VECTOR INEQUALITIES IN TERMS OF SPECTRAL RADIUS OF OPERATORS IN HILBERT SPACES WITH APPLICATIONS TO NUMERICAL RADIUS AND p-SCHATTEN NORMS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } H \text { be a complex Hilbert space. Assume that } f \text { and } g \text { are non- } \\
& \text { negative functions on }[0, \infty) \text { which are continuous and satisfying the relation } \\
& f(t) g(t)=t \text { for all } t \in[0, \infty) \text {. In this paper we show among others that, if } T \\
& \text { and } V \text { are operators in } \mathcal{B}(H) \text { such that }|T| V=V^{*}|T| \text {, then for } A, B \in \mathcal{B}(H) \\
& \text { we have } \\
& \begin{aligned}
|\langle B T V A x, x\rangle|^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left(\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right)
\end{aligned}
\end{aligned}
$$

provided that $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, for $x \in H$ with $\|x\|=1$. Also, we have the numerical radius inequality

$$
\begin{aligned}
|\omega(B T V A)|^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|\right. \\
& \left.+\omega^{r}\left(\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right)\right)
\end{aligned}
$$

and the trace inequality

$$
\begin{aligned}
\|B T V A\|_{\mathcal{E}, 2 r}^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left[\operatorname{tr}\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right)\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|_{r}^{r}\right]
\end{aligned}
$$

provided that

$$
|f(|T|) A|^{2 p r},\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r},\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} \in \mathcal{B}_{1}(H)
$$

$$
\text { and }\|A\|_{\mathcal{E}, p}:=\left(\sum_{i \in I}\left|\left\langle A e_{i}, e_{i}\right\rangle\right|^{p}\right)^{1 / p} \text { for } A \in \mathcal{B}_{p}(H), p \geq 1
$$

1. Introduction

The numerical radius $w(T)$ of an operator T on H is given by

$$
\begin{equation*}
\omega(T)=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

Obviously, by (1.1), for any $x \in H$ one has

$$
\begin{equation*}
|\langle T x, x\rangle| \leq w(T)\|x\|^{2} \tag{1.2}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$, i.e.,
(i) $\omega(T) \geq 0$ for any $T \in B(H)$ and $\omega(T)=0$ if and only if $T=0$;
(ii) $\omega(\lambda T)=|\lambda| \omega(T)$ for any $\lambda \in \mathbb{C}$ and $T \in B(H)$;

[^0](iii) $\omega(T+V) \leq \omega(T)+\omega(V)$ for any $T, V \in B(H)$.

This norm is equivalent with the operator norm. In fact, the following more precise result holds:

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.3}
\end{equation*}
$$

for any $T \in B(H)$.
F. Kittaneh, in 2003 [11], showed that for any operator $T \in B(H)$ we have the following refinement of the first inequality in (1.3):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [12] improved the inequality (1.3) as follows:

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| \tag{1.5}
\end{equation*}
$$

for any operator $T \in B(H)$.
For powers of the absolute value of operators, one can state the following results obtained by El-Haddad \& Kittaneh in 2007, [8]:

If for an operator $T \in B(H)$ we denote $|T|:=\left(T^{*} T\right)^{1 / 2}$, then

$$
\begin{equation*}
\omega^{r}(T) \leq \frac{1}{2}\left\||T|^{2 \alpha r}+\left|T^{*}\right|^{2(1-\alpha) r}\right\| \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2 r}(T) \leq\left\|\alpha|T|^{2 r}+(1-\alpha)\left|T^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $r \geq 1$.
If we take $\alpha=\frac{1}{2}$ and $r=1$ we get from (1.6) that

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}\left\||T|+\left|T^{*}\right|\right\| \tag{1.8}
\end{equation*}
$$

and from (1.7) that

$$
\begin{equation*}
\omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{1.9}
\end{equation*}
$$

For more related results, see the recent books on inequalities for numerical radii [7] and [4].

Let $T=U|T|$ be the polar decomposition of the bounded linear operator T. The Aluthge transform \widetilde{T} of T is defined by $\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}$, see [1].

The following properties of \widetilde{T} are as follows:
(i) $\|\widetilde{T}\| \leq\|T\|$,
(ii) $w(\widetilde{T}) \leq \omega(T)$,
(iii) $r(\widetilde{T})=\omega(T)$,
(iv) $\omega(\widetilde{T}) \leq\left\|T^{2}\right\|^{1 / 2}(\leq\|T\|)$, [15].

Utilizing this transform T. Yamazaki, [15] obtained in 2007 the following refinement of Kittaneh's inequality (1.4):

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for any operator $T \in \underset{\sim}{B}(H)$.
We remark that if $\widetilde{T}=0$, then obviously $w(T)=\frac{1}{2}\|T\|$.
Abu-Omar and Kittaneh [2] improved on inequality (1.10) using generalized Aluthge transform to prove that

$$
\omega(T) \leq \frac{1}{2}\left(\|T\|+\min _{t \in[0,1]} \omega\left(\Delta_{t}(T)\right)\right)
$$

For $t=1$ this also gives the following result for the Dougal transform

$$
\begin{equation*}
\omega(T) \leq \frac{1}{2}(\|T\|+\omega(\widehat{T})) \tag{1.11}
\end{equation*}
$$

In [3] Bunia et al. also proved that

$$
\omega(T) \leq \min _{t \in[0,1]}\left\{\frac{1}{2} \omega\left(\Delta_{t}(T)\right)+\frac{1}{4}\left(\|T\|^{2 t}+\|T\|^{2(1-t)}\right)\right\}
$$

which for $t=1 / 2$ gives (1.10) as well.
In 1988, F. Kittaneh obtained the following generalization of Schwarz inequality [10]:

Theorem 1. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let T, V be operators in $V(H)$ such that $|T| V=V^{*}|T|$, then

$$
\begin{equation*}
|\langle T V x, y\rangle| \leq r(V)\|f(|T|) x\|\left\|g\left(\left|T^{*}\right|\right) y\right\| \tag{1.12}
\end{equation*}
$$

for all $x, y \in H$, where $r(V)$ denotes the spectral radius of V.
If we take $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ for $\alpha \in[0,1]$ and $t>0$,

$$
\begin{equation*}
|\langle T V x, y\rangle| \leq r(V)\left\||T|^{\alpha} x\right\|\left\|\left|T^{*}\right|^{1-\alpha} y\right\| \tag{1.13}
\end{equation*}
$$

for all $x, y \in H$.

2. Main Results

We recall the following vector inequality for positive operators $A \geq 0$, obtained by C. A. McCarthy in [13]

$$
\begin{equation*}
\langle A x, x\rangle^{p} \leq\left\langle A^{p} x, x\right\rangle, p \geq 1 \tag{2.1}
\end{equation*}
$$

for $x \in H,\|x\|=1$ and Buzano's inequality [5],

$$
\begin{equation*}
|\langle x, e\rangle\langle e, y\rangle| \leq \frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \tag{2.2}
\end{equation*}
$$

that holds for any $x, y, e \in H,\|e\|=1$.
Our first main result is as follows:
Theorem 2. Assume that f and g are non-negative functions on $[0, \infty)$ which are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let T, V be operators in $\mathcal{B}(H)$ such that $|T| V=V^{*}|T|$, then for $A, B \in \mathcal{B}(H)$ we have that

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{2.3}\\
& \leq r^{2 r}(V)\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$.

If $r \geq 1$,

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{2.4}\\
& \leq \frac{1}{2} r^{2 r}(V) \\
& \left.\times\left(\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{2.5}\\
& \leq \frac{1}{2} r^{2 r}(V)\left(\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
Proof. Observe that by (1.12) we have

$$
\begin{aligned}
|\langle T V x, y\rangle|^{2} & \leq r^{2}(V)\|f(|T|) x\|^{2}\left\|g\left(\left|T^{*}\right|\right) y\right\|^{2} \\
& =r^{2}(V)\langle f(|T|) x, f(|T|) x\rangle\left\langle g\left(\left|T^{*}\right|\right) y, g\left(\left|T^{*}\right|\right) y\right\rangle \\
& =r^{2}(V)\left\langle f^{2}(|T|) x, x\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) y, y\right\rangle
\end{aligned}
$$

for all $x, y \in H$.
If we take $A x$ instead of x and $B^{*} y$ instead of y, then we get

$$
\begin{aligned}
\left|\left\langle T V A x, B^{*} y\right\rangle\right|^{2} & \leq r^{2}(V)\left\langle f^{2}(|T|) A x, A x\right\rangle\left\langle g^{2}\left(\left|T^{*}\right|\right) B^{*} y, B^{*} y\right\rangle \\
& =r^{2}(V)\left\langle A^{*} f^{2}(|T|) A x, x\right\rangle\left\langle B g^{2}\left(\left|T^{*}\right|\right) B^{*} y, y\right\rangle \\
& =r^{2}(V)\left\langle(f(|T|) A x)^{*} f(|T|) A x, x\right\rangle \\
& \times\left\langle\left(g\left(\left|T^{*}\right|\right) B^{*}\right)^{*} g\left(\left|T^{*}\right|\right) B^{*} y, y\right\rangle \\
& \left.\left.=\left.r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle
\end{aligned}
$$

namely

$$
\begin{equation*}
\left.\left.|\langle B T V A x, y\rangle|^{2} \leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} y, y\right\rangle \tag{2.6}
\end{equation*}
$$

for all $x, y \in H$ and, in particular

$$
\begin{equation*}
\left.\left.|\langle B T V A x, x\rangle|^{2} \leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle \tag{2.7}
\end{equation*}
$$

for all $x \in H$.

If we take the power $r>0$ in (2.7), then we get, by Young and McCarthy inequalities, that

$$
\begin{aligned}
& |\langle B T V A x, x\rangle|^{2 r} \\
& \left.\left.\leq\left. r^{2 r}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r} \\
& \left.\left.\leq r^{2 r}(V)\left[\left.\frac{1}{p}\langle | f(|T|) A\right|^{2} x, x\right\rangle^{p r}+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{q r}\right] \\
& \left.\left.\leq r^{2 r}(V)\left[\left.\frac{1}{p}\langle | f(|T|) A\right|^{2 p r} x, x\right\rangle+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} x, x\right\rangle\right] \\
& =r^{2 r}(V)\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$, which proves (2.3).
Let $x \in H,\|x\|=1$, then by Buzano's inequality we derive

$$
\begin{aligned}
& \left.\left.\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle x,| g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\rangle \\
& \left.\leq \frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | f(|T|) A\right|^{2} x,\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\rangle\right] \\
& \left.=\frac{1}{2}\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right] .
\end{aligned}
$$

By making use of (2.7) we get

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2} \tag{2.8}\\
& \leq \frac{1}{2} r^{2}(V) \\
& \left.\times\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right]
\end{align*}
$$

for $x \in H,\|x\|=1$.
By taking the power $r \geq 1$ in (2.8) and using the convexity of the power function, we get

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{2.9}\\
& \leq r^{2 r}(V) \\
& \times\left[\frac{\left[\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle}{2}\right]^{r} \\
& \leq r^{2 r}(V) \\
& \times \frac{\left.\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}}{2}
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, which proves (2.4).

Also, observe that

$$
\begin{aligned}
& \left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r} \\
& \leq \frac{1}{p}\left\||f(|T|) A|^{2} x\right\|^{p r}+\frac{1}{q}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{q r} \\
& =\frac{1}{p}\left\||f(|T|) A|^{2} x\right\|^{2 \frac{p r}{2}}+\frac{1}{q}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{2 \frac{q r}{2}} \\
& \left.\left.=\left.\frac{1}{p}\langle | f(|T|) A\right|^{4} x, x\right\rangle^{\frac{p r}{2}}+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{4} x, x\right\rangle^{\frac{q r}{2}} \\
& \left.\left.\leq\left.\frac{1}{p}\langle | f(|T|) A\right|^{2 p r} x, x\right\rangle+\left.\frac{1}{q}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} x, x\right\rangle \\
& =\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{\left.\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}}{2} \\
& \leq \frac{1}{2}\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle \\
& \left.+\left.\frac{1}{2}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}
\end{aligned}
$$

and by (2.9) we get

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle \\
& \left.+\left.\frac{1}{2} r^{2 r}(V)\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}
\end{aligned}
$$

or $x \in H$ with $\|x\|=1$. This proves (2.5).
Remark 1. If we take $r=1 / 2$ and $p=q=2$ in (2.3), then we get

$$
\begin{equation*}
|\langle B T V A x, x\rangle| \leq \frac{1}{2} r(V)\left\langle\left[|f(|T|) A|^{2}+\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}\right] x, x\right\rangle \tag{2.10}
\end{equation*}
$$

for $x \in H$ with $\|x\|=1$.
The choice $r=1$ in the same inequality produces

$$
\begin{equation*}
|\langle B T V A x, x\rangle|^{2} \leq r^{2}(V)\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q}\right] x, x\right\rangle \tag{2.11}
\end{equation*}
$$

for $x \in H$ with $\|x\|=1$, provided that $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
For $r=1$ in (2.4) we obtain

$$
\begin{align*}
|\langle B T V A x, x\rangle|^{2} & \leq \frac{1}{2} r^{2}(V)\left(\left\||f(|T|) A|^{2} x\right\|\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|\right. \tag{2.12}\\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.

If we take $r=1$ in (2.5), then we get

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2} \tag{2.13}\\
& \leq \frac{1}{2} r^{2}(V)\left(\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, provided that $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
Corollary 1. Assume that f and g are non-negative functions on $[0, \infty)$ that are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let X, A, $B \in \mathcal{B}(H)$, then for all $\alpha, \beta \geq 0$ with $\alpha+\beta \geq 1$, we have

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.14}\\
& \leq\|X\|^{2 \beta r}\left\langle\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$.

If $r \geq 1$,

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.15}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\left\|\left|f\left(|X|^{\alpha}\right) A\right|^{2} x\right\|^{r}\left\|\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\langle | g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.16}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\left\langle\left(\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\langle | g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
Proof. Let $X=U|X|$ be the polar decomposition of the bounded linear operator X, with U a partial isometry. If we take $T=U|X|^{\alpha}$ and $V=|X|^{\beta}$, then we have

$$
T V=U|X|^{\alpha+\beta}=X|X|^{\alpha+\beta-1}, \quad|T|=|X|^{\alpha} \text { and }\left|T^{*}\right|=\left|X^{*}\right|^{\alpha}
$$

and since

$$
|T| V=|X|^{\alpha+\beta}=V^{*}|T|
$$

and

$$
r(V)=r\left(|X|^{\beta}\right)=\left\||X|^{\beta}\right\|=\|X\|^{\beta},
$$

hence by Theorem 2 we derive the desired inequalities.

Remark 2. Let $\alpha \in[0,1]$. If we take $\beta=1-\alpha$ in Corollary 1, then we get

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.17}\\
& \leq\|X\|^{2(1-\alpha) r}\left\langle\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$.

If $r \geq 1$,

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.18}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\left\|\left|f\left(|X|^{\alpha}\right) A\right|^{2} x\right\|^{r}\left\|\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\langle | g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.19}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\left\langle\left(\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\langle | g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
We also have:

Theorem 3. With the assumptions of Theorem 2, we have for $r \geq 1$ and $\delta \in[0,1]$ that

$$
\begin{align*}
|\langle B T V A x, x\rangle|^{2 r} & \leq r^{2 r}(V)\left\langle\left[(1-\delta)|f(|T|) A|^{2 r}+\delta\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \tag{2.20}\\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\delta)}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
Also, we have
(2.21) $|\langle B T V A x, x\rangle|^{2} \leq r^{2}(V)\left\langle\left[(1-\delta)|f(|T|) A|^{2 r}+\delta\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle^{1 / r}$

$$
\times\left\langle\left[\delta|f(|T|) A|^{2 r}+(1-\delta)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle^{1 / r}
$$

for all $x \in H,\|x\|=1$.

Proof. From (2.7) we have for all $\delta \in[0,1]$ that

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2} & \left.\left.\leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle \\
& \left.\left.=\left.r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1-\delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{\delta} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\delta} \\
& \left.\left.\leq r^{2}(V)\left[\left.(1-\delta)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\delta\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\delta}
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
If we take the power $r \geq 1$, then we get by the convexity of power r that

$$
\begin{align*}
& |\langle B T V A x, x\rangle|^{2 r} \tag{2.22}\\
& \left.\left.\leq r^{2 r}(V)\left[\left.(1-\delta)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\delta\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right]^{r} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\delta)} \\
& \left.\left.\leq r^{2 r}(V)\left[\left.(1-\delta)\langle | f(|T|) A\right|^{2} x, x\right\rangle^{r}+\left.\delta\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r}\right] \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{r \delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\delta)}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
If we use McCarthy inequality for power $r \geq 1$, then we get

$$
\begin{aligned}
& \left.\left.\left.(1-\delta)\langle | f(|T|) A\right|^{2} x, x\right\rangle^{r}+\left.\delta\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{r} \\
& \left.\left.\leq\left.(1-\delta)\langle | f(|T|) A\right|^{2 r} x, x\right\rangle+\left.\delta\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r} x, x\right\rangle \\
& =\left\langle\left[(1-\delta)|f(|T|) A|^{2 r}+\delta\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle
\end{aligned}
$$

and by (2.22) we get (2.20).
We also have

$$
\begin{aligned}
& |\langle B T V A x, x\rangle|^{2} \\
& \left.\left.\leq\left. r^{2}(V)\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{1-\delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{\delta} \\
& \left.\left.\times\left.\langle | f(|T|) A\right|^{2} x, x\right\rangle\left.^{\delta}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle^{1-\delta} \\
& \left.\left.\leq r^{2}(V)\left[\left.(1-\delta)\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.\delta\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right] \\
& \left.\left.\times\left[\left.\delta\langle | f(|T|) A\right|^{2} x, x\right\rangle+\left.(1-\delta)\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x, x\right\rangle\right]
\end{aligned}
$$

for all $x \in H,\|x\|=1$.
This implies in the same way that

$$
\begin{aligned}
|\langle B T V A x, x\rangle|^{2 r} & \leq r^{2 r}(V)\left\langle\left[(1-\delta)|f(|T|) A|^{2 r}+\delta\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \times\left\langle\left[\delta|f(|T|) A|^{2 r}+(1-\delta)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right] x, x\right\rangle
\end{aligned}
$$

for all $x \in H,\|x\|=1$, which proves (2.21).
Corollary 2. With the assumptions of Corollary 1, we have that

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.23}\\
& \leq\|X\|^{2 \beta r}\left\langle\left[(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \left.\left.\times\left.\langle | f\left(|X|^{\alpha}\right) A\right|^{2} x, x\right\rangle\left.^{r \delta}\langle | g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\delta)}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
Also, we have

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2} \tag{2.24}\\
& \leq\|X\|^{2 \beta}\left\langle\left[(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right] x, x\right\rangle^{1 / r} \\
& \times\left\langle\left[\delta\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+(1-\delta)\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right] x, x\right\rangle^{1 / r}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
For $r \geq 1$ and $\alpha \in[0,1]$ we derive

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.25}\\
& \leq\|X\|^{2(1-\alpha) r}\left\langle\left[(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right] x, x\right\rangle \\
& \left.\left.\times\left.\langle | f\left(|X|^{\alpha}\right) A\right|^{2} x, x\right\rangle\left.^{r \delta}\langle | g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2} x, x\right\rangle^{r(1-\delta)}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
Also, we have

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2} \tag{2.26}\\
& \leq\|X\|^{2(1-\alpha)}\left\langle\left[(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right] x, x\right\rangle^{1 / r} \\
& \times\left\langle\left[\delta\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+(1-\delta)\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right] x, x\right\rangle^{1 / r}
\end{align*}
$$

for all $x \in H,\|x\|=1$.
Consider $f(u)=u^{\lambda}$ and $g(u)=u^{1-\lambda}$ with $\lambda \in[0,1]$. Let T, V be operators in $\mathcal{B}(H)$ such that $|T| V=V^{*}|T|$, then for $A, B \in \mathcal{B}(H)$ we have from Theorem 2 that

$$
\begin{equation*}
|\langle B T V A x, x\rangle|^{2 r} \leq r^{2 r}(V)\left\langle\left[\left.\left.\frac{1}{p}| | T\right|^{\lambda} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r}\right] x, x\right\rangle \tag{2.27}
\end{equation*}
$$

for $x \in H$ with $\|x\|=1$, provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$.

If $r \geq 1$,

$$
\begin{align*}
|\langle B T V A x, x\rangle|^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\left.\left.| | T\right|^{\lambda} A\right|^{2} x\right\|^{r}\left\|\left.\left.| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2} x\right\|^{r}\right. \tag{2.28}\\
& \left.\left.+\left.\left.\left.\langle |\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
|\langle B T V A x, x\rangle|^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left(\left\langle\left(\left.\left.\frac{1}{p}| | T\right|^{\lambda} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \tag{2.29}\\
& \left.\left.+\left.\left.\left.\langle |\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
From Corollary 1 we get for $X, A, B \in \mathcal{B}(H)$ and $\alpha, \beta \geq 0$ with $\alpha+\beta \geq 1$, that

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.30}\\
& \leq\|X\|^{2 \beta r}\left\langle\left[\left.\left.\frac{1}{p}| | X\right|^{\lambda \alpha} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$.

If $r \geq 1$, then

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.31}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\left\|\left.\left.| | X\right|^{\lambda \alpha} A\right|^{2} x\right\|^{r}\left\|\left.\left.| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\left.\left.\langle |\left|X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2}| | X\right|^{\lambda \alpha} A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& \left.|\langle B X| X|^{\alpha+\beta-1} A x, x\right\rangle\left.\right|^{2 r} \tag{2.32}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\left\langle\left(\left.\left.\frac{1}{p}| | X\right|^{\lambda \alpha} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\left.\left.\langle |\left|X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2}| | X\right|^{\lambda \alpha} A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
Let $\alpha \in[0,1]$. From Remark 2 we obtain

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.33}\\
& \leq\|X\|^{2(1-\alpha) r}\left\langle\left[\left.\left.\frac{1}{p}| | X\right|^{\lambda \alpha} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r}\right] x, x\right\rangle
\end{align*}
$$

for $x \in H$ with $\|x\|=1$, provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r$, $q r \geq 1$.

If $r \geq 1$, then

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.34}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\left.\left\|\left.\left.| | X\right|^{\lambda \alpha} A\right|^{2} x\right\|^{r}\| \|\left|X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2} x \|^{r}\right. \\
& \left.\left.+\left.\left.\left.\langle |\left|X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2}| | X\right|^{\lambda \alpha} A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& |\langle B X A x, x\rangle|^{2 r} \tag{2.35}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\left\langle\left(\left.\left.\frac{1}{p}| | X\right|^{\lambda \alpha} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r}\right) x, x\right\rangle\right. \\
& \left.\left.+\left.\left.\left.\langle |\left|X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2}| | X\right|^{\lambda \alpha} A\right|^{2} x, x\right\rangle^{r}\right)
\end{align*}
$$

for $x \in H$ with $\|x\|=1$.

3. Numerical Radius Inequalities

We can state the following result:
Proposition 1. Assume that f and g are non-negative functions on $[0, \infty)$ that are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let T, V be operators in $\mathcal{B}(H)$ such that $|T| V=V^{*}|T|$, then for $A, B \in \mathcal{B}(H)$ we have the norm inequality

$$
\begin{equation*}
|\omega(B T V A)|^{2 r} \leq r^{2 r}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\| \tag{3.1}
\end{equation*}
$$

provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If $r \geq 1$,

$$
\begin{align*}
|\omega(B T V A)|^{2 r} \leq & \frac{1}{2} r^{2 r}(V)\left(\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}\right. \tag{3.2}\\
& \left.+\omega^{r}\left(\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right)\right) . \tag{3.3}
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& |\omega(B T V A)|^{2 r} \tag{3.4}\\
& \leq \frac{1}{2} r^{2 r}(V)\left(\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|\right. \\
& \left.+\omega^{r}\left(\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right)\right)
\end{align*}
$$

Proof. If we take the supremum over $\|x\|=1$ in (2.3), then we get

$$
\begin{aligned}
& |\omega(B T V A)|^{2 r} \\
& =\sup _{\|x\|=1}|\langle B T V A x, x\rangle|^{2 r} \\
& \leq r^{2 r}(V) \sup _{\|x\|=1}\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] x, x\right\rangle \\
& =r^{2 r}(V)\left\|\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right\|
\end{aligned}
$$

which proves (3.1).
By taking the supremum over $\|x\|=1$ in (2.4) we obtain

$$
\begin{aligned}
& |\omega(B T V A)|^{2 r}=\sup _{\|x\|=1}|\langle B T V A x, x\rangle|^{2 r} \\
& \leq \frac{1}{2} r^{2 r}(V) \sup _{\|x\|=1}\left(\left\||f(|T|) A|^{2} x\right\|^{r}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right) \\
& \leq \frac{1}{2} r^{2 r}(V)\left[\sup _{\|x\|=1}\left\||f(|T|) A|^{2} x\right\|^{r} \sup _{\|x\|=1}\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2} x\right\|^{r}\right. \\
& \left.\left.+\left.\sup _{\|x\|=1}\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} x, x\right\rangle^{r}\right] \\
& =\frac{1}{2} r^{2 r}(V)\left[\|f(|T|) A\|^{2 r}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r}+\omega^{r}\left(\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right)\right]
\end{aligned}
$$

which proves (3.2).
The inequality (3.4) follows in a similar way from (2.5).
We also have:
Corollary 3. Assume that f and g are non-negative functions on $[0, \infty)$ that are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let X, A, $B \in \mathcal{B}(H)$, then for all $\alpha, \beta \geq 0$ with $\alpha+\beta \geq 1$, we have

$$
\begin{align*}
& \omega^{2 r}\left(B X|X|^{\alpha+\beta-1} A\right) \tag{3.5}\\
& \leq\|X\|^{2 \beta r}\left\|\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right\|
\end{align*}
$$

provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If $r \geq 1$,

$$
\begin{align*}
& \omega^{2 r}\left(B X|X|^{\alpha+\beta-1} A\right) \tag{3.6}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\left\|f\left(|X|^{\alpha}\right) A\right\|^{2 r}\left\|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right\|^{2 r}\right. \\
& \left.+\omega^{r}\left(\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right)\right)
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& \omega^{2 r}\left(B X|X|^{\alpha+\beta-1} A\right) \tag{3.7}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\left\|\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right\|\right. \\
& \left.+\omega^{r}\left(\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right)\right)
\end{align*}
$$

Remark 3. Let $\alpha \in[0,1]$. Then we get

$$
\begin{align*}
& \omega^{2 r}(B X A) \tag{3.8}\\
& \leq\|X\|^{2(1-\alpha) r}\left\|\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right\|
\end{align*}
$$

provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If $r \geq 1$,

$$
\begin{align*}
& \omega^{2 r}(B X A) \tag{3.9}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\left\|f\left(|X|^{\alpha}\right) A\right\|^{2 r}\left\|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right\|^{2 r}\right. \\
& \left.+\omega^{r}\left(\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right)\right)
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& \omega^{2 r}(B X A) \tag{3.10}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\left(\left\|\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right\|\right)\right. \\
& \left.+\omega^{r}\left(\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right)\right)
\end{align*}
$$

We also have:
Proposition 2. With the assumptions of Theorem 2, we have for $r \geq 1$ and $\delta \in[0,1]$ that

$$
\begin{align*}
|\omega(B T V A)|^{2 r} & \leq r^{2 r}(V)\left\|(1-\delta)|f(|T|) A|^{2 r}+\delta\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\| \tag{3.11}\\
& \times\|f(|T|) A\|^{2 r \delta}\left\|g\left(\left|T^{*}\right|\right) B^{*}\right\|^{2 r(1-\delta)}
\end{align*}
$$

Also, we have

$$
\begin{align*}
|\omega(B T V A)|^{2} & \leq r^{2}(V)\left\|(1-\delta)|f(|T|) A|^{2 r}+\delta\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r} \tag{3.12}\\
& \times\left\|\delta|f(|T|) A|^{2 r}+(1-\delta)\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

The proof follows by Theorem 3 on taking the supremum over $\|x\|=1$.
Corollary 4. With the assumptions of Corollary 1, we have for $\delta \in[0,1]$, that

$$
\begin{align*}
& \omega^{2 r}\left(B X|X|^{\alpha+\beta-1} A\right) \tag{3.13}\\
& \leq\|X\|^{2 \beta r}\left\|(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right\| \\
& \times\left\|f\left(|X|^{\alpha}\right) A\right\|^{2 r \delta}\left\|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right\|^{r(1-\delta)}
\end{align*}
$$

Also, we have

$$
\begin{align*}
& \omega^{2}\left(B X|X|^{\alpha+\beta-1} A\right) \tag{3.14}\\
& \leq\|X\|^{2 \beta}\left\|(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\delta\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+(1-\delta)\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

Now, if we take $\beta=1-\alpha, \alpha \in[0,1]$ in Corollary 4 , then we get

$$
\begin{align*}
& \omega^{2 r}(B X A) \tag{3.15}\\
& \leq\|X\|^{2(1-\alpha) r}\left\|(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right\| \\
& \times\left\|f\left(|X|^{\alpha}\right) A\right\|^{2 r \delta}\left\|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right\|^{r(1-\delta)}
\end{align*}
$$

and

$$
\begin{align*}
& \omega^{2}(B X A) \tag{3.16}\\
& \leq\|X\|^{2(1-\alpha)}\left\|(1-\delta)\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+\delta\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\delta\left|f\left(|X|^{\alpha}\right) A\right|^{2 r}+(1-\delta)\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

for $\delta \in[0,1]$.
If the operator T has the polar decomposition $T=U|T|$ with U a partial isometry, we define the transform

$$
\Delta_{p, q}(T):=|T|^{p} U|T|^{q}
$$

for $p, q \geq 0$. Here we assume that $|T|^{0}=I$.
The p-generalized Dougal transform is defined by

$$
\widehat{T}_{p}:=|T|^{p} U
$$

the usual Dougal transform is then

$$
\widehat{T}:=|T| U
$$

and the p-generalized Aluthge transform

$$
\widetilde{T}_{p}:=|T|^{p} U|T|^{p}
$$

which for $p=1 / 2$ gives the usual Aluthge transform

$$
\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}
$$

Also

$$
T_{q}:=U|T|^{q}
$$

which gives for $q=1$ the usual polar decomposition $T=U|T|$.
For $p=t, q=1-t$, where $t \in[0,1]$ we have

$$
\Delta_{t}(T):=\Delta_{t, 1-t}(T)=|T|^{t} V|T|^{1-t}
$$

The transform $\Delta_{t}(T)$ was introduced and studied in [6].

Now, if we use Remark 3 for $X=\Delta_{p, q}(T)$ and $A=|T|^{m}$ and $B=|T|^{n}$ for $p, q, m, n \geq 0$, then for $\alpha \in[0,1]$ we get

$$
\begin{align*}
& \omega^{2 r}\left(\Delta_{p+n, q+m}(T)\right) \tag{3.17}\\
& \leq\left\|\Delta_{p, q}(T)\right\|^{2(1-\alpha) r} \\
& \times\left\|\left.\left.\frac{1}{p}\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2 p r}+\left.\left.\frac{1}{q}\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2 q r}\right\|
\end{align*}
$$

provided that $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If $r \geq 1$,

$$
\begin{align*}
& \omega^{2 r}\left(\Delta_{p+n, q+m}(T)\right) \tag{3.18}\\
& \leq \frac{1}{2}\left\|\Delta_{p, q}(T)\right\|^{2(1-\alpha) r} \\
& \times\left(\left\|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)|T|^{m}\right\|^{2 r}\left\|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)|T|^{n}\right\|^{2 r}\right. \\
& \left.+\omega^{r}\left(\left.\left.\left.\left.\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2}\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2}\right)\right)
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& \omega^{2 r}\left(\Delta_{p+n, q+m}(T)\right) \tag{3.19}\\
& \leq \frac{1}{2}\left\|\Delta_{p, q}(T)\right\|^{2(1-\alpha) r} \\
& \times\left(\left(\left\|\left.\left.\frac{1}{p}\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2 p r}+\left.\left.\frac{1}{q}\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2 q r}\right\|\right)\right. \\
& \left.+\omega^{r}\left(\left.\left.\left.\left.\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2}\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2}\right)\right)
\end{align*}
$$

From (3.15) and (3.16) we also get for $\alpha, \delta \in[0,1]$ that

$$
\begin{align*}
& \omega^{2 r}\left(\Delta_{p+n, q+m}(T)\right) \tag{3.20}\\
& \leq\left\|\Delta_{p, q}(T)\right\|^{2(1-\alpha) r} \\
& \times\left\|\left.\left.(1-\delta)\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2 r}+\left.\left.\delta\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2 r}\right\| \\
& \times\left\|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)|T|^{m}\right\|^{2 r \delta}\left\|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)|T|^{n}\right\|^{r(1-\delta)}
\end{align*}
$$

and

$$
\begin{align*}
& \omega^{2}\left(\Delta_{p+n, q+m}(T)\right) \tag{3.21}\\
& \leq\left\|\Delta_{p, q}(T)\right\|^{2(1-\alpha)} \\
& \times\left\|\left.\left.(1-\delta)\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2 r}+\left.\left.\delta\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2 r}\right\|^{1 / r} \\
& \times\left\|\left.\left.\delta\left|f\left(\left|\Delta_{p, q}(T)\right|^{\alpha}\right)\right| T\right|^{m}\right|^{2 r}+\left.\left.(1-\delta)\left|g\left(\left|\left(\Delta_{p, q}(T)\right)^{*}\right|^{\alpha}\right)\right| T\right|^{n}\right|^{2 r}\right\|^{1 / r}
\end{align*}
$$

By taking some particular values for $p, q, m, n \geq 0$ we can obtain certain inequalities for the Aluthge and Dougal transforms. The details are omitted.

4. Inequalities for p-Schatten Norms

In order to extend these results for p-Schatten norms we need the following preparations.

Let $(H ;\langle.,\rangle$.$) be a complex Hilbert space and \mathcal{B}(H)$ the Banach algebra of all bounded linear operators on H. If $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is of trace class if

$$
\begin{equation*}
\|A\|_{1}:=\sum_{i \in I}\langle | A\left|e_{i}, e_{i}\right\rangle<\infty \tag{4.1}
\end{equation*}
$$

The definition of $\|A\|_{1}$ does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$. We denote by $\mathcal{B}_{1}(H)$ the set of trace class operators in $\mathcal{B}(H)$.

We define the trace of a trace class operator $A \in \mathcal{B}_{1}(H)$ to be

$$
\begin{equation*}
\operatorname{tr}(A):=\sum_{i \in I}\left\langle A e_{i}, e_{i}\right\rangle \tag{4.2}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (4.2) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:
Theorem 4. We have:
(i) If $A \in \mathcal{B}_{1}(H)$ then $A^{*} \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}\left(A^{*}\right)=\overline{\operatorname{tr}(A)} \tag{4.3}
\end{equation*}
$$

(ii) If $A \in \mathcal{B}_{1}(H)$ and $T \in \mathcal{B}(H)$, then $A T$, $T A \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}(A T)=\operatorname{tr}(T A) \text { and }|\operatorname{tr}(A T)| \leq\|A\|_{1}\|T\| \tag{4.4}
\end{equation*}
$$

(iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_{1}(H)$ with $\|\operatorname{tr}\|=1$;
(iv) If $A, B \in \mathcal{B}_{2}(H)$ then $A B, B A \in \mathcal{B}_{1}(H)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(v) $\mathcal{B}_{\text {fin }}(H)$, the space of operators of finite rank, is a dense subspace of $\mathcal{B}_{1}(H)$.

An operator $A \in \mathcal{B}(H)$ is said to belong to the von Neumann-Schatten class $\mathcal{B}_{p}(H), 1 \leq p<\infty$ if the p-Schatten norm is finite [16, p. 60-64]

$$
\left.\|A\|_{p}:=\left[\operatorname{tr}\left(|A|^{p}\right)\right]^{1 / p}=\left(\left.\sum_{i \in I}\langle | A\right|^{p} e_{i}, e_{i}\right\rangle\right)^{1 / p}<\infty
$$

For $1<p<q<\infty$ we have that

$$
\begin{equation*}
\mathcal{B}_{1}(H) \subset \mathcal{B}_{p}(H) \subset \mathcal{B}_{q}(H) \subset \mathcal{B}(H) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A\|_{1} \geq\|A\|_{p} \geq\|A\|_{q} \geq\|A\| \tag{4.6}
\end{equation*}
$$

For $p \geq 1$ the functional $\|\cdot\|_{p}$ is a norm on the $*$-ideal $\mathcal{B}_{p}(H)$ and $\left(\mathcal{B}_{p}(H),\|\cdot\|_{p}\right)$ is a Banach space.

Also, see for instance [16, p. 60-64],

$$
\begin{gather*}
\|A\|_{p}=\left\|A^{*}\right\|_{p}, A \in \mathcal{B}_{p}(H) \tag{4.7}\\
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p}, A, B \in \mathcal{B}_{p}(H) \tag{4.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|, \quad\|B A\|_{p} \leq\|B\|\|A\|_{p}, A \in \mathcal{B}_{p}(H), B \in \mathcal{B}(H) \tag{4.9}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\|C A B\|_{p} \leq\|C\|\|A\|_{p}\|B\|, \quad A \in \mathcal{B}_{p}(H), B, C \in \mathcal{B}(H) \tag{4.10}
\end{equation*}
$$

In terms of p-Schatten norm we have the Hölder inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$

$$
\begin{equation*}
(|\operatorname{tr}(A B)| \leq)\|A B\|_{1} \leq\|A\|_{p}\|B\|_{q}, A \in \mathcal{B}_{p}(H), B \in \mathcal{B}_{q}(H) \tag{4.11}
\end{equation*}
$$

For the theory of trace functionals and their applications the reader is referred to [14] and [16].

For $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H we define for $A \in \mathcal{B}_{p}(H), p \geq 1$

$$
\|A\|_{\mathcal{E}, p}:=\left(\sum_{i \in I}\left|\left\langle A e_{i}, e_{i}\right\rangle\right|^{p}\right)^{1 / p}
$$

We observe that $\|\cdot\|_{\mathcal{E}, p}$ is a norm on $\mathcal{B}_{p}(H)$ and $\|A\|_{\mathcal{E}, p} \leq\|A\|_{p}$ for $A \in \mathcal{B}_{p}(H)$.
Proposition 3. Assume that f and g are non-negative functions on $[0, \infty)$ that are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let T, V be operators in $\mathcal{B}(H)$ such that $|T| V=V^{*}|T|$, then for $A, B \in \mathcal{B}(H)$ with $|f(|T|) A|^{2 p r},\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} \in \mathcal{B}_{1}(H)$ for $p, q>1, \frac{1}{p}+\frac{1}{q}=1, r>0$ and $p r$, $q r \geq 1$, we have

$$
\begin{equation*}
\|B T V A\|_{\mathcal{E}, 2 r}^{2 r} \leq r^{2 r}(V) \operatorname{tr}\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] \tag{4.12}
\end{equation*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, pr, $q r \geq 2$, and $|f(|T|) A|^{2 p r},\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r} \in$ $\mathcal{B}_{1}(H)$ while $\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} \in \mathcal{B}_{1}(H)$, then

$$
\begin{align*}
\|B T V A\|_{\mathcal{E}, 2 r}^{2 r} & \leq \frac{1}{2} r^{2 r}(V)\left[\operatorname{tr}\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right)\right. \tag{4.13}\\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|_{\mathcal{E}, r}^{r}\right] \\
& \leq \frac{1}{2} r^{2 r}(V)\left[\operatorname{tr}\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right)\right. \\
& \left.+\left\|\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2}\right\|_{r}^{r}\right]
\end{align*}
$$

Proof. If $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H, then by (2.3) for $y=x=e_{i}, i \in I$, we get

$$
\begin{aligned}
& \left|\left\langle B T V A e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq r^{2 r}(V)\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] e_{i}, e_{i}\right\rangle
\end{aligned}
$$

for $i \in I$.

If we sum over $i \in I$, then we get

$$
\begin{aligned}
& \sum_{i \in I}\left|\left\langle B T V A e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq r^{2 r}(V) \sum_{i \in I}\left\langle\left[\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right] e_{i}, e_{i}\right\rangle,
\end{aligned}
$$

which proves (4.12).
If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then by (2.5) we get

$$
\begin{aligned}
& \left|\left\langle B T V A e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq \frac{1}{2} r^{2 r}(V)\left(\left\langle\left(\frac{1}{p}|f(|T|) A|^{2 p r}+\frac{1}{q}\left|g\left(\left|T^{*}\right|\right) B^{*}\right|^{2 q r}\right) e_{i}, e_{i}\right\rangle\right. \\
& \left.\left.+\left.\langle | g\left(\left|T^{*}\right|\right) B^{*}\right|^{2}|f(|T|) A|^{2} e_{i}, e_{i}\right\rangle^{r}\right)
\end{aligned}
$$

for $i \in I$.
If we sum over $i \in I$, then we get the first part of (4.13). The second part is obvious.

Corollary 5. Assume that f and g are non-negative functions on $[0, \infty)$ that are continuous and satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Let $X, A, B \in$ $\mathcal{B}(H)$ and $\alpha, \beta \geq 0$ with $\alpha+\beta \geq 1$, if $\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r},\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r} \in \mathcal{B}_{1}(H)$ with $p, q>1, \frac{1}{p}+\frac{1}{q}=1, r>0$ and $p r, q r \geq 1$, then we have $B X|X|^{\alpha+\beta-1} A \in$ $\mathcal{B}_{1}(H)$ and

$$
\begin{align*}
& \left\|B X|X|^{\alpha+\beta-1} A\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{4.14}\\
& \leq\|X\|^{2 \beta r} \operatorname{tr}\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right]
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

$$
\begin{align*}
& \left\|B X|X|^{\alpha+\beta-1} A\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{4.15}\\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\operatorname{tr}\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right]\right. \\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right\|_{\mathcal{E}, r}^{r}\right) \\
& \leq \frac{1}{2}\|X\|^{2 \beta r}\left(\operatorname{tr}\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right]\right. \\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right\|_{r}^{r}\right)
\end{align*}
$$

We notice that, if we take $\beta=1-\alpha$ in Corollary 5 , then we get

$$
\begin{equation*}
\|B X A\|_{\mathcal{E}, 2 r}^{2 r} \leq\|X\|^{2(1-\alpha) r} \operatorname{tr}\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right] \tag{4.16}
\end{equation*}
$$

and

$$
\begin{align*}
& \|B X A\|_{\mathcal{E}, 2 r}^{2 r} \tag{4.17}\\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\operatorname{tr}\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right]\right. \\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right\|_{\mathcal{E}, r}^{r}\right) \\
& \leq \frac{1}{2}\|X\|^{2(1-\alpha) r}\left(\operatorname{tr}\left[\frac{1}{p}\left|f\left(|X|^{\alpha}\right) A\right|^{2 p r}+\frac{1}{q}\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2 q r}\right]\right. \\
& \left.+\left\|\left|g\left(\left|X^{*}\right|^{\alpha}\right) B^{*}\right|^{2}\left|f\left(|X|^{\alpha}\right) A\right|^{2}\right\|_{r}^{r}\right) .
\end{align*}
$$

Corollary 6. Let T, V be operators in $\mathcal{B}(H)$ such that $|T| V=V^{*}|T|$ and $\lambda \in$ $[0,1]$, then for $A, B \in \mathcal{B}(H)$ with $\left||T|^{\lambda} A\right|^{2 p r},\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r} \in \mathcal{B}_{1}(H)$ for $p, q>1$, $\frac{1}{p}+\frac{1}{q}=1, r>0$ and $p r, q r \geq 1$, we have

$$
\begin{equation*}
\|B T V A\|_{\mathcal{E}, 2 r}^{2 r} \leq r^{2 r}(V) \operatorname{tr}\left[\left.\left.\frac{1}{p}| | T\right|^{\lambda} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r}\right] \tag{4.18}
\end{equation*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, pr, $q r \geq 2$, and $\left||T|^{\lambda} A\right|^{2 p r},\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2 q r} \in$ $\mathcal{B}_{1}(H)$ while $\left.\left.\left|\left|T^{*}\right|^{1-\lambda} B^{*}\right|^{2}| | T\right|^{\lambda} A\right|^{2} \in \mathcal{B}_{1}(H)$, then

Finally, by Corollary 5 we get for $X, A, B \in \mathcal{B}(H)$ and $\lambda \in[0,1], \alpha, \beta \geq 0$ with $\alpha+\beta \geq 1$, and if $\left||X|^{\lambda \alpha} A\right|^{2 p r},\left|\left|X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r} \in \mathcal{B}_{1}(H)$ for $p, q>1, \frac{1}{p}+\frac{1}{q}=1$, $r>0$ and $p r, q r \geq 1$, then we have $B X|X|^{\alpha+\beta-1} A \in \mathcal{B}_{1}(H)$ and

$$
\begin{align*}
& \left\|B X|X|^{\alpha+\beta-1} A\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{4.20}\\
& \leq\|X\|^{2 \beta r} \operatorname{tr}\left[\left.\left.\frac{1}{p}| | X\right|^{\lambda \alpha} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r}\right] .
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$, then also

Moreover, if we take in (4.20) and (4.21) $\beta=1-\alpha$, then we get

$$
\begin{equation*}
\|B X A\|_{\mathcal{E}, 2 r}^{2 r} \leq\|X\|^{2(1-\alpha) r} \operatorname{tr}\left[\left.\left.\frac{1}{p}| | X\right|^{\lambda \alpha} A\right|^{2 p r}+\left.\left.\frac{1}{q}| | X^{*}\right|^{(1-\lambda) \alpha} B^{*}\right|^{2 q r}\right] \tag{4.22}
\end{equation*}
$$

and

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia , S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
[6] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[9] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212.
[10] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
[11] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[12] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
[13] C. A. McCarthy, C_{p}, Israel J. Math. 5 (1967), 249-271.
[14] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
[15] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), No. 1, 83-89.
[16] V. A. Zagrebnov, Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkhäuser, 2019
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Vector inequality, Bounded operators, Aluthge transform, Dougal transform, Partial isometry, Numerical radius, p-Schatten norm.

