: ρi, (55)

and

ii)

∥iLn (f)− f∥∞ ≤ ρi. (56)

We get that lim
n→∞iLn (f) = f , pointwise and uniformly.

Proof. From Theorems 7 and 17.

Next we present

10



Theorem 20. Let 0 < α, β < 1, f ∈ C1 ([a, b]), x ∈ [a, b], n ∈ N : n1−β > 2. Then for i = 1, 2

i)

|iLn (f, x)− f (x)| ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

γβ̂i,n (λ, β)
(∥∥Dα

x−f
∥∥
∞,[a,x]

(x− a)α + ∥Dα
∗xf∥∞,[x,b] (b− x)α

)}
, (57)

and

ii)

∥iLnf − f∥∞ ≤ Ki (q)
1

Γ (α+ 1)
·

(
sup

x∈[a,b]
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(b− a)α γβ̂i,n (λ, β)

(
sup

x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥Dα
∗xf∥∞,[x,b]

)}
. (58)

Proof. From Theorems 10 and 18.

4 About Brownian Motion on 3 Dimensional Sphere

([27]) The Brownian motion on Sn is a diffusion (Markov) process Wt, t ≥ 0, on Sn whose

transition density is a function P (t, x, y) on (0,∞)× Sn × Sn satisfying

∂P

∂t
=

1

2
∆nP, (59)

and

P (t, x, y) → δx(y) as t → 0+, (60)

where ∆n is the Laplace-Beltrami operator of Sn acting on the x-variables and δx(y) is the

delta mass at x, i.e. P (t, x, y) is the heat kernel of Sn. The heat kernel exists, it is unique,

positive, and smooth in (t, x, y).

Remark 21. The heat kernel P (t, x, y) sutisfying the following properties

1. Symmetry: P (t, x, y) = P (t, y, x).

2. The semigroup identity: For any s ∈ (0, t),

P (t, x, y) =

∫
Sn

P (s, x, z)P (t− s, z, y)dµ(z), (61)

where dµ is the area measure element of Sn.

3. For all t > 0 and x ∈ Sn ∫
Sn

P (t, x, y)dµ(y) = 1. (62)

11



4. As t → ∞, P (t, x, y) approaches the uniform density on Sn, i.e.

lim
t→∞

P (t, x, y) =
1

An
, (63)

where An is the area of the Sn with radius a. It is also well known that

An =
2π

n+1
2 an

(n−1
2 )!

, for n odd

An =
2n(n2 − 1)!π

n
2 an

(n− 1)!
, for n even. (64)

Finally, the symmetry of Sn implies that P (t, x, y) depends only on t and d(x, y), the

distance between x and y. Thus in spherical coordinates it depends on t and the angle φ

between x and y. Hence,

P (t, x, y) = p(t, φ),

where p(t, φ) satisfies

∂p

∂t
=

1

2
∆np =

1

2a2

[
(n− 1) cotφ · ∂p

∂φ
+

∂2p

∂φ2

]
(65)

and

lim
t→0+

aAn−1p(t, φ) · sinn−1 φ = δ(φ). (66)

Here δ(·) is the standard Dirac delta function on R.

4.1 Explicit form of the heat kernel of S3

Proposition 22. Let Wt, t ≥ 0 be the Brownian motion on a 3-dimensional sphere S3 of

radius a. The transition density function p(t, φ) of Wt is given by

p(t, φ) =
exp

(
t

2a2

)
(2πt)3/2 sinφ

∑
n∈Z

(φ+ 2nπ) exp

(
−(φ+ 2nπ)2a2

2t

)
, (67)

where Z is the set of all integers. Equivalently

p(t, φ) = − i

4π2a3 sinφ

∑
n∈Z

n exp

(
− t(n2 − 1)

2a2
+ iφn

)
(68)

and

p(t, φ) =
1

2π2a3 sinφ

∑
n∈N

n sin(nφ) exp

(
− t(n2 − 1)

2a2

)
. (69)

Furthermore p(t, φ) is analytic about φ = 0 and φ = π. In fact

p(t, 0) = lim
φ→0+

p(t, φ) =
1

2π2a3

∑
n∈N

n2 exp

(
− t(n2 − 1)

2a2

)
(70)

and

p(t, π) = lim
φ→π−

p(t, φ) =
1

2π2a3

∑
n∈N

n2(−1)n exp

(
− t(n2 − 1)

2a2

)
. (71)
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Theorem 23. Consider function g : R → R, which is bounded on [0, π], i.e. there exists

M > 0 such that |g(ϕ)| ≤ M, for every ϕ ∈ [0, π] , and Lebesgue measurable on R. Let also
W (t, ϕ) be the Brownian motion on S3. Then the expectation

E (|g(W )|) (t) =
∫ π

0
|g(ϕ)| p(t, ϕ)dϕ

is continuous in t, and

E (|g(W )|) (t) ≤ πMp (to, ϕ0) , (72)

where

p (t0, ϕ0) = max
(t,ϕ)∈[t1,t2]×[0,π]

p (t, ϕ) , with 0 < t1 < t2.

Here p(t, ϕ) is the transition density function of the Brownian motion Wt, t ≥ 0 on S3 given

by (67).

Proof. It is known that the transition density function of the Brownian motion Wt, t ≥ 0 on

S3, p(t, ϕ) is continuous in (t, ϕ) ∈ [t1, t2]× [0, π] , t1 > 0.

By the extreme value theorem there exists (t0, ϕ0) ∈ [t1, t2]× [0, π] such that

p (t0, ϕ0) = max
(t,ϕ)∈[t1,t2]×[0,π]

p (t, ϕ) .

So we have

0 ≤ p (t, ϕ) ≤ p (t0, ϕ0) , for every (t, ϕ) ∈ [t1, t2]× [0, π] .

Let N ∈ N, tN , t ∈ [t1, t2] : tN → t, as N → ∞.

Then, p (tN , ϕ) → p (t, ϕ) for every ϕ ∈ [0, π] .

The function g : R → R, is bounded on [0, π] , i.e. there is a M > 0 such that |g(ϕ)| ≤ M, for

every ϕ ∈ [0, π] , and Lebesgue measurable on R.
Furthermore we have that,

|g(ϕ)| p(tN , ϕ) → |g(ϕ)| p (t, ϕ) , as N → ∞

and

|g(ϕ)| p(tN , ϕ) ≤ |g(ϕ)| p (to, ϕ0) , for all ϕ ∈ [0, π] and N ∈ N.

So, by dominated convergence theorem we get that

E (|g(W )|) (tN ) → E (|g(W )|) (t) as N → ∞.

Thus E (|g(W )|) (t) is proved to be continuous in t.

Moreover,

|g(ϕ)| p(t, ϕ) ≤ Mp (to, ϕ0) for all t ∈ [t1, t2] and ϕ ∈ [0, π].

Thus,

E (|g(W )|) (t) =
∫ π

0
|g(ϕ)| p(t, ϕ)dϕ ≤ πMp (to, ϕ0) .

13



Proposition 24. Consider function g : R → R, which is bounded on [0, π] and Lebesgue

measurable on R. Let also W (t, ϕ) be the Brownian motion on S3. Then the expectation

E (|g(W )|) (t) =
∫ π

0
|g(ϕ)| p(t, ϕ)dϕ

is differentiable in t, and

∂E (|g(W )|)
∂t

=

∫ π

0
|g(ϕ)| ∂ (p(t, ϕ))

∂t
dϕ, (73)

which is continuous in t.

Proof. As we said before, the transition density function of the Brownian motion Wt, t ≥ 0

on S3, p(t, ϕ) is continuous in (t, ϕ) ∈ [t1, t2]× [0, π] , t1 > 0.

We have

E (|g(W )|) =
∫ π

0
|g(ϕ)| p(t, ϕ)dϕ, for every t ∈ [t1, t2] .

We apply differentiation under the integral sign.

We notice

|g(ϕ)| ∂p(t, ϕ)
∂t

≤ M

∥∥∥∥∂p(t, ϕ)∂t

∥∥∥∥
∞,[t1,t2]×[0,π]

.

Therefore there exists
∂E (|g(W )|)

∂t
=

∫ π

0
|g(ϕ)| ∂ (p(t, ϕ))

∂t
dϕ,

which is continuous in t (same proof as in Theorem 23).

5 Main Results

We start with

Proposition 25. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

i)

|iLn (E (|g(W )|)) (t)− E (|g(W )|) (t)| ≤

Ki (q)

[
ω1

(
E (|g(W )|) , 1

nα

)
+ 2 ∥E (|g(W )|)∥∞ γβ̂i,n (λ, α)

]
=: ρi, (74)

and

ii)

∥iLn (E (|g(W )|))− E (|g(W )|)∥∞ ≤ ρi. (75)

We get that lim
n→∞ iLn (E (|g(W )|)) = E (|g(W )|), pointwise and uniformly.

Proof. From Theorem 19.

Next we present
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Proposition 26. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for

i = 1, 2

i)

|iLn (E (|g(W )|)) (t)− E (|g(W )|) (t)| ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E (|g(W )|) , 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE (|g(W )|) , 1
nβ

)
[t,t2]

)
nαβ

+

γβ̂i,n (λ, β)
(∥∥Dα

t−E (|g(W )|)
∥∥
∞,[t1,t]

(t− t1)
α + ∥Dα

∗tE (|g(W )|)∥∞,[t,t2]
(t2 − t)α

)}
, (76)

and

ii)

∥iLnE (|g(W )|)− E (|g(W )|)∥∞ ≤ Ki (q)
1

Γ (α+ 1)
·

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E (|g(W )|) , 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE (|g(W )|) , 1
nβ

)
[t,t2]

)
nαβ

+

(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥Dα
t−E (|g(W )|)

∥∥
∞,[t1,t]

+ sup
t∈[t1,t2]

∥Dα
∗tE (|g(W )|)∥∞,[t,t2]

)}
.

(77)

Proof. From Theorem 20.

We continue with

Proposition 27. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

i) ∣∣∣∣iLn

(
∂E (|g(W )|)

∂t

)
(t)−

(
∂E (|g(W )|)

∂t

)
(t)

∣∣∣∣ ≤
Ki (q)

[
ω1

(
∂E (|g(W )|)

∂t
,
1

nα

)
+ 2

∥∥∥∥∂E (|g(W )|)
∂t

∥∥∥∥
∞
γβ̂i,n (λ, α)

]
=: ρi, (78)

and

ii) ∥∥∥∥iLn

(
∂E (|g(W )|)

∂t

)
− ∂E (|g(W )|)

∂t

∥∥∥∥
∞

≤ ρi. (79)

We get that lim
n→∞ iLn

(
∂E(|g(W )|)

∂t

)
= ∂E(|g(W )|)

∂t , pointwise and uniformly.

Proof. From Theorem 19.

6 Applications

For a function g : R → R, which is bounded on [0, π] and Lebesgue measurable on R and

W (t, ϕ) the Brownian motion on S3. We will use the following notations

E (|g(W )|) := E (|g(W )|)(0) (80)
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and
∂E (|g(W )|)

∂t
:= E (|g(W )|)(1) . (81)

We can apply our main results to the function g(W ) = W . Consider the function g : R → R,
where g(x) = x for every x ∈ R. Let also W (t, ϕ) be the Brownian motion on S3. Then the

expectation

E (|W |) (t) =
∫ π

0
ϕp(t, ϕ)dϕ

is continuous in t.

Moreover,

Corollary 28. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

and j = 0, 1

i) ∣∣∣iLn

(
E (|W |)(j)

)
(t)− E (|W |)(j) (t)

∣∣∣ ≤
Ki (q)

[
ω1

(
E (|W |)(j) , 1

nα

)
+ 2

∥∥∥E (|W |)(j)
∥∥∥
∞
γβ̂i,n (λ, α)

]
=: ρi, (82)

and

ii) ∥∥∥iLn

(
E (|W |)(j)

)
− E (|W |)(j)

∥∥∥
∞

≤ ρi (83)

We get that lim
n→∞ iLn

(
E (|W |)(j)

)
= E (|W |)(j), pointwise and uniformly.

Proof. From Propositions 25 and 27.

Next we present

Corollary 29. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for i = 1, 2

i)

|iLn (E (|W |)) (t)− E (|W |) (t)| ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E (|W |) , 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE (|W |) , 1
nβ

)
[t,t2]

)
nαβ

+

γβ̂i,n (λ, β)
(∥∥Dα

t−E (|W |)
∥∥
∞,[t1,t]

(t− t1)
α + ∥Dα

∗tE (|W |)∥∞,[t,t2]
(t2 − t)α

)}
, (84)

and

ii)

∥iLnE (|W |)− E (|W |)∥∞ ≤ Ki (q)
1

Γ (α+ 1)
·

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E (|W |) , 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE (|W |) , 1
nβ

)
[t,t2]

)
nαβ

+

(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥Dα
t−E (|W |)

∥∥
∞,[t1,t]

+ sup
t∈[t1,t2]

∥Dα
∗tE (|W |)∥∞,[t,t2]

)}
. (85)
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Proof. From Proposition 26.

For the next corollaries we consider the function g : R → R, where g(x) = cosx for every

x ∈ R. Let also W (t, ϕ) be the Brownian motion on S3. Then the expectation

E (|cosW |) (t) =
∫ π

0
|cosϕ| p(t, ϕ)dϕ

is continuous in t.

Moreover,

Corollary 30. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

and j = 0, 1

i) ∣∣∣iLn

(
E (|cosW |)(j)

)
(t)− E (|cosW |)(j) (t)

∣∣∣ ≤
Ki (q)

[
ω1

(
E (|cosW |)(j) , 1

nα

)
+ 2

∥∥∥E (|cosW |)(j)
∥∥∥
∞
γβ̂i,n (λ, α)

]
=: ρi, (86)

and

ii) ∥∥∥iLn

(
E (|cosW |)(j)

)
− E (|cosW |)(j)

∥∥∥
∞

≤ ρi (87)

We get that lim
n→∞ iLn

(
E (|cosW |)(j)

)
= E (|cosW |)(j), pointwise and uniformly.

Proof. From Propositions 25 and 27.

Next we present

Corollary 31. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for i = 1, 2

i)

|iLn (E (|cosW |)) (t)− E (|cosW |) (t)| ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E (|cosW |) , 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE (|cosW |) , 1
nβ

)
[t,t2]

)
nαβ

+

γβ̂i,n (λ, β)
(∥∥Dα

t−E (|cosW |)
∥∥
∞,[t1,t]

(t− t1)
α + ∥Dα

∗tE (|cosW |)∥∞,[t,t2]
(t2 − t)α

)}
, (88)

and

ii)

∥iLnE (|cosW |)− E (|cosW |)∥∞ ≤ Ki (q)
1

Γ (α+ 1)
·

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E (|cosW |) , 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE (|cosW |) , 1
nβ

)
[t,t2]

)
nαβ

+

(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥Dα
t−E (|cosW |)

∥∥
∞,[t1,t]

+ sup
t∈[t1,t2]

∥Dα
∗tE (|cosW |)∥∞,[t,t2]

)}
.

(89)
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Proof. From Proposition 26.

We can obtain similar results for the function g : R → R, where g(x) = sinx for every x ∈ R.

Let as consider now the function g : R → R, where g(x) = tanhx for every x ∈ R. Let

also W (t, ϕ) be the Brownian motion on S3. Then the expectation

E (|tanhW |) (t) =
∫ π

0
|tanh(ϕ)| p(t, ϕ)dϕ

is continuous in t.

Moreover,

Corollary 32. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

and j = 0, 1

i) ∣∣∣iLn

(
E (|tanhW |)(j)

)
(t)− E (|tanhW |)(j) (t)

∣∣∣ ≤
Ki (q)

[
ω1

(
E (|tanhW |)(j) , 1

nα

)
+ 2

∥∥∥E (|tanhW |)(j)
∥∥∥
∞
γβ̂i,n (λ, α)

]
=: ρi, (90)

and

ii) ∥∥∥iLn

(
E (|tanhW |)(j)

)
− E (|tanhW |)(j)

∥∥∥
∞

≤ ρi (91)

We get that lim
n→∞ iLn

(
E (|tanhW |)(j)

)
= E (|tanhW |)(j), pointwise and uniformly.

Proof. From Propositions 25 and 27.

Next we present

Corollary 33. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for i = 1, 2

i)

|iLn (E (|tanhW |)) (t)− E (|tanhW |) (t)| ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E (|tanhW |) , 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE (|tanhW |) , 1
nβ

)
[t,t2]

)
nαβ

+

γβ̂i,n (λ, β)
(∥∥Dα

t−E (|tanhW |)
∥∥
∞,[t1,t]

(t− t1)
α + ∥Dα

∗tE (|tanhW |)∥∞,[t,t2]
(t2 − t)α

)}
,

(92)

and

ii)

∥iLnE (|tanhW |)− E (|tanhW |)∥∞ ≤ Ki (q)
1

Γ (α+ 1)
·

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E (|tanhW |) , 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE (|tanhW |) , 1
nβ

)
[t,t2]

)
nαβ

+
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(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥Dα
t−E (|tanhW |)

∥∥
∞,[t1,t]

+ sup
t∈[t1,t2]

∥Dα
∗tE (|tanhW |)∥∞,[t,t2]

)}
.

(93)

Proof. From Proposition 26.

In the following let as consider the function g : R → R, where g(x) = e−ℓx, ℓ > 0 for every

x ∈ R. Let also W (t, ϕ) be the Brownian motion on S3. Then the expectation

E
(
e−ℓW

)
(t) =

∫ π

0
e−ℓϕp(t, ϕ)dϕ

is continuous in t.

Furthermore,

Corollary 34. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

and j = 0, 1

i) ∣∣∣∣iLn

(
E
(
e−ℓW

)(j))
(t)− E

(
e−ℓW

)(j)
(t)

∣∣∣∣ ≤
Ki (q)

[
ω1

(
E
(
e−ℓW

)(j)
,
1

nα

)
+ 2

∥∥∥∥E (e−ℓW
)(j)∥∥∥∥

∞
γβ̂i,n (λ, α)

]
=: ρi, (94)

and

ii) ∥∥∥∥iLn

(
E
(
e−ℓW

)(j))
− E

(
e−ℓW

)(j)∥∥∥∥
∞

≤ ρi (95)

We get that lim
n→∞ iLn

(
E
(
e−ℓW

)(j))
= E

(
e−ℓW

)(j)
, pointwise and uniformly.

Proof. From Propositions 25 and 27.

We continue with

Corollary 35. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for i = 1, 2

i) ∣∣∣iLn

(
E
(
e−ℓW

))
(t)− E

(
e−ℓW

)
(t)
∣∣∣ ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E
(
e−ℓW

)
, 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE
(
e−ℓW

)
, 1
nβ

)
[t,t2]

)
nαβ

+

γβ̂i,n (λ, β)

(∥∥∥Dα
t−E

(
e−ℓW

)∥∥∥
∞,[t1,t]

(t− t1)
α +

∥∥∥Dα
∗tE

(
e−ℓW

)∥∥∥
∞,[t,t2]

(t2 − t)α
)}

, (96)

and

ii) ∥∥∥iLnE
(
e−ℓW

)
− E

(
e−ℓW

)∥∥∥
∞

≤ Ki (q)
1

Γ (α+ 1)
·
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

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E
(
e−ℓW

)
, 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE
(
e−ℓW

)
, 1
nβ

)
[t,t2]

)
nαβ

+

(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥∥Dα
t−E

(
e−ℓW

)∥∥∥
∞,[t1,t]

+ sup
t∈[t1,t2]

∥∥∥Dα
∗tE

(
e−ℓW

)∥∥∥
∞,[t,t2]

)}
.

(97)

Proof. From Proposition 26.

In the following we consider the generalized logistic sigmoid function g : R → R, where
g(x) = (1 + e−x)

−δ
for every x ∈ R. Let also W (t, ϕ) be the Brownian motion on S3. Then

the expectation

E
((

1 + e−W
)−δ
)
(t) =

∫ π

0

(
1 + e−ϕ

)−δ
p(t, ϕ)dϕ

is continuous in t.

Moreover,

Corollary 36. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

and j = 0, 1

i) ∣∣∣∣iLn

(
E
((

1 + e−W
)−δ
)(j))

(t)− E
((

1 + e−W
)−δ
)(j)

(t)

∣∣∣∣ ≤
Ki (q)

[
ω1

(
E
((

1 + e−W
)−δ
)(j)

,
1

nα

)
+ 2

∥∥∥∥E ((1 + e−W
)−δ
)(j)∥∥∥∥

∞
γβ̂i,n (λ, α)

]
=: ρi, (98)

and

ii) ∥∥∥∥iLn

(
E
((

1 + e−W
)−δ
)(j))

− E
((

1 + e−W
)−δ
)(j)∥∥∥∥

∞
≤ ρi (99)

We get that lim
n→∞ iLn

(
E
((

1 + e−W
)−δ
)(j))

= E
((

1 + e−W
)−δ
)(j)

, pointwise and uni-

formly.

Proof. From Propositions 25 and 27.

It follows

Corollary 37. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for i = 1, 2

i) ∣∣∣iLn

(
E
((

1 + e−W
)−δ
))

(t)− E
((

1 + e−W
)−δ
)
(t)
∣∣∣ ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E
((

1 + e−W
)−δ
)
, 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE
((

1 + e−W
)−δ
)
, 1
nβ

)
[t,t2]

)
nαβ

+
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γβ̂i,n (λ, β)

(∥∥∥Dα
t−E

((
1 + e−W

)−δ
)∥∥∥

∞,[t1,t]
(t− t1)

α +
∥∥∥Dα

∗tE
((

1 + e−W
)−δ
)∥∥∥

∞,[t,t2]
(t2 − t)α

)}
,

(100)

and

ii) ∥∥∥iLnE
((

1 + e−W
)−δ
)
− E

((
1 + e−W

)−δ
)∥∥∥

∞
≤ Ki (q)

1

Γ (α+ 1)
·

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E
((

1 + e−W
)−δ
)
, 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE
((

1 + e−W
)−δ
)
, 1
nβ

)
[t,t2]

)
nαβ

+

(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥∥Dα
t−E

((
1 + e−W

)−δ
)∥∥∥

∞,[t1,t]
+ sup

t∈[t1,t2]

∥∥∥Dα
∗tE

((
1 + e−W

)−δ
)∥∥∥

∞,[t,t2]

)}
.

(101)

Proof. From Proposition 26.

When δ = 1 we have the usual logistic sigmoid function.

The Gompertz function g : R → R, with g(x) = eµe
−x

, µ < 0 is a sigmoid function which

describes growth as being slowest at the start and end of a given time period. Let W (t, ϕ) be

the Brownian motion on S3. Then the expectation

E
(
eµe

−W
)
(t) =

∫ π

0
eµe

−ϕ
p(t, ϕ)dϕ

is continuous in t.

It follows,

Corollary 38. Let 0 < α < 1, n ∈ N : n1−α > 2, t ∈ [t1, t2] , where t1 > 0. Then for i = 1, 2

and j = 0, 1

i) ∣∣∣∣iLn

(
E
(
eµe

−W
)(j))

(t)− E
(
eµe

−W
)(j)

(t)

∣∣∣∣ ≤
Ki (q)

[
ω1

(
E
(
eµe

−W
)(j)

,
1

nα

)
+ 2

∥∥∥∥E (eµe−W
)(j)∥∥∥∥

∞
γβ̂i,n (λ, α)

]
=: ρi, (102)

and

ii) ∥∥∥∥iLn

(
E
(
eµe

−W
)(j))

− E
(
eµe

−W
)(j)∥∥∥∥

∞
≤ ρi (103)

We get that lim
n→∞ iLn

(
E
(
eµe

−W
)(j))

= E
(
eµe

−W
)(j)

, pointwise and uniformly.

Proof. From Propositions 25 and 27.

We finish with
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Corollary 39. Let 0 < α, β < 1, t ∈ [t1, t2],where t1 > 0 n ∈ N : n1−β > 2. Then for i = 1, 2

i) ∣∣∣iLn

(
eµe

−W
)
(t)− E

(
eµe

−W
)
(t)
∣∣∣ ≤

Ki (q)
1

Γ (α+ 1)


(
ω1

(
Dα

t−E
(
eµe

−W
)
, 1
nβ

)
[t1,t]

+ ω1

(
Dα

∗tE
(
eµe

−W
)
, 1
nβ

)
[t,t2]

)
nαβ

+

γβ̂i,n (λ, β)

(∥∥∥Dα
t−E

(
eµe

−W
)∥∥∥

∞,[t1,t]
(t− t1)

α +
∥∥∥Dα

∗tE
(
eµe

−W
)∥∥∥

∞,[t,t2]
(t2 − t)α

)}
, (104)

and

ii) ∥∥∥iLnE
(
eµe

−W
)
− E

(
eµe

−W
)∥∥∥

∞
≤ Ki (q)

1

Γ (α+ 1)
·

(
sup

t∈[t1,t2]
ω1

(
Dα

t−E
(
eµe

−W
)
, 1
nβ

)
[t1,t]

+ sup
t∈[t1,t2]

ω1

(
Dα

∗tE
(
eµe

−W
)
, 1
nβ

)
[t,t2]

)
nαβ

+

(t2 − t1)
α γβ̂i,n (λ, β)

(
sup

t∈[t1,t2]

∥∥∥Dα
t−E

(
eµe

−W
)∥∥∥

∞,[t1,t]
+ sup

t∈[t1,t2]

∥∥∥Dα
∗tE

(
eµe

−W
)∥∥∥

∞,[t,t2]

)}
.

(105)

Proof. From Proposition 26.
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