SPECTRAL RADIUS BOUNDS FOR THE NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } H \text { be a complex Hilbert space. Assume that } f \text { and } g \text { are non- } \\
& \text { negative functions on }[0, \infty) \text { which are continuous and satisfying the relation } \\
& f(t) g(t)=t \text { for all } t \in[0, \infty) \text {. In this paper we show among others that, if } T \\
& \text { and } V \text { are operators in } \mathcal{B}(H) \text { such that }|T| V=V^{*}|T| \text {, then for } A, B \in \mathcal{B}(H) \\
& \qquad\|B T V A\| \leq r(V)\|f(|T|) A\|\left\|B g\left(\left|T^{*}\right|\right)\right\|, \\
& \qquad \omega(B T V A) \leq \frac{1}{2} r(V)\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\| \\
& \text { and } \\
& \qquad \omega^{2}(B T V A) \\
& \qquad \leq \frac{1}{2} r^{2}(V)\left[\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right]
\end{aligned}
$$

Some applications for the generalized Aluthge transform of an operator are also given.

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} . \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;
(iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [10], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

[^0]Utilizing the Cartesian decomposition for operators, F. Kittaneh in [11] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [7]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [6] and [4].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $w(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|),[12]$.

Utilizing this transform T. Yamazaki, [12] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in B(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right)
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.11}
\end{equation*}
$$

In [3] Bunia et al. also proved that

$$
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\}
$$

which for $t=1 / 2$ gives (1.10) as well.
In 1988, F. Kittaneh obtained the following generalization of Schwarz inequality [9]:

Theorem 1. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let T, V be operators in $V(H)$ such that $|T| V=V^{*}|T|$, then

$$
\begin{equation*}
|\langle T V x, y\rangle| \leq r(V)\|f(|T|) x\|\left\|g\left(\left|T^{*}\right|\right) y\right\| \tag{1.12}
\end{equation*}
$$

for all $x, y \in H$, where $r(V)$ denotes the spectral radius of V.
If we take $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ for $\alpha \in[0,1]$ and $t>0$,

$$
\begin{equation*}
|\langle T V x, y\rangle| \leq r(V)\left\||T|^{\alpha} x\right\|\left\|\left|T^{*}\right|^{1-\alpha} y\right\| \tag{1.13}
\end{equation*}
$$

for all $x, y \in H$.
Motivated by the above results, in this paper we provide some upper bounds for the numerical radius $\omega(B T V A)$ in term of the functions f, g, the operators T, V from Theorem 1 and $A, B \in \mathcal{B}(H)$. Among others, we show that, if $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(B T V A) \leq r^{2 r}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\| \tag{1.14}
\end{equation*}
$$

If $r \geq 1$, then also

$$
\begin{align*}
\omega^{2 r}(B T V A) & \leq \frac{1}{2} r^{2 r}(V)\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}\right. \tag{1.15}\\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right) .
\end{align*}
$$

Some applications for the generalized Aluthge transform of an operator are also given.

2. Inequalities Via Buzano's Result

We have:
Theorem 2. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let T, V be operators in $\mathcal{B}(H)$ such that $|T| V=V^{*}|T|$, then for $A, B \in \mathcal{B}(H)$

$$
\begin{equation*}
\|B T V A\| \leq r(V)\|f(|T|) A\|\left\|B g\left(\left|T^{*}\right|\right)\right\| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(B T V A) \leq \frac{1}{2} r(V)\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\| \tag{2.2}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \omega^{2}(B T V A) \tag{2.3}\\
& \leq \frac{1}{2} r^{2}(V)\left[\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right]
\end{align*}
$$

Proof. Observe that by (1.12) we have

$$
\begin{aligned}
|\langle T V x, y\rangle|^{2} & \leq r^{2}(V)\|f(|T|) x\|^{2}\left\|g\left(\left|T^{*}\right|\right) y\right\|^{2} \\
& =r^{2}(V)\langle f(|T|) x, f(|T|) x\rangle\left\langle g\left(\left|T^{*}\right|\right) y, g\left(\left|T^{*}\right|\right) y\right\rangle \\
& =r^{2}(V)\left\langle f^{2}(|T|) x, x\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) y, y\right\rangle
\end{aligned}
$$

for all $x, y \in H$.
If we take $A x$ instead of x and $B^{*} y$ instead of y, then we get

$$
\begin{aligned}
\left|\left\langle T V A x, B^{*} y\right\rangle\right|^{2} & \leq r^{2}(V)\left\langle f^{2}(|T|) A x, A x\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) B^{*} y, B^{*} y\right\rangle \\
& =r^{2}(V)\left\langle A^{*} f^{2}(|T|) A x, x\right\rangle\left\langle B g^{2}\left(\left|T^{*}\right|\right) B^{*} y, y\right\rangle \\
& =r^{2}(V)\left\langle(f(|T|) A x)^{*} f(|T|) A x, x\right\rangle \\
& \times\left\langle\left(g\left(\left|T^{*}\right|\right) B^{*}\right)^{*} g\left(\left|T^{*}\right|\right) B^{*} y, y\right\rangle \\
& \left.\left.=\left.r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle
\end{aligned}
$$

namely

$$
\begin{equation*}
\left.\left.|\langle B T V A x, y\rangle|^{2} \leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle \tag{2.4}
\end{equation*}
$$

for all $x, y \in H$.
Therefore

$$
\begin{aligned}
\|B T V A\|^{2} & =\sup _{\|x\|=\|y\|=1}|\langle B T A x, y\rangle|^{2} \\
& \left.\left.\leq\left. r^{2}(V) \sup _{\|x\|=\|y\|=1}\left[\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle\right] \\
& \left.\left.=\left.r^{2}(V) \sup _{\|x\|=1}\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\sup _{\|y\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle \\
& =r^{2}(V)\left\||f(|T|) A|^{2}\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\| \\
& =r^{2}(V)\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2} \\
& =r^{2}(V)\|f(|T|) A\|^{2}\left\|B g\left(\left|T^{*}\right|\right)\right\|^{2},
\end{aligned}
$$

which is equivalent to (2.1).
From (2.4) we also have

$$
\begin{equation*}
\left.\left.|\langle B T V A x, x\rangle|^{2} \leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle \tag{2.5}
\end{equation*}
$$

for all $x \in H$.
By the $A-G$ inequality, we also have

$$
\begin{aligned}
|\langle B T V A x, x\rangle| & \left.\left.\leq\left. r(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1 / 2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1 / 2} \\
& \left.\left.\leq \frac{1}{2} r(V)\left[\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& =r(V)\left\langle\left(\frac{|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|}{2}\right) x, x\right\rangle
\end{aligned}
$$

for all $x \in H$.

By taking the supremum, we get

$$
\begin{aligned}
\omega(B T V A) & =\sup _{\|x\|=1}|\langle B T A x, x\rangle| \\
& \leq r(V) \sup _{\|x\|=1}\left\langle\left(\frac{|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}}{2}\right) x, x\right\rangle \\
& =r(V)\left\|\frac{|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}}{2}\right\|
\end{aligned}
$$

which proves (2.2).
Let $x \in H,\|x\|=1$, then by Buzano's inequality, we recall that

$$
\frac{1}{2}[\|u\|\|v\|+|\langle u, v\rangle|] \geq|\langle u, e\rangle\langle e, v\rangle|
$$

holds for any $u, v, e \in H$ with $\|e\|=1$, we derive

$$
\begin{aligned}
& \left.\left.\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle x,| g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\rangle \\
& \left.\leq \frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | f(|T|) A\right|^{2} x,\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\rangle\right] \\
& \left.=\frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] .
\end{aligned}
$$

By making use of (2.5) we get

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2} \tag{2.6}\\
& \leq \frac{1}{2} r^{2}(V) \\
& \left.\times\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right]
\end{align*}
$$

for $x \in H,\|x\|=1$.
If we take the supremum, then we obtain

$$
\begin{aligned}
& \omega^{2}(B T V A) \\
& =\sup _{\|x\|=1}|\langle B T A x, x\rangle|^{2} \\
& \leq \frac{1}{2} r^{2}(V) \sup _{\|x\|=1}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] \\
& \leq \frac{1}{2} r^{2}(V)\left[\sup _{\|x\|=1}\left\||f(|T|) A|^{2} x\right\| \sup _{\|x\|=1}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|\right. \\
& \left.\left.+\left.\sup _{\|x\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] \\
& =\frac{1}{2} r^{2}(V) \\
& \times\left[\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right]
\end{aligned}
$$

which proves (2.3).

We observe that if we take $B=A$ in Theorem 2, then we get

$$
\|A T V A\| \leq r(V)\|f(|T|) A\|\left\|A g\left(\left|T^{*}\right|\right)\right\|
$$

and

$$
\begin{equation*}
\omega(A T V A) \leq \frac{1}{2} r(V)\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2}\right\| . \tag{2.7}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \omega^{2}(A T V A) \tag{2.8}\\
& \leq \frac{1}{2} r^{2}(V)\left[\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) A^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right] .
\end{align*}
$$

Further, if we choose $A=I$ in (2.7) and (2.8), then we get

$$
\omega(T V) \leq \frac{1}{2} r(V)\left\||f(|T|)|^{2}+\left|g\left(\left|T^{*}\right|\right)\right|^{2}\right\|
$$

and

$$
\begin{aligned}
& \omega^{2}(T V) \\
& \leq \frac{1}{2} r^{2}(V)\left[\|f(|T|)\|^{2}\left\|g\left(\left|T^{*}\right|\right)\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right)\right|^{2}|f(|T|)|^{2}\right\|\right]
\end{aligned}
$$

Remark 1. If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Theorem 2, then we get

$$
\|B T V A\| \leq r(V)\left\||T|^{\lambda} A\right\|\left\|B\left|T^{*}\right|^{1-\lambda}\right\|
$$

and

$$
\begin{equation*}
\omega(B T V A) \leq \frac{1}{2} r(V)\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\| . \tag{2.9}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \omega^{2}(B T V A) \tag{2.10}\\
& \leq \frac{1}{2} r^{2}(V)\left[\left\||T|^{\lambda} A\right\|^{2}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|\right]
\end{align*}
$$

Moreover, if we take $\lambda=1 / 2$, then we get

$$
\|B T V A\| \leq r(V)\left\||T|^{1 / 2} A\right\|\left\|B\left|T^{*}\right|^{1 / 2}\right\|
$$

and

$$
\omega(B T V A) \leq \frac{1}{2} r(V)\left\|\left.\left.| | T\right|^{1 / 2} A\right|^{2}+\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}\right\|
$$

Also,

$$
\begin{aligned}
& \omega^{2}(B T V A) \\
& \leq \frac{1}{2} r^{2}(V)\left[\left\||T|^{1 / 2} A\right\|^{2}\left\|\left|T^{*}\right|^{1 / 2} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}| | T\right|^{1 / 2} A\right|^{2}\right\|\right]
\end{aligned}
$$

If we put $B=A$ in Remark 1, then we get

$$
\|A T V A\| \leq r(V)\left\||T|^{\lambda} A\right\|\left\|A\left|T^{*}\right|^{1-\lambda}\right\|
$$

and

$$
\begin{equation*}
\omega(A T V A) \leq \frac{1}{2} r(V)\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} A^{*}\right|^{2}\right\| \tag{2.11}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \omega^{2}(B T V A) \tag{2.12}\\
& \leq \frac{1}{2} r^{2}(V)\left[\left\||T|^{\lambda} A\right\|^{2}\left\|\left|T^{*}\right|^{1-\lambda} A^{*}\right\|^{2}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} A^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|\right]
\end{align*}
$$

Moreover, the choice $A=I$ in (2.11) and (2.12) gives

$$
\omega(T V) \leq \frac{1}{2} r(V)\left\||T|^{2 \lambda}+\left|T^{*}\right|^{2(1-\lambda)}\right\|
$$

and

$$
\omega^{2}(T V) \leq \frac{1}{2} r^{2}(V)\left[\|T\|^{2}+\left\|\left|T^{*}\right|^{2(1-\lambda)}|T|^{2 \lambda}\right\|\right]
$$

for $\lambda \in[0,1]$.
Corollary 1. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let A, B, $X \in \mathcal{B}(H)$, then for all $\alpha \in[0,1]$,

$$
\begin{equation*}
\|B X A\| \leq\|X\|^{\alpha}\left\|f\left(|X|^{1-\alpha}\right) A\right\|\left\|B g\left(\left|X^{*}\right|^{1-\alpha}\right)\right\| \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(B X A) \leq \frac{1}{2}\|X\|^{\alpha}\left\|\left|f\left(|X|^{1-\alpha}\right) A\right|^{2}+\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2}\right\| \tag{2.14}
\end{equation*}
$$

Also,

$$
\begin{align*}
\omega^{2}(B X A) & \leq \frac{1}{2}\|X\|^{2 \alpha}\left[\left\|f\left(|X|^{1-\alpha}\right) A\right\|^{2}\left\|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right\|^{2}\right. \tag{2.15}\\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{1-\alpha}\right) A\right|^{2}\right\|\right]
\end{align*}
$$

Proof. Let $X=U|X|$ be the polar decomposition of the bounded linear operator X, with U a partial isometry. If we take $T=U|X|^{1-\alpha}$ and $V=|X|^{\alpha}$, then we have

$$
T V=U|X|=X, \quad|T|=|X|^{1-\alpha} \text { and }\left|T^{*}\right|=\left|X^{*}\right|^{1-\alpha}
$$

and since

$$
|T| V=|X|=V^{*}|T|
$$

and

$$
r\left(|X|^{\alpha}\right)=\left\||X|^{\alpha}\right\|=\|X\|^{\alpha}
$$

hence by Theorem 2 we derive the desired inequalities (2.13)-(2.15).
If we take $B=A$ in Corollary 1 , then we get

$$
\|A X A\| \leq\|X\|^{\alpha}\left\|f\left(|X|^{1-\alpha}\right) A\right\|\left\|A g\left(\left|X^{*}\right|^{1-\alpha}\right)\right\|
$$

and

$$
\begin{equation*}
\omega(A X A) \leq \frac{1}{2}\|X\|^{\alpha}\left\|\left|f\left(|X|^{1-\alpha}\right) A\right|^{2}+\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) A^{*}\right|^{2}\right\| \tag{2.16}
\end{equation*}
$$

Also,

$$
\begin{align*}
\omega^{2}(A X A) & \leq \frac{1}{2}\|X\|^{2 \alpha}\left[\left\|f\left(|X|^{1-\alpha}\right) A\right\|^{2}\left\|g\left(\left|X^{*}\right|^{1-\alpha}\right) A^{*}\right\|^{2}\right. \tag{2.17}\\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) A^{*}\right|^{2}\left|f\left(|X|^{1-\alpha}\right) A\right|^{2}\right\|\right]
\end{align*}
$$

Moreover, by taking $A=I$ in (2.16) and (2.17) we obtain

$$
\omega(X) \leq \frac{1}{2}\|X\|^{\alpha}\left\|\left|f\left(|X|^{1-\alpha}\right)\right|^{2}+\left|g\left(\left|X^{*}\right|^{1-\alpha}\right)\right|^{2}\right\|
$$

and

$$
\begin{aligned}
\omega^{2}(X) & \leq \frac{1}{2}\|X\|^{2 \alpha}\left[\left\|f\left(|X|^{1-\alpha}\right)\right\|^{2}\left\|g\left(\left|X^{*}\right|^{1-\alpha}\right)\right\|^{2}\right. \\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{1-\alpha}\right)\right|^{2}\left|f\left(|X|^{1-\alpha}\right)\right|^{2}\right\|\right]
\end{aligned}
$$

for $\alpha \in[0,1]$.
Remark 2. If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Corollary 1, then we get

$$
\begin{equation*}
\|B X A\| \leq\|X\|^{\alpha}\left\||X|^{\lambda(1-\alpha)} A\right\|\left\|B\left|X^{*}\right|^{(1-\lambda)(1-\alpha)}\right\| \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(B X A) \leq \frac{1}{2}\|X\|^{\alpha}\left\|\left.\left.| | X\right|^{\lambda(1-\alpha)} A\right|^{2}+\left|\left|X^{*}\right|^{(1-\lambda)(1-\alpha)} B^{*}\right|^{2}\right\| \tag{2.19}
\end{equation*}
$$

Also,

For $\lambda=1 / 2$ we get

$$
\begin{equation*}
\|B X A\| \leq\|X\|^{\alpha}\left\||X|^{(1-\alpha) / 2} A\right\|\left\|B\left|X^{*}\right|^{(1-\alpha) / 2}\right\| \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(B X A) \leq \frac{1}{2}\|X\|^{\alpha}\left\|\left.\left.| | X\right|^{(1-\alpha) / 2} A\right|^{2}+\left|\left|X^{*}\right|^{(1-\alpha) / 2} B^{*}\right|^{2}\right\| \tag{2.22}
\end{equation*}
$$

Also,

Moreover, if we take $\alpha=1 / 2$, then we get

$$
\begin{equation*}
\|B X A\| \leq\|X\|^{1 / 2}\left\||X|^{1 / 4} A\right\|\left\|B\left|X^{*}\right|^{1 / 4}\right\| \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(B X A) \leq \frac{1}{2}\|X\|^{1 / 2}\left\|\left.\left.| | X\right|^{1 / 4} A\right|^{2}+\left|\left|X^{*}\right|^{1 / 4} B^{*}\right|^{2}\right\| \tag{2.25}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \omega^{2}(B X A) \tag{2.26}\\
& \leq \frac{1}{2}\|X\|\left[\left\||X|^{1 / 4} A\right\|^{2}\left\|\left|X^{*}\right|^{1 / 4} B^{*}\right\|^{2}+\left\|\left.\left.\left|\left|X^{*}\right|^{1 / 4} B^{*}\right|^{2}| | X\right|^{1 / 4} A\right|^{2}\right\|\right.
\end{align*}
$$

If we take $B=A$ in Remark 2 then we get

$$
\|A X A\| \leq\|X\|^{\alpha}\left\||X|^{\lambda(1-\alpha)} A\right\|\left\|A\left|X^{*}\right|^{(1-\lambda)(1-\alpha)}\right\|
$$

and

$$
\begin{equation*}
\omega(A X A) \leq \frac{1}{2}\|X\|^{\alpha}\left\|\left.\left.| | X\right|^{\lambda(1-\alpha)} A\right|^{2}+\left|\left|X^{*}\right|^{(1-\lambda)(1-\alpha)} A^{*}\right|^{2}\right\| \tag{2.27}
\end{equation*}
$$

Also,

Moreover, if we take $A=I$, then we obtain for $\alpha, \lambda \in[0,1]$

$$
\omega(X) \leq \frac{1}{2}\|X\|^{\alpha}\left\||X|^{2 \lambda(1-\alpha)}+\left|X^{*}\right|^{2(1-\lambda)(1-\alpha)}\right\|
$$

and

$$
\omega^{2}(X) \leq \frac{1}{2}\|X\|^{2 \alpha}\left[\|X\|^{2(1-\alpha)}+\left\|\left|X^{*}\right|^{2(1-\lambda)(1-\alpha)}|X|^{2 \lambda(1-\alpha)}\right\|\right]
$$

3. Some Inequalities Via Young's Result

We also have:
Theorem 3. Assume that the conditions of Theorem 2 are satisfied. If $r>0, p$, $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(B T V A) \leq r^{2 r}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\| \tag{3.1}
\end{equation*}
$$

If $r \geq 1$, then
(3.2) $\omega^{2 r}(B T V A)$

$$
\leq \frac{1}{2} r^{2 r}(V)\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
\omega^{2 r}(B T V A) & \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|\right. \tag{3.3}\\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{align*}
$$

Proof. If we take the power $r>0$ in (2.5), then we get, by Young and McCarthy inequalities that

$$
\begin{aligned}
& |\langle B T V A x, x\rangle|^{2 r} \\
& \left.\left.\leq\left. r^{2 r}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r} \\
& \left.\left.\leq r^{2 r}(V)\left[\left.\frac{1}{p}\langle | f(|T|) A\right|^{2} x, x\right\rangle^{p r}+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{q r}\right] \\
& \left.\left.\leq r^{2 r}(V)\left[\left.\frac{1}{p}\langle | f(|T|) A\right|^{2 p r} x, x\right\rangle+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} x, x\right\rangle\right] \\
& =r^{2 r}(V)\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$, then we get that

$$
\begin{aligned}
\omega^{2 r}(B T V A) & =\sup _{\|x\|=1}|\langle B T V A x, x\rangle|^{2 r} \\
& \leq r^{2 r}(V) \sup _{\|x\|=1}\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle \\
& =r^{2 r}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|
\end{aligned}
$$

which proves (3.1).
By taking the power $r \geq 1$ in (2.6) and using the convexity of the power function, we get

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{3.4}\\
& \leq r^{2 r}(V) \\
& \left.\times \frac{\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle}{2}\right]^{r} \\
& \leq r^{2 r}(V) \\
& \times \frac{\left.\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}}{2}
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.

By taking the supremum over $\|x\|=1$, then we get that

$$
\begin{aligned}
& \omega^{2 r}(B T V A) \\
& \leq r^{2 r}(V) \sup _{\|x\|=1}\left(\frac{1}{2}\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\frac{1}{2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right) \\
& \leq \frac{1}{2} r^{2 r}(V)\left[\sup _{\|x\|=1}\left\||f(|T|) A|^{2} x\right\|^{r} \sup _{\|x\|=1}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\sup _{\|x\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right] \\
& =\frac{1}{2} r^{2 r}(V) \\
& \times\left(\left\||f(|T|) A|^{2}\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|^{r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right) \\
& =\frac{1}{2} r^{2 r}(V) \\
& \times\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

which proves (3.2).
Also, observe that

$$
\begin{aligned}
& \left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r} \\
& \leq \frac{1}{p}\left\||f(|T|) A|^{2} x\right\|^{p r}+\frac{1}{q}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{q r} \\
& =\frac{1}{p}\left\||f(|T|) A|^{2} x\right\|^{2 \frac{p r}{2}}+\frac{1}{q}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{2 \frac{q r}{2}} \\
& \left.\left.=\left.\frac{1}{p}\langle | f(|T|) A\right|^{4} x, x\right\rangle^{\frac{p r}{2}}+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{4} x, x\right\rangle^{\frac{q r}{2}} \\
& \left.\left.\leq\left.\frac{1}{p}\langle | f(|T|) A\right|^{2 p r} x, x\right\rangle+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} x, x\right\rangle \\
& =\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{\left.\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}}{2} \\
& \leq \frac{1}{2}\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle \\
& \left.+\left.\frac{1}{2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}
\end{aligned}
$$

and by (3.4) we get

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle \\
& \left.+\left.\frac{1}{2} r^{2 r}(V)\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}
\end{aligned}
$$

or $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$, we derive (3.3).
If $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$, then by taking $B=A$ in (3.1) we obtain

$$
\omega^{2 r}(A T V A) \leq r^{2 r}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2 q r}\right\|
$$

which for $A=I$ gives

$$
\omega^{2 r}(T V) \leq r^{2 r}(V)\left\|\frac{1}{p}|f(|T|)|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right)\right|^{2 q r}\right\|
$$

If $r \geq 1$, then for $B=A$ in (3.2) we get

$$
\begin{aligned}
& \omega^{2 r}(A T V A) \\
& \leq \frac{1}{2} r^{2 r}(V)\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) A^{*}\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

which for $A=I$ produces

$$
\omega^{2 r}(T V) \leq \frac{1}{2} r^{2 r}(V)\left(\|f(|T|)\|^{2 r}\left\|g\left(\left|T^{*}\right|\right)\right\|^{2 r}+\left\|\left|g\left(\left|T^{*}\right|\right)\right|^{2}|f(|T|)|^{2}\right\|^{r}\right)
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then by taking $B=A$ in (3.3), we derive

$$
\begin{aligned}
\omega^{2 r}(A T V A) & \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2 q r}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

which for $A=I$ gives

$$
\begin{aligned}
\omega^{2 r}(T V) & \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\frac{1}{p}|f(|T|)|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right)\right|^{2 q r}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right)\right|^{2}|f(|T|)|^{2}\right\|^{r}\right) .
\end{aligned}
$$

Remark 3. Consider $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Theorem 3. If $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$, then

$$
\begin{equation*}
\omega^{2 r}(B T V A) \leq r^{2 r}(V)\left\|\left.\left.\frac{1}{p}| | T\right|^{\lambda} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r}\right\| . \tag{3.5}
\end{equation*}
$$

In particular,

$$
\omega^{2 r}(B T V A) \leq r^{2 r}(V)\left\|\left.\left.\frac{1}{p}| | T\right|^{1 / 2} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 q r}\right\|
$$

If $r \geq 1$, then

$$
\begin{align*}
& \omega^{2 r}(B T V A) \tag{3.6}\\
& \leq \frac{1}{2} r^{2 r}(V)\left(\left\||T|^{\lambda} A\right\|^{2 r}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2 r}+\left\|\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2}\right\|^{r}\right)
\end{align*}
$$

In particular,

$$
\begin{aligned}
& \omega^{2 r}(B T V A) \\
& \leq \frac{1}{2} r^{2 r}(V)\left(\left\||T|^{1 / 2} A\right\|^{2 r}\left\|\left|T^{*}\right|^{1 / 2} B^{*}\right\|^{2 r}+\left\|\left.\left.\left|\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}| | T\right|^{1 / 2} A\right|^{2}\right\|^{r}\right)
\end{aligned}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

In particular,

$$
\begin{aligned}
\omega^{2 r}(B T V A) & \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\left.\left.\frac{1}{p}| | T\right|^{1 / 2} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 q r}\right\|\right. \\
& \left.+\left\|\left.\left.\left.\left|T^{*}\right|^{1 / 2} B^{*}\right|^{2}| | T\right|^{1 / 2} A\right|^{2}\right\|^{r}\right)
\end{aligned}
$$

If we take $p=q=2$ and assume that $r \geq \frac{1}{2}$, then from (3.1) we get

$$
\omega^{2 r}(B T V A) \leq \frac{1}{2} r^{2 r}(V)\left\||f(|T|) A|^{4 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4 r}\right\|
$$

which for $r=\frac{1}{2}$ gives

$$
\omega(B T V A) \leq \frac{1}{2} r(V)\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|
$$

while for $r=1$ gives

$$
\omega^{2}(B T V A) \leq \frac{1}{2} r^{2}(V)\left\||f(|T|) A|^{4}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4}\right\|
$$

If we take $r=1$ in (3.1), then we get

$$
\omega^{2}(B T V A) \leq r^{2}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q}\right\|
$$

for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
If we take $r=1$ in (3.2) then we get

$$
\begin{aligned}
& \omega^{2}(B T V A) \\
& \leq \frac{1}{2} r^{2}(V)\left(\|f(|T|) A\|^{2}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right)
\end{aligned}
$$

while for $r=2$,

$$
\begin{aligned}
& \omega^{4}(B T A) \\
& \leq \frac{1}{2} r^{4}(V)\left(\|f(|T|) A\|^{8}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{8}+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{2}\right)
\end{aligned}
$$

Also, if we take $p=q=2$ and $r \geq 1$ in (3.3), then we get

$$
\begin{aligned}
\omega^{2 r}(B T V A) & \leq \frac{1}{2} r^{2 r}(V)\left(\frac{1}{2}\left\||f(|T|) A|^{4 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4 r}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{r}\right)
\end{aligned}
$$

In particular, for $r=1$ we derive

$$
\begin{aligned}
\omega^{2}(B T V A) & \leq \frac{1}{2} r^{2}(V)\left(\frac{1}{2}\left\||f(|T|) A|^{4}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|\right)
\end{aligned}
$$

Moreover, if $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and take $r=2$ in (3.3), then we derive the inequality

$$
\begin{aligned}
\omega^{4}(B T A) & \leq \frac{1}{2} r^{4}(V)\left(\left\|\frac{1}{p}|f(|T|) A|^{4 p}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{4 q}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{2}\right)
\end{aligned}
$$

which for $p=q=2$ provides

$$
\begin{aligned}
\omega^{4}(B T V A) & \leq \frac{1}{2} r^{4}(V)\left(\frac{1}{2}\left\||f(|T|) A|^{8}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{8}\right\|\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|^{2}\right)
\end{aligned}
$$

Further, if we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ then we can get other similar inequalities. The details are omitted.

Corollary 2. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let A, B, $X \in \mathcal{B}(H)$, then for all $\alpha \in[0,1]$,

$$
\begin{equation*}
\omega^{2 r}(B X A) \leq\|X\|^{2 r \alpha}\left\|\frac{1}{p}\left|f\left(|X|^{1-\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2 q r}\right\| \tag{3.8}
\end{equation*}
$$

If $r \geq 1$, then

$$
\begin{align*}
\omega^{2 r}(B X A) & \leq \frac{1}{2}\|X\|^{2 r \alpha}\left[\left\|f\left(|X|^{1-\alpha}\right) A\right\|^{2 r}\left\|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right\|^{2 r}\right. \tag{3.9}\\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{1-\alpha}\right) A\right|^{2}\right\|^{r}\right]
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
\omega^{2 r}(B X A) & \leq \frac{1}{2}\|X\|^{2 r \alpha}\left(\left\|\frac{1}{p}\left|f\left(|X|^{1-\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2 q r}\right\|\right. \tag{3.10}\\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{1-\alpha}\right) A\right|^{2}\right\|^{r}\right)
\end{align*}
$$

Remark 4. If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Corollary 2, then we get

$$
\begin{equation*}
\omega^{2 r}(B X A) \leq\|X\|^{2 r \alpha}\left\|\left.\left.\frac{1}{p}| | X\right|^{\lambda(1-\alpha)} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda)(1-\alpha)} B^{*}\right|^{2 q r}\right\| \tag{3.11}
\end{equation*}
$$

If $r \geq 1$, then

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

4. Some Results Via A-G Inequality

We also have:
Theorem 4. With the assumptions of Theorem 2, we have for $r \geq 1$ that

$$
\begin{align*}
\omega^{2}(B T V A) & \leq r^{2}(V)\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{4.1}\\
& \times\|f(|T|) A\|^{2 \alpha}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2(1-\alpha)}
\end{align*}
$$

for all $\alpha \in[0,1]$.
Also, we have

$$
\begin{align*}
\omega^{2}(B T V A) & \leq r^{2}(V)\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{4.2}\\
& \times\left\|\alpha|f(|T|) A|^{2 r}+(1-\alpha)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.
Proof. From (2.5) we have for all $\alpha \in[0,1]$ that

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2} & \left.\left.\leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle \\
& \left.\left.=\left.r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1-\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{\alpha} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\alpha} \\
& \left.\left.\leq r^{2}(V)\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\alpha}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.

If we take the power $r \geq 1$, then we get by the convexity of power r that

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{4.3}\\
& \left.\left.\leq r^{2 r}(V)\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right]^{r} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)} \\
& \left.\left.\leq r^{2 r}(V)\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle^{r}+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r}\right] \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
If we use McCarthy inequality for power $r \geq 1$, then we get

$$
\begin{aligned}
& \left.\left.\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle^{r}+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r} \\
& \left.\left.\leq\left.(1-\alpha)\langle | f(|T|) A\right|^{2 r} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r} x, x\right\rangle \\
& =\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle
\end{aligned}
$$

and by (4.3)

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2 r} & \leq r^{2 r}(V)\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
If we take the supremum over $\|x\|=1$, then we get

$$
\begin{aligned}
\omega^{2 r}(B T V A) & =\sup _{\|x\|=1}|\langle B T V A x, x\rangle|^{2 r} \\
& \leq r^{2 r}(V) \sup _{\|x\|=1}\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \left.\left.\times\left.\sup _{\|x\|=1}\langle | f(|T|) A\right|^{2} x, x\right\rangle\left._{\|x\|=1}^{r \alpha} \sup _{\|x\|}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\alpha)} \\
& =r^{2 r}(V)\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\| \\
& \times\left\||f(|T|) A|^{2}\right\|^{r \alpha}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|^{r(1-\alpha)} \\
& =r^{2 r}(V)\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\| \\
& \times\|f(|T|) A\|^{2 r \alpha}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r(1-\alpha)}
\end{aligned}
$$

which proves (4.1).

We also have

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2} & \left.\left.\leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1-\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{\alpha} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\alpha}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\alpha} \\
& \left.\left.\leq r^{2}(V)\left[\left.(1-\alpha)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\alpha\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& \left.\left.\times\left[\left.\alpha\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.(1-\alpha)\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right]
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
This implies in the same way that

$$
\begin{aligned}
|\langle B T A x, x\rangle|^{2 r} & \leq r^{2 r}(V)\left\langle\left[(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \times\left\langle\left[\alpha|f(|T|) A|^{2 r}+(1-\alpha)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle
\end{aligned}
$$

for all $x \in H,\|x\|=1$, which proves (4.2).
If we take $B=A$ in Theorem 4 , then we get that

$$
\begin{aligned}
\omega^{2}(A T V A) & \leq r^{2}(V)\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\|f(|T|) A\|^{2 \alpha}\left\|g\left(\left|T^{*}\right|\right) A^{*}\right\|^{2(1-\alpha)}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}(A T V A) & \leq r^{2}(V)\left\|(1-\alpha)|f(|T|) A|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\alpha|f(|T|) A|^{2 r}+(1-\alpha)\left|g\left(\left|T^{*}\right|\right) A^{*}\right|^{2 r}\right\|^{1 / r}
\end{aligned}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$. Moreover, if we choose $A=I$ in these inequalities, then we obtain

$$
\begin{aligned}
& \omega^{2}(T V) \\
& \leq r^{2}(V)\left\|(1-\alpha)|f(|T|)|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right)\right|^{2 r}\right\|^{1 / r}\|f(|T|)\|^{2 \alpha}\left\|g\left(\left|T^{*}\right|\right)\right\|^{2(1-\alpha)}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}(T V) & \leq r^{2}(V)\left\|(1-\alpha)|f(|T|)|^{2 r}+\alpha\left|g\left(\left|T^{*}\right|\right)\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\alpha|f(|T|)|^{2 r}+(1-\alpha)\left|g\left(\left|T^{*}\right|\right)\right|^{2 r}\right\|^{1 / r}
\end{aligned}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.
Remark 5. Consider $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Theorem 4, then

$$
\begin{aligned}
\omega^{2}(B T V A) & \leq r^{2}(V)\left\|\left.\left.(1-\alpha)| | T\right|^{\lambda} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\||T|^{\lambda} A\right\|^{2 \alpha}\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|^{2(1-\alpha)}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}(B T V A) & \leq r^{2}(V)\left\|\left.\left.(1-\alpha)| | T\right|^{\lambda} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\left.\left.\alpha| | T\right|^{\lambda} A\right|^{2 r}+\left.\left.(1-\alpha)| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r}
\end{aligned}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.
In particular, for $\lambda=1 / 2$ we obtain

$$
\begin{aligned}
\omega^{2}(B T V A) & \leq r^{2}(V)\left\|\left.\left.(1-\alpha)| | T\right|^{1 / 2} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\||T|^{1 / 2} A\right\|^{2 \alpha}\left\|\left|T^{*}\right|^{1 / 2} B^{*}\right\|^{2(1-\alpha)}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega^{2}(B T V A) & \leq r^{2}(V)\left\|\left.\left.(1-\alpha)| | T\right|^{1 / 2} A\right|^{2 r}+\left.\left.\alpha| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\left.\left.\alpha| | T\right|^{1 / 2} A\right|^{2 r}+\left.\left.(1-\alpha)| | T^{*}\right|^{1 / 2} B^{*}\right|^{2 r}\right\|^{1 / r}
\end{aligned}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.
Corollary 3. With the assumptions of Theorem 2 we have

$$
\begin{aligned}
& \omega^{2}(B T V A) \\
& \leq \frac{1}{2^{1 / r}} r^{2}(V)\left\||f(|T|) A|^{2 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}\|f(|T|) A\|\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|
\end{aligned}
$$

for all $r \geq 1$.
Also, we have

$$
\omega(B T V A) \leq \frac{1}{2^{1 / r}} r(V)\left\||f(|T|) A|^{2 r}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}
$$

for all $r \geq 1$.
In particular, we have

$$
\begin{aligned}
& \omega^{2}(B T V A) \\
& \leq \frac{1}{2} r^{2}(V)\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|\|f(|T|) A\|\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|
\end{aligned}
$$

and

$$
\omega(B T V A) \leq \frac{1}{2} r(V)\left\||f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right\|
$$

If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Corollary 1 , then we get

$$
\begin{aligned}
& \omega^{2}(B T V A) \\
& \leq \frac{1}{2^{1 / r}} r^{2}(V)\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2 r}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r}\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\|
\end{aligned}
$$

for all $r \geq 1$.
Also, we have

$$
\omega(B T V A) \leq \frac{1}{2^{1 / r}} r(V)\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2 r}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2 r}\right\|^{1 / r}
$$

for all $r \geq 1$.
In particular, we obtain

$$
\begin{equation*}
\omega^{2}(B T V A) \leq \frac{1}{2} r^{2}(V)\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\|\left\||T|^{\lambda} A\right\|\left\|\left|T^{*}\right|^{1-\lambda} B^{*}\right\| \tag{4.4}
\end{equation*}
$$

and

$$
\omega(B T V A) \leq \frac{1}{2} r(V)\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2}+\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}\right\|
$$

We also have:
Corollary 4. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let A, B, $X \in \mathcal{B}(H)$, then for all $\alpha \in[0,1]$, we have for $r \geq 1$ that

$$
\begin{align*}
\omega^{2}(B X A) & \leq\|X\|^{2 \alpha}\left\|(1-\alpha)\left|f\left(|X|^{1-\alpha}\right) A\right|^{2 r}+\alpha\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{4.5}\\
& \times\left\|f\left(|X|^{1-\alpha}\right) A\right\|^{2 \alpha}\left\|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right\|^{2(1-\alpha)}
\end{align*}
$$

for all $\alpha \in[0,1]$.
Also, we have

$$
\begin{align*}
\omega^{2}(B X A) & \leq\|X\|^{2 \alpha}\left\|(1-\alpha)\left|f\left(|X|^{1-\alpha}\right) A\right|^{2 r}+\alpha\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{4.6}\\
& \times\left\|\alpha\left|f\left(|X|^{1-\alpha}\right) A\right|^{2 r}+(1-\alpha)\left|g\left(\left|X^{*}\right|^{1-\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

for all $\alpha \in[0,1]$ and $r \geq 1$.
If we take $f(t)=t^{\lambda}, g(t)=t^{1-\lambda}$ with $\lambda \in[0,1]$ in Corollary 4 , then for $r \geq 1$, $\alpha \in[0,1]$, we get

$$
\begin{align*}
\omega^{2}(B X A) & \leq\|X\|^{2 \alpha}\left\|\left.\left.(1-\alpha)| | X\right|^{\lambda(1-\alpha)} A\right|^{2 r}+\left.\left.\alpha| | X^{*}\right|^{(1-\lambda)(1-\alpha)} B^{*}\right|^{2 r}\right\|^{1 / r} \tag{4.7}\\
& \times\left\||X|^{\lambda(1-\alpha)} A\right\|^{2 \alpha}\left\|\left|X^{*}\right|^{(1-\lambda)(1-\alpha)} B^{*}\right\|^{2(1-\alpha)}
\end{align*}
$$

and

$$
\begin{align*}
\omega^{2}(B X A) & \leq\|X\|^{2 \alpha}\left\|\left.\left.(1-\alpha)| | X\right|^{\lambda(1-\alpha)} A\right|^{2 r}+\left.\left.\alpha| | X^{*}\right|^{(1-\lambda)(1-\alpha)} B^{*}\right|^{2 r}\right\|^{1 / r} \tag{4.8}\\
& \times\left\|\left.\left.\alpha| | X\right|^{\lambda(1-\alpha)} A\right|^{2 r}+\left.\left.(1-\alpha)| | X^{*}\right|^{(1-\lambda)(1-\alpha)} B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia, S. S. Dragomir, M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[6] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[7] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[8] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212.
[9] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
[10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., $\mathbf{1 6 8}$ (2005), No. 1, 73-80.
[12] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Bounded operators, Aluthge transform, Dougal transform, Partial isometry, Numerical radius.

