
ON SOME INEQUALITIES FOR NUMERICAL RADIUS OF
OPERATOR PRODUCTS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let A be a nonnegative operator on H and D;B;C three bounded
operators on H: Then we have the inequality

w (C�ADB�AC) � 1

2

A1=2C2 hA1=2D A1=2B+ kB�ADki :
If B�AC = C�AD; then also

w2 (C�AD) � 1

2

A1=2C2 "
��A1=2D��2 + ��A1=2B��2

2

+ w (B�AD)
#
:

Some applications for the trace of operators are also given.

1. Introduction

Let K be the �eld of real or complex numbers, i.e., K = R or C and X be a linear
space over K.

De�nition 1. A functional (�; �) : X �X ! K is said to be a Hermitian form on
X if

(H1) (ax+ by; z) = a (x; z) + b (y; z) for a; b 2 K and x; y; z 2 X;
(H2) (x; y) = (y; x) for all x; y 2 X:

The functional (�; �) is said to be positive semi-de�nite on a subspace Y of X if

(H3) (y; y) � 0 for every y 2 Y;
and positive de�nite on Y if it is positive semi-de�nite on Y and

(H4) (y; y) = 0; y 2 Y implies y = 0:

The functional (�; �) is said to be de�nite on Y provided that either (�; �) or � (�; �)
is positive semi-de�nite on Y:
When a Hermitian functional (�; �) is positive-de�nite on the whole spaceX; then,

as usual, we will call it an inner product on X and will denote it by h�; �i :
We use the following notations related to a given Hermitian form (�; �) on X :

X0 := fx 2 Xj (x; x) = 0g ; K := fx 2 Xj (x; x) < 0g
and, for a given z 2 X;

X(z) := fx 2 Xj (x; z) = 0g and L (z) := fazja 2 Kg :
The following fundamental facts concerning Hermitian forms hold:

Theorem 1 (Kurepa, 1968 [15]). Let X and (�; �) be as above.
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2 S. S. DRAGOMIR

(1) If e 2 X is such that (e; e) 6= 0; then we have the decomposition

(1.1) X = L (e)
M

X(e);

where
L
denotes the direct sum of the linear subspaces X(e) and L (e) ;

(2) If the functional (�; �) is positive semi-de�nite on X(e) for at least one e 2 K;
then (�; �) is positive semi-de�nite on X(f) for each f 2 K;

(3) The functional (�; �) is positive semi-de�nite on X(e) with e 2 K if and only
if the inequality

(1.2) j(x; y)j2 � (x; x) (y; y)
holds for all x 2 K and all y 2 X;

(4) The functional (�; �) is semi-de�nite on X if and only if the Schwarz�s in-
equality

(1.3) j(x; y)j2 � (x; x) (y; y)
holds for all x; y 2 X;

(5) The case of equality holds in (1.3) for x; y 2 X and in (1.2), for x 2 K;
y 2 X; respectively; if and only if there exists a scalar a 2 K such that

y � ax 2 X(x)
0 := X0 \X(x):

Let X be a linear space over the real or complex number �eld K and let us
denote by H (X) the class of all positive semi-de�nite Hermitian forms on X; or,
for simplicity, nonnegative forms on X:
If (�; �) 2 H (X) ; then the functional k�k = (�; �)

1
2 is a semi-norm on X and the

following equivalent versions of Schwarz�s inequality hold:

(1.4) kxk2 kyk2 � j(x; y)j2 or kxk kyk � j(x; y)j
for any x; y 2 X:
Now, let us observe thatH (X) is a convex cone in the linear space of all mappings

de�ned on X2 with values in K, i.e.,
(e) (�; �)1 ; (�; �)2 2 H (X) implies that (�; �)1 + (�; �)2 2 H (X) ;
(ee) � � 0 and (�; �) 2 H (X) implies that � (�; �) 2 H (X) :
The following simple result is of interest in itself as well:

Lemma 1. Let X be a linear space over the real or complex number �eld K and
(�; �) a nonnegative Hermitian form on X: If y 2 X is such that (y; y) 6= 0; then
(1.5) py : H �H ! K; py (x; z) = (x; z) kyk2 � (x; y) (y; z)
is also a nonnegative Hermitian form on X.
We have the inequalities�

kxk2 kyk2 � j(x; y)j2
��
kyk2 kzk2 � j(y; z)j2

�
(1.6)

�
���(x; z) kyk2 � (x; y) (y; z)���2

and �
kx+ zk2 kyk2 � j(x+ z; y)j2

� 1
2

(1.7)

�
�
kxk2 kyk2 � j(x; y)j2

� 1
2

+
�
kyk2 kzk2 � j(y; z)j2

� 1
2
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for any x; y; z 2 X:

Remark 1. The case when (�; �) is an inner product in Lemma 1 was obtained in
1985 by S. S. Dragomir, [2].

Remark 2. Putting z = �y in (1.7), we get:

(1.8) 0 � kx+ �yk2 kyk2 � j(x+ �y; y)j2 � kxk2 kyk2 � j(x; y)j2

and, in particular,

(1.9) 0 � kx� yk2 kyk2 � j(x� y; y)j2 � kxk2 kyk2 � j(x; y)j2

for every x; y 2 H:
We note here that the inequality (1.8) is in fact equivalent to the following state-

ment

(1.10) sup
�2K

h
kx+ �yk2 kyk2 � j(x+ �y; y)j2

i
= kxk2 kyk2 � j(x; y)j2

for each x; y 2 H:

The following result holds (see [5, p. 38] for the case of inner product):

Theorem 2. Let X be a linear space over the real or complex number �eld K
and (�; �) a nonnegative Hermitian form on X: For any x; y; z 2 X; the following
re�nement of the Schwarz inequality holds:

kxk kzk kyk2 �
���(x; z) kyk2 � (x; y) (y; z)���+ j(x; y) (y; z)j(1.11)

� j(x; z)j kyk2 :

Corollary 1. For any x; y; z 2 X we have

(1.12)
1

2
[kxk kzk+ j(x; z)j] kyk2 � j(x; y) (y; z)j :

The inequality (1.12) follows from the �rst inequality in (1.11) and the triangle
inequality for modulus���(x; z) kyk2 � (x; y) (y; z)��� � j(x; y) (y; z)j � kyk2 j(x; z)j
for any x; y; z 2 X:

Remark 3. We observe that if (�; �) is an inner product, then (1.12) reduces to
Buzano�s inequality obtained in 1974 [1] in a di¤erent way.

For some inequalities in inner product spaces and operators on Hilbert spaces
see [3]-[13] and the references therein.
The numerical radius w (T ) of an operator T on H is given by [14, p. 8]:

(1.13) w (T ) = sup fj�j ; � 2W (T )g = sup fjhTx; xij ; kxk = 1g :
It is well known that w (�) is a norm on the Banach algebra B (H) of all bounded
linear operators T : H ! H: This norm is equivalent with the operator norm. In
fact, the following more precise result holds [14, p. 9]:

Theorem 3 (Equivalent norm). For any T 2 B (H) one has
(1.14) w (T ) � kTk � 2w (T ) :

Utilizing Buzano�s inequality we obtained the following inequality for the nu-
merical radius [6] or [7]:
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Theorem 4. Let (H; h�; �i) be a Hilbert space and T : H ! H a bounded linear
operator on H: Then

(1.15) w2 (T ) � 1

2

h
w
�
T 2
�
+ kTk2

i
:

The constant 12 is best possible in (1.15).

The following general result for the product of two operators holds [14, p. 37]:

Theorem 5. If U; V are two bounded linear operators on the Hilbert space (H; h�; �i) ;
then w (UV ) � 4w (U)w (V ) : In the case that UV = V U; then w (UV ) � 2w (U)w (V ) :
The constant 2 is best possible here.

The following results are also well known [14, p. 38].

Theorem 6. If U is a unitary operator that commutes with another operator V;
then

(1.16) w (UV ) � w (V ) :
If U is an isometry and UV = V U; then (1.16) also holds true.

We say that U and V double commute if UV = V U and UV � = V �U: The
following result holds [14, p. 38].

Theorem 7. If the operators U and V double commute, then

(1.17) w (UV ) � w (V ) kUk :

As a consequence of the above, we have [14, p. 39]:

Corollary 2. Let U be a normal operator commuting with V: Then

(1.18) w (UV ) � w (U)w (V ) :

For a recent survey of inequalities for numerical radius, see [12] and the references
therein.
Motivated by the above facts we establish in this paper some new numerical

radius inequalities concerning four operators B;C;D and A on a Hilbert space
with A nonnegative in the operator order. Some particular cases of interest that
generalize and improve an earlier result are also provided. Applications for the
trace of operators are also given.

2. Main Results

The following result holds for (H; h:; :i) a Hilbert space over the real or complex
numbers �eld K.

Theorem 8. Let A be a nonnegative operator on H and D;B;C three bounded
operators on H: Then for any e 2 H we have the inequalities

jhC�ABD�ACe; eij � kD�ACek kB�ACek(2.1)

� 1

2

A1=2Ce2 hA1=2DA1=2B+ kB�ADki :
Moreover, we have

(2.2) w (C�ADB�AC) � 1

2

A1=2C2 hA1=2DA1=2B+ kB�ADki :
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Proof. We observe that if A � 0; then the mapping (:; :) : H �H ! K de�ned by
(x; y)A := hAx; yi

is a Hermitian form on H and by (1.12) we have the inequality

(2.3)
1

2
[kxkA kykA + j(x; y)Aj] kek

2
A � j(x; e)A (y; e)Aj

for any x; y; e 2 H:
This can be written as

(2.4)
1

2

h
hAx; xi1=2 hAy; yi1=2 + jhAx; yij

i
hAe; ei � jhAx; ei hAy; eij

for any x; y; e 2 H:
Now if we replace x by Dx; y by By and e by Ce we get

1

2

h
hADx;Dxi1=2 hABy;Byi1=2 + jhADx;Byij

i
hACe;Cei(2.5)

� jhADx;Cei hABy;Ceij
for any x; y; e 2 H; which is equivalent to

1

2

h
hD�ADx; xi1=2 hB�ABy; yi1=2 + jhB�ADx; yij

i
hC�ACe; ei(2.6)

� jhx;D�ACei hy;B�ACeij
for any x; y; e 2 H:
Taking the supremum over x; y 2 H with kxk = kyk = 1 we have

kD�ACek kB�ACek(2.7)

= sup
kxk=1

jhx;D�ACeij sup
kyk=1

jhy;B�ACeij

= sup
kxk=kyk=1

fjhx;D�ACei hy;B�ACeijg

� 1

2
hC�ACe; ei

� sup
kxk=kyk=1

h
hD�ADx; xi1=2 hB�ABy; yi1=2 + jhB�ADx; yij

i
� 1

2
hC�ACe; ei

�
"
sup
kxk=1

hD�ADx; xi1=2 sup
kyk=1

hB�ABy; yi1=2 + sup
kxk=kyk=1

jhB�ADx; yij
#

=
1

2
hC�ACe; ei

h
kD�ADk1=2 kB�ABk1=2 + kB�ADk

i
for any e 2 H:
Since

D�AD =
���A1=2D���2 , B�AB = ���A1=2B���2

and

C�AC =
���A1=2C���2

then by (2.7) we get the desired inequality in (2.1).
By Schwarz inequality we have

(2.8) jhC�ABD�ACe; eij � kD�ACek kB�ACek
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for any e 2 H:
Using inequality (2.1) we then have

(2.9) jhC�ABD�ACe; eij � 1

2

A1=2Ce2 hA1=2DA1=2B+ kB�ADki
for any e 2 H:
Taking the supremum over e 2 H; kek = 1 in (2.9) we get

(2.10) w (C�ABD�AC) � 1

2

A1=2C2 hA1=2DA1=2B+ kB�ADki
and since

w (C�ABD�AC) = w (C�ADB�AC)

then by (2.10) we get the desired result (2.2). �

Remark 4. If P is a projection and if we take A = P 2 = P in Theorem 8 we
obtain

jhC�PBD�PCe; eij � kD�PCek kB�PCek(2.11)

� 1

2
kPCek2 [kPDk kPBk+ kB�PDk] :

for any e 2 H and

(2.12) w (C�PDB�PC) � 1

2
kPCk2 [kPDk kPBk+ kB�PDk] :

For P = I we get

jhC�BD�Ce; eij � kD�Cek kB�Cek(2.13)

� 1

2
kCek2 [kDk kBk+ kB�Dk] :

for any e 2 H and

(2.14) w (C�DB�C) � 1

2
kCk2 [kDk kBk+ kB�Dk] :

The following result also holds.

Theorem 9. Let A be a nonnegative operator on H and D;B;C three bounded
operators on H such that B�AC = C�AD; then

(2.15) w2 (C�AD) � 1

2

A1=2C2 hA1=2DA1=2B+ w (B�AD)i
and

(2.16) w2 (C�AD) � 1

2

A1=2C2 "
��A1=2D��2 + ��A1=2B��2

2

+ w (B�AD)
#
:

Proof. From the inequality (2.6) we have

1

2

h
hD�ADe; ei1=2 hB�ABe; ei1=2 + jhB�ADe; eij

i
hC�ACe; ei(2.17)

� jhe;D�ACei he;B�ACeij
for any e 2 H:
Since

B�AC = C�AD = (D�AC)
�
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then

jhe;D�ACei he;B�ACeij =
��he;D�ACei



e; (D�AC)

�
e
���(2.18)

= jhD�ACe; eij2 = jhC�ADe; eij2

for any e 2 H:
By (2.17) and (2.18) we then have

jhC�ADe; eij2(2.19)

� 1

2

h
hD�ADe; ei1=2 hB�ABe; ei1=2 + jhB�ADe; eij

i
hC�ACe; ei

for any e 2 H: This inequality is of interest in itself.
Taking the supremum over e 2 H; kek = 1 in (2.19) we have

w2 (C�AD)

= sup
kek=1

jhC�ADe; eij2

� 1

2
sup
kek=1

nh
hD�ADe; ei1=2 hB�ABe; ei1=2 + jhB�ADe; eij

i
hC�ACe; ei

o
� 1

2
sup
kek=1

h
hD�ADe; ei1=2 hB�ABe; ei1=2 + jhB�ADe; eij

i
sup
kek=1

hC�ACe; ei

� 1

2

"
sup
kek=1

hD�ADe; ei1=2 sup
kek=1

hB�ABe; ei1=2 + sup
kek=1

jhB�ADe; eij
#

� sup
kek=1

hC�ACe; ei

=
1

2

h
kD�ADk1=2 kB�ABk1=2 + w (B�AD)

i
kC�ACk ;

which proves the inequality (2.15).
Using the arithmetic mean - geometric mean inequality we also have

hD�ADe; ei1=2 hB�ABe; ei1=2 � 1

2
[hD�ADe; ei+ hB�ABe; ei]

=

�
D�AD +B�AB

2
e; e

�
for any e 2 H:
By (2.19) we then have

(2.20) jhC�ADe; eij2 � 1

2

��
D�AD +B�AB

2
e; e

�
+ jhB�ADe; eij

�
hC�ACe; ei

for any e 2 H:
Taking the supremum over e 2 H; kek = 1 in (2.20) we obtain the desired result

(2.16). �

Remark 5. If P is a projection and B�PC = C�PD; then by Theorem 9 for A = P
we get

(2.21) w2 (C�PD) � 1

2
kPCk2 [kPDk kPBk+ w (B�PD)]
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and

(2.22) w2 (C�PD) � 1

2
kPCk2

" jPDj2 + jPBj22

+ w (B�PD)
#
:

If B�C = C�D; then

(2.23) w2 (C�D) � 1

2
kCk2 [kDk kBk+ w (B�D)]

and

(2.24) w2 (C�D) � 1

2
kCk2

" jDj2 + jBj22

+ w (B�PD)
#
:

3. Trace Inequalities

Let (H; h:; :i) be a complex Hilbert space and B (H) the Banach algebra of all
bounded linear operators on H: If feigi2I an orthonormal basis of H; we say that
A 2 B (H) is of trace class if

(3.1) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
We de�ne the trace of a trace class operator A 2 B1 (H) to be

(3.2) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (3.2)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 10. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(3.3) tr (A�) = tr (A);

(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H) and

(3.4) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;

(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) ;
(v) Bfin (H) ; the space of operators of �nite rank, is a dense subspace of B1 (H) :

Proposition 1. Let A be a nonnegative operator on H and D;B;C three bounded
operators on H: If C�AC 2 B1 (H) ; then C�ABD�AC 2 B1 (H) and

(3.5) jtr (C�ABD�AC)j � 1

2

hA1=2DA1=2B+ kB�ADki tr (C�AC) :
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Proof. Let feigi2I be an orthonormal basis of H; then by (2.1) we obtain

jtr (C�ABD�AC)j =
�����X
i2I

hC�ABD�ACei; eii
�����

�
X
i2I

jhC�ABD�ACei; eiij �

� 1

2

X
i2I

A1=2Cei2 hA1=2DA1=2B+ kB�ADki
=
1

2

hA1=2DA1=2B+ kB�ADkiX
i2I

D
A1=2Cei; A

1=2Cei

E
=
1

2

hA1=2DA1=2B+ kB�ADkiX
i2I

hC�ACei; eii

=
1

2

hA1=2DA1=2B+ kB�ADki tr (C�AC) ;
which proves (3.5). �

Corollary 3. Let P be a projection. If C�PC 2 B1 (H) ; then C�PBD�PC 2
B1 (H) and

(3.6) jtr (C�PBD�PC)j � 1

2
[kPDk kPBk+ kB�PDk] tr (C�PC) :

If C�C 2 B1 (H) ; then C�BD�C 2 B1 (H) and

(3.7) jtr (C�BD�C)j � 1

2
[kDk kBk+ kB�Dk] tr (C�C) :

An operator A 2 B (H) is said to belong to the von Neumann-Schatten class
Bp (H) ; 1 � p <1 if the p-Schatten norm is �nite [17, p. 60-64]

kAkp := [tr (jAj
p
)]
1=p

=

 X
i2I

hjAjp ei; eii
!1=p

<1:

For 1 < p < q <1 we have that

(3.8) B1 (H) � Bp (H) � Bq (H) � B (H)
and

(3.9) kAk1 � kAkp � kAkq � kAk :

For p � 1 the functional k�kp is a norm on the �-ideal Bp (H) and
�
Bp (H) ; k�kp

�
is a Banach space.
Also, see for instance [17, p. 60-64],

(3.10) kAkp = kA
�kp ; A 2 Bp (H)

(3.11) kABkp � kAkp kBkp ; A;B 2 Bp (H)

and

(3.12) kABkp � kAkp kBk ; kBAkp � kBk kAkp ; A 2 Bp (H) ; B 2 B (H) :
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This implies that

(3.13) kCABkp � kCk kAkp kBk ; A 2 Bp (H) ; B; C 2 B (H) :
In terms of p-Schatten norm we have the Hölder inequality for p; q > 1 with

1
p +

1
q = 1

(3.14) (jtr (AB)j �) kABk1 � kAkp kBkq ; A 2 Bp (H) ; B 2 Bq (H) :
For the theory of trace functionals and their applications the reader is referred

to [16] and [17].
For E := feigi2I an orthonormal basis of H we de�ne for A 2 Bp (H) ; p � 1

kAkE ,p :=
 X
i2I

jhAei; eiijp
!1=p

:

We observe that k�kE ,p is a norm on Bp (H) and
kAkE ,p � kAkp for A 2 Bp (H) :

Proposition 2. Let A be a nonnegative operator on H and D;B;C three bounded
operators on H such that B�AC = C�AD: If D�AD; B�AB and B�AD 2 B1 (H) ;
then

(3.15) kC�ADk2E,2 �
1

2
kC�ACk

�
[tr (D�AD)]

1=2
[tr (B�AB)]

1=2
+ kC�ADkE,1

�
;

where E := feigi2I an orthonormal basis of H:

Proof. Let feigi2I be an orthonormal basis of H: From (2.19) we have

jhC�ADei; eiij2

� 1

2

h
hD�ADei; eii1=2 hB�ABei; eii1=2 + jhB�ADei; eiij

i
hC�ACei; eii

� 1

2
kC�ACk

h
hD�ADei; eii1=2 hB�ABei; eii1=2 + jhB�ADei; eiij

i
for all i 2 I:
If we sum over i 2 I; then we getX
i2I

jhC�ADei; eiij2

� 1

2
kC�ACk

"X
i2I

hD�ADei; eii1=2 hB�ABei; eii1=2 +
X
i2I

jhB�ADei; eiij
#
:

By Cauchy-Schwarz inequality we haveX
i2I

hD�ADei; eii1=2 hB�ABei; eii1=2

�
 X
i2I

h
hD�ADei; eii1=2

i2!1=2 X
i2I

h
hB�ABei; eii1=2

i2!1=2

=

 X
i2I

hD�ADei; eii
!1=2 X

i2I
hB�ABei; eii

!1=2
= [tr (D�AD)]

1=2
[tr (B�AB)]

1=2
;
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i2I

jhC�ADei; eiij2 = kC�ADk2E ,2 and
X
i2I

jhB�ADei; eiij = kC�ADkE ,1

and the inequality (3.15) is proved. �

4. Some Particular Inequalities

In this section we explore some particular inequalities of interest that can be
obtained from the main results stated above.
If we take in (2.1) and (2.2) B = D�; then we get��
C�AD2ACe; e

��� � kDACek kD�ACek(4.1)

� 1

2

A1=2Ce2 hA1=2DDA1=2+ kDADki
for any e 2 H and

(4.2) w
�
C�AD2AC

�
� 1

2

A1=2C2 hA1=2DDA1=2+ kDADki ;
where D;C are bounded operators on H and A is a nonnegative operator on H:
If we take in these two inequalities A = P; a projector, then we obtain��
C�PD2PCe; e

��� � kDPCek kD�PCek(4.3)

� 1

2
kPCek2 [kPDk kDPk+ kDPDk]

for any e 2 H and

(4.4) w
�
C�PD2PC

�
� 1

2
kPCk2 [kPDk kDPk+ kDPDk] ;

Choosing B = D� in (2.13) and (2.14), we get

(4.5)
��
C�D2Ce; e

��� � kD�Cek kDCek � 1

2
kCek2

h
kDk2 +

D2
i

for any e 2 H and

(4.6) w
�
C�D2C

�
� 1

2
kCk2

h
kDk2 +

D2
i :

If we take in (2.1) and (2.2) C = 1H ; then we get

jhADB�Ae; eij � kD�Aek kB�Aek(4.7)

� 1

2

A1=2e2 hA1=2DA1=2B+ kB�ADki
for any e 2 H and

(4.8) w (ADB�A) � 1

2
kAk

hA1=2DA1=2B+ kB�ADki ;
where D;B are bounded operators on H and A is a nonnegative operator on H:
The choice A = P in (4.7) and (4.8) gives

jhPDB�Pe; eij � kD�Pek kB�Pek(4.9)

� 1

2
kPek2 [kPDk kPBk+ kB�PDk]

for any e 2 H and

(4.10) w (PDB�P ) � 1

2
[kPDk kPBk+ kB�PDk] ;
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Moreover, if in (4.7) and (4.8) we take B = D�, then we get the inequalities��
AD2Ae; e
��� � kD�Aek kDAek(4.11)

� 1

2

A1=2e2 hA1=2DDA1=2+ kDADki
for any e 2 H and

(4.12) w
�
AD2A

�
� 1

2
kAk

hA1=2DDA1=2+ kDADki :
For A a projection P we obtain��
PD2Pe; e

��� � kD�Pek kDPek(4.13)

� 1

2
kPek2 [kPDk kDPk+ kDPDk]

for any e 2 H and

(4.14) w
�
PD2P

�
� 1

2
[kPDk kDPk+ kDPDk] :

Further, if we assume that DAC = C�AD; then by taking B = D� in (2.15) and
(2.16) we get

(4.15) w2 (DAC) � 1

2

A1=2C2 hA1=2DDA1=2+ w (DAD)i
and

(4.16) w2 (DAC) � 1

2

A1=2C2 "
��A1=2D��2 + ��A1=2D���2

2

+ w (DAD)
#
:

If DC = C�D; then by taking A = 1H in (4.15) and (4.16) we deduce

(4.17) w2 (DC) � 1

2
kCk2

h
kDk2 + w

�
D2
�i

and

(4.18) w2 (DC) � 1

2
kCk2

" jDj2 + jD�j2

2

+ w �D2
�#
:

Since  jDj2 + jD�j2

2

 � 1

2

hjDj2+ jD�j2
i = kDk2 ;

then the inequality (4.18) is better than (4.17).
If DA = AD; then by taking C = 1H in (4.15) and (4.16) we also have

(4.19) w2 (DA) � 1

2
kAk

hA1=2DDA1=2+ w �AD2
�i

and

(4.20) w2 (DA) � 1

2
kAk

"
��A1=2D��2 + ��A1=2D���2

2

+ w �AD2
�#
:

Taking into account the above results, we can state the following two inequalities
for an operator T; namely

(4.21) w2 (T ) � 1

2

h
kTk2 + w

�
T 2
�i
; see (1.15),
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and

(4.22) w2 (T ) � 1

2

" jT j2 + jT �j22

+ w �T 2�
#
:

The inequality (4.22) is better than (4.21).
Let P be a projection on H: If C�PC 2 B1 (H) ; then C�PBD�PC 2 B1 (H)

and by (3.5) we obtain

(4.23) jtr (C�PBD�PC)j � 1

2
[kPDk kPBk+ kB�PDk] tr (C�PC) :

If we take P = I and assume that, if C�C 2 B1 (H) ; then C�BD�C 2 B1 (H) and
by (4.23) we obtain

(4.24) jtr (C�BD�C)j � 1

2
[kDk kBk+ kB�Dk] tr (C�C) :

Let P be a projection on H and D;B;C three bounded operators on H such
that B�PC = C�PD: If D�PD; B�PB and B�PD 2 B1 (H) ; then

(4.25) kC�PDk2E ,2 �
1

2
kC�PCk

�
[tr (D�PD)]

1=2
[tr (B�PB)]

1=2
+ kC�PDkE ,1

�
;

where E := feigi2I an orthonormal basis of H:
Moreover, if B�C = C�D; D�D; B�B and B�D 2 B1 (H) ; then also

(4.26) kC�Dk2E ,2 �
1

2
kCk2

�
[tr (D�D)]

1=2
[tr (B�B)]

1=2
+ kC�DkE ,1

�
;

where E := feigi2I an orthonormal basis of H:
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