p-SCHATTEN NORM INEQUALITIES FOR OPERATORS IN hilbert spaces via a kittaneh result

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } H \text { be a complex Hilbert space and } r \geq 1 / 2, p, q>1 \text { with } \\
& \frac{1}{p}+\frac{1}{q}=1 \text { and } p r, q r \geq 1 \text {. If } S, V, D, E \in \mathcal{B}(H) \text { with } S^{*} D \in \mathcal{B}_{2 p r}(H) \text { and } \\
& V E \in \mathcal{B}_{2 q r}(H), \text { then } D^{*} S V E \in \mathcal{B}_{2 r}(H) \text { and } \\
& \left\|D^{*} S V E\right\|_{2 r} \leq\left\|S^{*} D\right\|_{2 p r}\|V E\|_{2 q r}
\end{aligned}
$$

where $\|\cdot\|_{s}$ is the s-Schatten norm for $s \geq 1$. Some examples concerning the generalized Aluthge transform are also provided.

1. Introduction

Let $(H ;\langle.,\rangle$.$) be a complex Hilbert space and \mathcal{B}(H)$ the Banach algebra of all bounded linear operators on H. If $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is of trace class if

$$
\begin{equation*}
\|A\|_{1}:=\sum_{i \in I}\langle | A\left|e_{i}, e_{i}\right\rangle<\infty . \tag{1.1}
\end{equation*}
$$

The definition of $\|A\|_{1}$ does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$. We denote by $\mathcal{B}_{1}(H)$ the set of trace class operators in $\mathcal{B}(H)$.

We define the trace of a trace class operator $A \in \mathcal{B}_{1}(H)$ to be

$$
\begin{equation*}
\operatorname{tr}(A):=\sum_{i \in I}\left\langle A e_{i}, e_{i}\right\rangle, \tag{1.2}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.2) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:
Theorem 1. We have:
(i) If $A \in \mathcal{B}_{1}(H)$ then $A^{*} \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}\left(A^{*}\right)=\overline{\operatorname{tr}(A)} \tag{1.3}
\end{equation*}
$$

(ii) If $A \in \mathcal{B}_{1}(H)$ and $T \in \mathcal{B}(H)$, then $A T$, $T A \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}(A T)=\operatorname{tr}(T A) \text { and }|\operatorname{tr}(A T)| \leq\|A\|_{1}\|T\| \tag{1.4}
\end{equation*}
$$

(iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_{1}(H)$ with $\|\operatorname{tr}\|=1$;
(iv) If $A, B \in \mathcal{B}_{2}(H)$ then $A B, B A \in \mathcal{B}_{1}(H)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(v) $\mathcal{B}_{\text {fin }}(H)$, the space of operators of finite rank, is a dense subspace of $\mathcal{B}_{1}(H)$.

[^0]An operator $A \in \mathcal{B}(H)$ is said to belong to the von Neumann-Schatten class $\mathcal{B}_{p}(H), 1 \leq p<\infty$ if the p-Schatten norm is finite [16, p. 60-64]

$$
\left.\|A\|_{p}:=\left[\operatorname{tr}\left(|A|^{p}\right)\right]^{1 / p}=\left(\left.\sum_{i \in I}\langle | A\right|^{p} e_{i}, e_{i}\right\rangle\right)^{1 / p}<\infty
$$

For $1<p<q<\infty$ we have that

$$
\begin{equation*}
\mathcal{B}_{1}(H) \subset \mathcal{B}_{p}(H) \subset \mathcal{B}_{q}(H) \subset \mathcal{B}(H) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A\|_{1} \geq\|A\|_{p} \geq\|A\|_{q} \geq\|A\| \tag{1.6}
\end{equation*}
$$

For $p \geq 1$ the functional $\|\cdot\|_{p}$ is a norm on the $*$-ideal $\mathcal{B}_{p}(H)$ and $\left(\mathcal{B}_{p}(H),\|\cdot\|_{p}\right)$ is a Banach space.

Also, see for instance [16, p. 60-64],

$$
\begin{gather*}
\|A\|_{p}=\left\|A^{*}\right\|_{p}, A \in \mathcal{B}_{p}(H) \tag{1.7}\\
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p}, A, B \in \mathcal{B}_{p}(H) \tag{1.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|, \quad\|B A\|_{p} \leq\|B\|\|A\|_{p}, A \in \mathcal{B}_{p}(H), B \in \mathcal{B}(H) \tag{1.9}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\|C A B\|_{p} \leq\|C\|\|A\|_{p}\|B\|, A \in \mathcal{B}_{p}(H), B, C \in \mathcal{B}(H) \tag{1.10}
\end{equation*}
$$

In terms of p-Schatten norm we have the Hölder inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$

$$
\begin{equation*}
(|\operatorname{tr}(A B)| \leq)\|A B\|_{1} \leq\|A\|_{p}\|B\|_{q}, \quad A \in \mathcal{B}_{p}(H), B \in \mathcal{B}_{q}(H) \tag{1.11}
\end{equation*}
$$

For the theory of trace functionals and their applications the reader is referred to [14] and [16].

For $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H we define for $A \in \mathcal{B}_{p}(H), p \geq 1$

$$
\|A\|_{\mathcal{E}, p}:=\left(\sum_{i \in I}\left|\left\langle A e_{i}, e_{i}\right\rangle\right|^{p}\right)^{1 / p}
$$

We observe that $\|\cdot\|_{\mathcal{E}, p}$ is a norm on $\mathcal{B}_{p}(H)$ and

$$
\|A\|_{\mathcal{E}, p} \leq\|A\|_{p} \text { for } A \in \mathcal{B}_{p}(H)
$$

It is known that, if $\mathcal{E}=\left\{e_{i}\right\}_{i \in I}$ and $\mathcal{F}=\left\{f_{i}\right\}_{i \in I}$ are orthonormal basis, then [15]

$$
\begin{equation*}
\sup _{\mathcal{E}, \mathcal{F}} \sum_{i \in I}\left|\left\langle T e_{i}, f_{i}\right\rangle\right|^{s}=\|T\|_{s}^{s} \text { for } s \geq 1 \tag{1.12}
\end{equation*}
$$

The following result for operator matrices was obtained by F. Kittaneh in [10]:
Lemma 1. Let $A, B, C \in \mathcal{B}(H)$ with $A, B \geq 0$. Then the operator matrix

$$
\left[\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive, if and only if

$$
\begin{equation*}
|\langle C x, y\rangle|^{2} \leq\langle A x, x\rangle\langle B y, y\rangle \tag{1.13}
\end{equation*}
$$

for all $x, y \in H$.
In [10] the author obtained among others that, if A, B, C satisfy the assumptions in Lemma 1 and $A \in \mathcal{B}_{p}(H), B \in \mathcal{B}_{q}(H)$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ with $p, q \geq 1$, then $C \in \mathcal{B}_{2 r}(H)$ and

$$
\|C\|_{2 r}^{2} \leq\|A\|_{p}\|B\|_{q}
$$

In particular, if $A, B \in \mathcal{B}_{p}(H)$, then $C \in \mathcal{B}_{p}(H)$ and

$$
\|C\|_{p}^{2} \leq\|A\|_{p}\|B\|_{p}
$$

Motivated by the above results, in this paper we show among others that, if $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$ and if $S, V, D, E \in \mathcal{B}(H)$ with $S^{*} D \in \mathcal{B}_{2 p r}(H)$ and $V E \in \mathcal{B}_{2 q r}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\left\|D^{*} S V E\right\|_{2 r} \leq\left\|S^{*} D\right\|_{2 p r}\|V E\|_{2 q r}
$$

Some examples concerning the generalized Aluthge transform are also provided.

2. Main Results

The following vector inequality for positive operators $A \geq 0$, obtained by C. A. McCarthy in [13] is well known,

$$
\langle A x, x\rangle^{p} \leq\left\langle A^{p} x, x\right\rangle, p \geq 1
$$

for $x \in H,\|x\|=1$.
Buzano's inequality [5],

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle x, e\rangle\langle e, y\rangle| \tag{2.1}
\end{equation*}
$$

that holds for any $x, y, e \in H$ with $\|e\|=1$ will also be used in the sequel.
Our first main result is as follows:
Theorem 2. Let $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$. If A, B, C satisfy the assumptions of Lemma $1, D, E \in \mathcal{B}(H)$ with $D^{*} A D \in \mathcal{B}_{p r}(H)$ and $E^{*} B E \in \mathcal{B}_{q r}(H)$, then $D^{*} C D \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{2 r}^{2} \leq\left\|D^{*} A D\right\|_{p r}\left\|E^{*} B E\right\|_{q r} \tag{2.2}
\end{equation*}
$$

Proof. From (1.13), by taking instead of $x, D x$ and instead of $y, E y$, then we get

$$
|\langle C D x, E y\rangle|^{2} \leq\langle A D x, D x\rangle\langle B E y, E y\rangle
$$

for all $x, y \in H$.
This is equivalent to

$$
\begin{equation*}
\left|\left\langle E^{*} C D x, y\right\rangle\right|^{2} \leq\left\langle D^{*} A D x, x\right\rangle\left\langle E^{*} B E y, y\right\rangle \tag{2.3}
\end{equation*}
$$

for all $x, y \in H$.
If we take the power $r>0$ and $x=e_{i}, y=f_{i}$ where $\left\{e_{i}\right\}_{i \in I}$ and $\left\{f_{i}\right\}_{i \in I}$ are orthonormal basis and sum, then we get

$$
\begin{equation*}
\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, f_{i}\right\rangle\right|^{2 r} \leq \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{r} \tag{2.4}
\end{equation*}
$$

If we use the Hölder's inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then we get

$$
\begin{align*}
& \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{r} \tag{2.5}\\
& \leq\left(\sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{p r}\right)^{1 / p}\left(\sum_{i \in I}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{q r}\right)^{1 / q}
\end{align*}
$$

By the McCarthy inequality for $p r, q r \geq 1$, we have

$$
\sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{p r} \leq \sum_{i \in I}\left\langle\left(D^{*} A D\right)^{p r} e_{i}, e_{i}\right\rangle
$$

and

$$
\sum_{i \in I}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{q r} \leq \sum_{i \in I}\left\langle\left(E^{*} B E\right)^{q r} f_{i}, f_{i}\right\rangle
$$

therefore

$$
\begin{aligned}
& \left(\sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{p r}\right)^{1 / p}\left(\sum_{i \in I}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{q r}\right)^{1 / q} \\
& \leq\left(\sum_{i \in I}\left\langle\left(D^{*} A D\right)^{p r} e_{i}, e_{i}\right\rangle\right)^{1 / p}\left(\sum_{i \in I}\left\langle\left(E^{*} B E\right)^{q r} f_{i}, f_{i}\right\rangle\right)^{1 / q} \\
& =\left(\left\|D^{*} A D\right\|_{p r}^{p r}\right)^{1 / p}\left(\left\|E^{*} B E\right\|_{q r}^{q r}\right)^{1 / q}=\left\|D^{*} A D\right\|_{p r}^{r}\left\|E^{*} B E\right\|_{q r}^{r}
\end{aligned}
$$

By (2.4) and (2.5) we derive

$$
\begin{equation*}
\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, f_{i}\right\rangle\right|^{2 r} \leq\left\|D^{*} A D\right\|_{p r}^{r}\left\|E^{*} B E\right\|_{q r}^{r} \tag{2.6}
\end{equation*}
$$

Now, if we take the supremum over \mathcal{E} and \mathcal{F} in (2.6), then by (1.12) we get

$$
\left\|E^{*} C D\right\|_{2 r}^{2 r} \leq\left\|D^{*} A D\right\|_{p r}^{r}\left\|E^{*} B E\right\|_{q r}^{r}
$$

and the inequality (2.2) is thus proved.
Remark 1. If we take $r=1 / 2$ and $p=q=2$, then by (2.2) we get

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{1}^{2} \leq\left\|D^{*} A D\right\|_{1}\left\|E^{*} B E\right\|_{1} \tag{2.7}
\end{equation*}
$$

provided that $D^{*} A D, E^{*} B E \in \mathcal{B}_{1}(H)$.
Also, if $r=1$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by (2.2) we get

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{2}^{2} \leq\left\|D^{*} A D\right\|_{p}\left\|E^{*} B E\right\|_{q} \tag{2.8}
\end{equation*}
$$

provided that $D^{*} A D \in \mathcal{B}_{p}(H), E^{*} B E \in \mathcal{B}_{q}(H)$.
Corollary 1. Let $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$. If S, V, D, $E \in \mathcal{B}(H)$ with $S^{*} D \in \mathcal{B}_{2 p r}(H)$ and $V E \in \mathcal{B}_{2 q r}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|D^{*} S V E\right\|_{2 r} \leq\left\|S^{*} D\right\|_{2 p r}\|V E\|_{2 q r} \tag{2.9}
\end{equation*}
$$

Proof. Observe that the operator matrix

$$
\left[\begin{array}{cc}
S S^{*} & S V \\
V^{*} S^{*} & V^{*} V
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive. Then by (2.2) for $A=\left|S^{*}\right|^{2}, B=|V|^{2}$ and $C=V^{*} S^{*}$ we get

$$
\begin{equation*}
\left\|E^{*} V^{*} S^{*} D\right\|_{2 r}^{2} \leq\left\|D^{*} S S^{*} D\right\|_{p r}\left\|E^{*} V^{*} V E\right\|_{q r} \tag{2.10}
\end{equation*}
$$

Now, observe that

$$
\begin{gathered}
\left\|E^{*} V^{*} S^{*} D\right\|_{2 r}^{2}=\left\|\left(E^{*} V^{*} S^{*} D\right)^{*}\right\|_{2 r}^{2}=\left\|D^{*} S V E\right\|_{2 r}^{2} \\
\left\|D^{*} S S^{*} D\right\|_{p r}=\left\|\left|S^{*} D\right|^{2}\right\|_{p r}=\left\|S^{*} D\right\|_{2 p r}^{2}
\end{gathered}
$$

and

$$
\left\|E^{*} V^{*} V E\right\|_{q r}=\left\||V E|^{2}\right\|_{q r}=\|V E\|_{2 q r}^{2}
$$

and by (2.10) we get (2.9).
Remark 2. If $r=1$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by (2.2) we get

$$
\begin{equation*}
\left\|D^{*} S V E\right\|_{2} \leq\left\|S^{*} D\right\|_{2 p}\|V E\|_{2 q} \tag{2.11}
\end{equation*}
$$

provided that $S^{*} D \in \mathcal{B}_{2 p}(H), V E \in \mathcal{B}_{2 q}(H)$.
We also have:
Theorem 3. Let $r \geq 1 / 2, p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. If A, B, C satisfy the assumptions of Lemma 1, $D, E \in \mathcal{B}(H)$ with $D^{*} A D \in \mathcal{B}_{p}(H)$ and $E^{*} B E \in$ $\mathcal{B}_{q}(H)$, then $D^{*} C D \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{2 r}^{2} \leq\left\|D^{*} A D\right\|_{p}\left\|E^{*} B E\right\|_{q} \tag{2.12}
\end{equation*}
$$

Proof. Observe that we have $\frac{1}{\frac{p}{r}}+\frac{1}{\frac{q}{r}}=1$ and by Hölder's inequality for $\frac{p}{r}$ and $\frac{q}{r}$ we have

$$
\begin{align*}
& \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{r} \tag{2.13}\\
& =\sum_{i \in I}\left[\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{p}\right]^{\frac{r}{p}}\left[\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{q}\right]^{\frac{r}{q}} \\
& \leq\left(\sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{p}\right)^{r / p}\left(\sum_{i \in I}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{q}\right)^{r / q}
\end{align*}
$$

By McCarthy inequality for $p, q>1$ we get

$$
\sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{p} \leq \sum_{i \in I}\left\langle\left(D^{*} A D\right)^{p} e_{i}, e_{i}\right\rangle
$$

and

$$
\sum_{i \in I}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{q} \leq \sum_{i \in I}\left\langle\left(E^{*} B E\right)^{q} f_{i}, f_{i}\right\rangle
$$

and by (2.13) we obtain

$$
\begin{align*}
& \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\left\langle E^{*} B E f_{i}, f_{i}\right\rangle^{r} \tag{2.14}\\
& \leq\left(\sum_{i \in I}\left\langle\left(D^{*} A D\right)^{p} e_{i}, e_{i}\right\rangle\right)^{r / p}\left(\sum_{i \in I}\left\langle\left(E^{*} B E\right)^{q} f_{i}, f_{i}\right\rangle\right)^{r / q} \\
& =\left\|D^{*} A D\right\|_{p}^{r}\left\|E^{*} B E\right\|_{q}^{r}
\end{align*}
$$

By (2.4) and (2.14) we derive

$$
\begin{equation*}
\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, f_{i}\right\rangle\right|^{2 r} \leq\left\|D^{*} A D\right\|_{p}^{r}\left\|E^{*} B E\right\|_{q}^{r} . \tag{2.15}
\end{equation*}
$$

Now, if we take the supremum over \mathcal{E} and \mathcal{F} in (2.15) we get

$$
\left\|E^{*} C D\right\|_{2 r}^{2 r} \leq\left\|D^{*} A D\right\|_{p}^{r}\left\|E^{*} B E\right\|_{q}^{r}
$$

and the inequality (2.12) is thus proved.
Remark 3. If we take $p=q=2 r=s \geq 1$, then by (2.12) we get

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{s}^{2} \leq\left\|D^{*} A D\right\|_{s}\left\|E^{*} B E\right\|_{s} \tag{2.16}
\end{equation*}
$$

provided that $D^{*} A D, E^{*} B E \in \mathcal{B}_{s}(H)$.
If $r=2$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{2}$, then

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{4}^{2} \leq\left\|D^{*} A D\right\|_{p}\left\|E^{*} B E\right\|_{q} \tag{2.17}
\end{equation*}
$$

provided that $D^{*} A D \in \mathcal{B}_{p}(H)$ and $E^{*} B E \in \mathcal{B}_{q}(H)$.
We also notice that if we take $D=E=I$ in Theorem 3, then we recapture the result from Corollary 4 in [10].

Also, we have:
Corollary 2. Let $r \geq 1 / 2, p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. If $S, V, D, E \in \mathcal{B}(H)$ with $S^{*} D \in \mathcal{B}_{2 p}(H)$ and $V E \in \mathcal{B}_{2 q}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|D^{*} S V E\right\|_{2 r} \leq\left\|S^{*} D\right\|_{2 p}\|V E\|_{2 q} \tag{2.18}
\end{equation*}
$$

The proof follows by Theorem 3 by taking $A=\left|S^{*}\right|^{2}, B=|V|^{2}$ and $C=V^{*} S^{*}$.
Theorem 4. Assume that A, B, C satisfy the assumptions of Lemma 1 and $\mathcal{E}=$ $\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis. If $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, pr, $q r \geq 1$ and $\left(D^{*} A D\right)^{p r},\left(E^{*} B E\right)^{q r} \in \mathcal{B}_{1}(H)$, then $E^{*} C D \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} \leq \operatorname{tr}\left(\frac{1}{p}\left(D^{*} A D\right)^{p r}+\frac{1}{q}\left(E^{*} B E\right)^{q r}\right) \tag{2.19}
\end{equation*}
$$

If $r \geq 1$ and $D^{*} A D, E^{*} B E \in \mathcal{B}_{2 r}(H), E^{*} B E D^{*} A D \in \mathcal{B}_{r}(H)$, then $E^{*} C D \in$ $\mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq \frac{1}{2}\left(\left\|D^{*} A D\right\|_{2 r}^{r}\left\|E^{*} B E\right\|_{2 r}^{r}+\left\|E^{*} B E D^{*} A D\right\|_{\mathcal{E}, r}^{r}\right) \tag{2.20}\\
& \leq \frac{1}{2}\left(\left\|D^{*} A D\right\|_{2 r}^{r}\left\|E^{*} B E\right\|_{2 r}^{r}+\left\|E^{*} B E D^{*} A D\right\|_{r}^{r}\right)
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1, p r, q r \geq 2$ and $\left|D^{*} A D\right|^{p},\left|E^{*} B E\right|^{q} \in \mathcal{B}_{r}(H)$, $E^{*} B E D^{*} A D \in \mathcal{B}_{r}(H)$ then $E^{*} C D \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
& \left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.21}\\
& \leq \frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left|D^{*} A D\right|^{p r}+\frac{1}{q}\left|E^{*} B E\right|^{q r}\right)+\left\|E^{*} B E D^{*} A D\right\|_{\mathcal{E}, r}^{r}\right] \\
& \leq \frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left|D^{*} A D\right|^{p r}+\frac{1}{q}\left|E^{*} B E\right|^{q r}\right)+\left\|E^{*} B E D^{*} A D\right\|_{r}^{r}\right]
\end{align*}
$$

Proof. Let $x \in H$ with $\|x\|=1$. Then by Lemma 1 we get

$$
\begin{equation*}
\left|\left\langle E^{*} C D x, x\right\rangle\right|^{2} \leq\left\langle D^{*} A D x, x\right\rangle\left\langle E^{*} B E x, x\right\rangle \tag{2.22}
\end{equation*}
$$

If we take the power $r>0$, we get, by Young and McCarthy inequalities, that

$$
\begin{aligned}
\left|\left\langle E^{*} C D x, x\right\rangle\right|^{2 r} & \leq\left\langle D^{*} A D x, x\right\rangle^{r}\left\langle E^{*} B E x, x\right\rangle^{r} \\
& \leq \frac{1}{p}\left\langle D^{*} A D x, x\right\rangle^{p r}+\frac{1}{q}\left\langle E^{*} B E x, x\right\rangle^{q r} \\
& \leq \frac{1}{p}\left\langle\left(D^{*} A D\right)^{p r} x, x\right\rangle+\frac{1}{q}\left\langle\left(E^{*} B E\right)^{q r} x, x\right\rangle \\
& =\left\langle\left(\frac{1}{p}\left(D^{*} A D\right)^{p r}+\frac{1}{q}\left(E^{*} B E\right)^{q r}\right) x, x\right\rangle
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.
If $\mathcal{E}=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis, then by taking $x=e_{i}$ and summing over $i \in I$ we get

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq \sum_{i \in I}\left\langle\left(\frac{1}{p}\left(D^{*} A D\right)^{p r}+\frac{1}{q}\left(E^{*} B E\right)^{q r}\right) e_{i}, e_{i}\right\rangle \\
& =\operatorname{tr}\left(\frac{1}{p}\left(D^{*} A D\right)^{p r}+\frac{1}{q}\left(E^{*} B E\right)^{q r}\right)
\end{aligned}
$$

which proves (2.19).
By Buzano's inequality we have

$$
\begin{aligned}
& \left\langle D^{*} A D x, x\right\rangle\left\langle E^{*} B E x, x\right\rangle \\
& \leq \frac{1}{2}\left[\left\|D^{*} A D x\right\|\left\|E^{*} B E x\right\|+\left|\left\langle D^{*} A D x, E^{*} B E x\right\rangle\right|\right] \\
& =\frac{1}{2}\left[\left\|D^{*} A D x\right\|\left\|E^{*} B E x\right\|+\left|\left\langle E^{*} B E D^{*} A D x, x\right\rangle\right|\right]
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.
If we take the power $r \geq 1$ and use the convexity of power function, then we get

$$
\begin{aligned}
& \left\langle D^{*} A D x, x\right\rangle^{r}\left\langle E^{*} B E x, x\right\rangle^{r} \\
& \leq\left(\frac{\left\|D^{*} A D x\right\|\left\|E^{*} B E x\right\|+\left|\left\langle E^{*} B E D^{*} A D x, x\right\rangle\right|}{2}\right)^{r} \\
& \leq \frac{\left\|D^{*} A D x\right\|^{r}\left\|E^{*} B E x\right\|^{r}+\left|\left\langle E^{*} B E D^{*} A D x, x\right\rangle\right|^{r}}{2} \\
& =\frac{\left\|D^{*} A D x\right\|^{2 \frac{r}{2}}\left\|E^{*} B E x\right\|^{2 \frac{r}{2}}+\left|\left\langle E^{*} B E D^{*} A D x, x\right\rangle\right|^{r}}{2} \\
& =\frac{\left.\left.\left.\langle | D^{*} A D\right|^{2} x, x\right\rangle\left.^{\frac{r}{2}}\langle | E^{*} B E\right|^{2} x, x\right\rangle^{\frac{r}{2}}+\left|\left\langle E^{*} B E D^{*} A D x, x\right\rangle\right|^{r}}{2}
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.

Therefore

$$
\begin{align*}
& \left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.23}\\
& =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \leq \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r} \\
& \left.\left.\leq\left.\frac{1}{2} \sum_{i \in I}\left[\left.\langle | D^{*} A D\right|^{2} e_{i}, e_{i}\right\rangle^{\frac{r}{2}}\langle | E^{*} B E\right|^{2} e_{i}, e_{i}\right\rangle^{\frac{r}{2}}+\left|\left\langle E^{*} B E D^{*} A D e_{i}, e_{i}\right\rangle\right|^{r}\right]
\end{align*}
$$

Using Cauchy-Schwarz inequality we have

$$
\begin{aligned}
& \left.\left.\left.\sum_{i \in I}\langle | D^{*} A D\right|^{2} e_{i}, e_{i}\right\rangle\left.^{\frac{r}{2}}\langle | E^{*} B E\right|^{2} e_{i}, e_{i}\right\rangle^{\frac{r}{2}} \\
& \left.\left.\leq\left(\left.\sum_{i \in I}\langle | D^{*} A D\right|^{2} e_{i}, e_{i}\right\rangle^{r}\right)^{1 / 2}\left(\left.\sum_{i \in I}\langle | E^{*} B E\right|^{2} e_{i}, e_{i}\right\rangle^{r}\right)^{1 / 2} \\
& \left.\left.\leq\left(\left.\sum_{i \in I}\langle | D^{*} A D\right|^{2 r} e_{i}, e_{i}\right\rangle\right)^{1 / 2}\left(\left.\sum_{i \in I}\langle | E^{*} B E\right|^{2 r} e_{i}, e_{i}\right\rangle\right)^{1 / 2} \\
& =\left\|D^{*} A D\right\|_{2 r}^{r}\left\|E^{*} B E\right\|_{2 r}^{r}
\end{aligned}
$$

where for the last inequality we used McCarthy's result for $r \geq 1$.
Therefore by (2.23) we derive the first part of (2.20). The second part is obvious.
Further, if we use Young's inequality

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q}, a, b \geq 0
$$

then we get

$$
\begin{aligned}
\left\|D^{*} A D x\right\|^{r}\left\|E^{*} B E x\right\|^{r} & \leq \frac{1}{p}\left\|D^{*} A D x\right\|^{r p}+\frac{1}{q}\left\|E^{*} B E x\right\|^{r q} \\
& =\frac{1}{p}\left\|D^{*} A D x\right\|^{2 \frac{r p}{2}}+\frac{1}{q}\left\|E^{*} B E x\right\|^{2 \frac{r q}{2}} \\
& \left.\left.=\left.\frac{1}{p}\langle | D^{*} A D\right|^{2} x, x\right\rangle^{\frac{r p}{2}}+\left.\frac{1}{q}\langle | E^{*} B E\right|^{2} x, x\right\rangle^{\frac{r q}{2}} \\
& \left.\left.\leq\left.\frac{1}{p}\langle | D^{*} A D\right|^{r p} x, x\right\rangle+\left.\frac{1}{q}\langle | E^{*} B E\right|^{r q} x, x\right\rangle \\
& =\left\langle\left(\frac{1}{p}\left|D^{*} A D\right|^{r p}+\frac{1}{q}\left|E^{*} B E\right|^{r q}\right) x, x\right\rangle
\end{aligned}
$$

for $x \in H$ with $\|x\|=1$.

Therefore

$$
\begin{aligned}
& \left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} \\
& =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \leq \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r} \\
& \leq \frac{1}{2}\left[\sum_{i \in I}\left\|D^{*} A D e_{i}\right\|^{r}\left\|E^{*} B E e_{i}\right\|^{r}+\sum_{i \in I}\left|\left\langle E^{*} B E D^{*} A D e_{i}, e_{i}\right\rangle\right|^{r}\right] \\
& \leq \frac{1}{2} \sum_{i \in I}\left\langle\left(\frac{1}{p}\left|D^{*} A D\right|^{r p}+\frac{1}{q}\left|E^{*} B E\right|^{r q}\right) e_{i}, e_{i}\right\rangle \\
& +\frac{1}{2} \sum_{i \in I}\left|\left\langle E^{*} B E D^{*} A D e_{i}, e_{i}\right\rangle\right|^{r} \\
& =\frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left|D^{*} A D\right|^{r p}+\frac{1}{q}\left|E^{*} B E\right|^{r q}\right)+\left\|E^{*} B E D^{*} A D\right\|_{\mathcal{E}, r}^{r}\right]
\end{aligned}
$$

which proves the first part of (2.21). The second part is obvious.
The following corollary is a natural consequence to consider and follows by Theorem 4 for $A=S S^{*}, B=V^{*} V$ and $C=V^{*} S^{*}$.

Corollary 3. Let $S, V, D, E \in \mathcal{B}(H)$ and $\mathcal{E}=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis. If $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, pr, qr ≥ 1 and $\left|S^{*} D\right|^{2 p r},|V E|^{2 q r} \in \mathcal{B}_{1}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \leq \operatorname{tr}\left(\frac{1}{p}\left|S^{*} D\right|^{2 p r}+\frac{1}{q}|V E|^{2 q r}\right) \tag{2.24}
\end{equation*}
$$

If $r \geq 1$ and $S^{*} D, V E \in \mathcal{B}_{2 r}(H),|V E|^{2}\left|S^{*} D\right|^{2} \in \mathcal{B}_{r}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq \frac{1}{2}\left(\left\|S^{*} D\right\|_{2 r}^{2 r}\|V E\|_{2 r}^{2 r}+\left\||V E|^{2}\left|S^{*} D\right|^{2}\right\|_{\mathcal{E}, r}^{r}\right) \tag{2.25}\\
& \leq \frac{1}{2}\left(\left\|S^{*} D\right\|_{2 r}^{2 r}\|V E\|_{2 r}^{2 r}+\left\||V E|^{2}\left|S^{*} D\right|^{2}\right\|_{r}^{r}\right)
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1, p r, q r \geq 2$ and $\left|S^{*} D\right|^{2 p r},|V E|^{2 q r} \in \mathcal{B}_{1}(H)$, $|V E|^{2}\left|S^{*} D\right|^{2} \in \mathcal{B}_{r}(H)$ then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
& \left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.26}\\
& \leq \frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left|S^{*} D\right|^{2 p r}+\frac{1}{q}|V E|^{2 q r}\right)+\left\||V E|^{2}\left|S^{*} D\right|^{2}\right\|_{\mathcal{E}, r}^{r}\right] \\
& \leq \frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left|S^{*} D\right|^{2 p r}+\frac{1}{q}|V E|^{2 q r}\right)+\left\||V E|^{2}\left|S^{*} D\right|^{2}\right\|_{r}^{r}\right]
\end{align*}
$$

3. Inequalities Via Polar Decomposition

If the operator T has the polar decomposition $T=U|T|$ with U a partial isometry, we define the transform

$$
\Delta_{p, q}(T):=|T|^{p} U|T|^{q}
$$

for $p, q \geq 0$. Here we assume that $|T|^{0}=I$.

The p-generalized Dougal transform is defined by

$$
\widehat{T}_{p}:=|T|^{p} U
$$

the usual Dougal transform is then

$$
\widehat{T}:=|T| U
$$

and the p-generalized Aluthge transform

$$
\widetilde{T}_{p}:=|T|^{p} U|T|^{p}
$$

which for $p=1 / 2$ gives the usual Aluthge transform [1]

$$
\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}
$$

Also

$$
T_{q}:=U|T|^{q}
$$

which gives for $q=1$ the usual polar decomposition $T=U|T|$.
For $p=t, q=1-t$, where $t \in[0,1]$ we have

$$
\Delta_{t}(T):=\Delta_{t, 1-t}(T)=|T|^{t} V|T|^{1-t}
$$

The transform $\Delta_{t}(T)$ was introduced and studied in [6].
For some recent result concerning these transforms, see [2]-[4], [6]-[8] and [10][12].

We also have:
Proposition 1. Let $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$. For $s \geq 0$, $v \geq 1$ and $t \in[0,1]$, assume that $\Delta_{s, t}(T) \in \mathcal{B}_{2 p r}(H)$ and $T \in \mathcal{B}_{2(v-t) q r}(H)$, then $\Delta_{s, v}(T) \in \mathcal{B}_{2 r}(H)$ and we have

$$
\begin{equation*}
\left\|\Delta_{s, v}(T)\right\|_{2 r} \leq\left\|\Delta_{s, t}(T)\right\|_{2 p r}\|T\|_{2(v-t) q r}^{v-t} \tag{3.1}
\end{equation*}
$$

Proof. If we take $S=U|T|^{t}$ and $V=|T|^{1-t}, t \in[0,1]$ and observe that $S V=$ $U|T|=T$, then by (2.9) we get

$$
\left\|D^{*} T E\right\|_{2 r} \leq\left\||T|^{t} U^{*} D\right\|_{2 p r}\left\||T|^{1-t} E\right\|_{2 q r}=\left\|D U|T|^{t}\right\|_{2 p r}\left\||T|^{1-t} E\right\|_{2 q r}
$$

for $r>0, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 1$.
If we take $D=|T|^{s}$ and $E=|T|^{v-1}$ for $s \geq 0$ and $v \geq 1$, then we get

$$
\left\||T|^{s} U|T|^{v}\right\|_{2 r} \leq\left\||T|^{s} U|T|^{t}\right\|_{2 p r}\left\||T|^{v-t}\right\|_{2 q r}
$$

which proves (3.1).
If we take $r=1 / 2$ and $p=q=2$ in (3.1), then we get

$$
\begin{equation*}
\left(\left|\operatorname{tr}\left[\Delta_{s, v}(T)\right]\right| \leq\right)\left\|\Delta_{s, v}(T)\right\|_{1} \leq\left\|\Delta_{s, t}(T)\right\|_{2}\|T\|_{2(v-t)}^{v-t} \tag{3.2}
\end{equation*}
$$

for $s \geq 0, v \geq 1$ and $t \in[0,1]$.
For $r=1$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ we also obtain from (3.1) that

$$
\begin{equation*}
\left\|\Delta_{s, v}(T)\right\|_{2} \leq\left\|\Delta_{s, t}(T)\right\|_{2 p}\|T\|_{2(v-t) q}^{v-t} \tag{3.3}
\end{equation*}
$$

for $s \geq 0, v \geq 1$ and $t \in[0,1]$.

Proposition 2. Let $r \geq 1 / 2, p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. For $s \geq 0, v \geq 1$ and $t \in[0,1]$, assume that $\Delta_{s, t}(T) \in \mathcal{B}_{2 p}(H)$ and $T \in \mathcal{B}_{2(v-t) q}(H)$, then $\Delta_{s, v}(T) \in$ $\mathcal{B}_{2 r}(H)$ and we have

$$
\begin{equation*}
\left\|\Delta_{s, v}(T)\right\|_{2 r} \leq\left\|\Delta_{s, t}(T)\right\|_{2 p}\|T\|_{2(v-t) q}^{v-t} \tag{3.4}
\end{equation*}
$$

For $p=q=2 r=u \geq 1$, we get from (3.4) that

$$
\begin{equation*}
\left\|\Delta_{s, v}(T)\right\|_{u} \leq\left\|\Delta_{s, t}(T)\right\|_{2 u}\|T\|_{2(v-t) u}^{v-t} \tag{3.5}
\end{equation*}
$$

for $s \geq 0, v \geq 1$ and $t \in[0,1]$.
The proof follows in a similar way by Corollary 2.
Proposition 3. Let $\mathcal{E}=\left\{e_{i}\right\}_{i \in I}$ be an orthonormal basis. If $r \geq 1 / 2, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1, p r, q r \geq 1, s \geq 0, v \geq 1$ and $t \in[0,1]$, assume that $\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p r}$, $|T|^{2(v-t) q r} \in \mathcal{B}_{1}(H)$, then $\Delta_{s, v}(T) \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{equation*}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} \leq \operatorname{tr}\left(\frac{1}{p}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p r}+\frac{1}{q}|T|^{2(v-t) q r}\right) \tag{3.6}
\end{equation*}
$$

If $r \geq 1$ and $\Delta_{s, t}(T) \in \mathcal{B}_{2 r}(H), T \in \mathcal{B}_{4(v-t) r}(H),|T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s} \in \mathcal{B}_{r}(H)$, then $\Delta_{s, v}(T) \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
& \left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{3.7}\\
& \leq \frac{1}{2}\left(\left\|\Delta_{s, t}(T)\right\|_{2 r}^{2 r}\|T\|_{4(v-t) r}^{4(v-t) r}+\left\||T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{\mathcal{E}, r}^{r}\right) \\
& \leq \frac{1}{2}\left(\left\|\Delta_{s, t}(T)\right\|_{2 r}^{2 r}\|T\|_{4(v-t) r}^{4(v-t) r}+\left\||T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{r}\right) .
\end{align*}
$$

If $r \geq 1, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1, p r, q r \geq 2$ and $\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p},|T|^{2(v-t) q} \in$ $\mathcal{B}_{r}(H),|T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s} \in \mathcal{B}_{r}(H)$ then $\Delta_{s, v}(T) \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq \frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p r}+\frac{1}{q}|T|^{2(v-t) q r}\right)\right. \tag{3.8}\\
& \left.+\left\||T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{\mathcal{E}, r}^{r}\right] \\
& \leq \frac{1}{2}\left[\operatorname{tr}\left(\frac{1}{p}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p r}+\frac{1}{q}|T|^{2(v-t) q r}\right)\right. \\
& \left.+\left\||T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{r}\right]
\end{align*}
$$

Proof. If we take $S=U|T|^{t}$ and $V=|T|^{1-t}, t \in[0,1]$ and observe that $S V=$ $U|T|=T$, then

$$
S S^{*}=U|T|^{t}|T|^{t} U^{*}=U|T|^{2 t} U^{*}=\left|T^{*}\right|^{2 t}
$$

If we take $D=|T|^{s}$ and $E=|T|^{v-1}$ for $s \geq 0$ and $v \geq 1$, then we get

$$
\begin{gathered}
\left|S^{*} D\right|^{2}=\left.\left.\left|S^{*}\right| T\right|^{s}\right|^{2}=|T|^{s} S S^{*}|T|^{s}=|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s} \\
|V E|^{2}=\left.\left.\left||T|^{1-t}\right| T\right|^{v-1}\right|^{2}=|T|^{2(v-t)}
\end{gathered}
$$

and, by (2.24),

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq \operatorname{tr}\left(\frac{1}{p}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p r}+\left.\left.\frac{1}{q}| | T\right|^{v-t}\right|^{2 q r}\right) \\
& =\operatorname{tr}\left(\frac{1}{p}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p r}+\frac{1}{q}|T|^{2(v-t) q r}\right)
\end{aligned}
$$

which proves (3.6).
Now, observe that

$$
\begin{gathered}
\left\|S^{*} D\right\|_{2 r}^{2 r}=\|D S\|_{2 r}^{2 r}=\left\||T|^{s} U|T|^{t}\right\|_{2 r}^{2 r}=\left\|\Delta_{s, t}(T)\right\|_{2 r}^{2 r} \\
|V E|^{2}\left|S^{*} D\right|^{2}=|T|^{2(v-t)}|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}=|T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}
\end{gathered}
$$

and by (2.25) we get

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq \frac{1}{2}\left(\left\|\Delta_{s, t}(T)\right\|_{2 r}^{2 r}\|T\|_{4(v-t) r}^{4(v-t) r}+\left\||T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{\mathcal{E}, r}^{r}\right) \\
& \leq \frac{1}{2}\left(\left\|\Delta_{s, t}(T)\right\|_{2 r}^{2 r}\|T\|_{4(v-t) r}^{4(v-t) r}+\left\||T|^{2(v-t)+s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{r}\right)
\end{aligned}
$$

which proves (3.7).
The last inequality follows by (2.26).
If in (3.6) we take $r=1 / 2$ and $p=q=2$, then we get for $s \geq 0, v \geq 1$ and $t \in[0,1]$,

$$
\begin{equation*}
\left(\left|\operatorname{tr}\left[\Delta_{s, v}(T)\right]\right| \leq\right)\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 1} \leq \frac{1}{2} \operatorname{tr}\left(\left|T^{*}\right|^{2 t}|T|^{2 s}+|T|^{2(v-t)}\right) \tag{3.9}
\end{equation*}
$$

since $\operatorname{tr}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)=\operatorname{tr}\left(\left|T^{*}\right|^{2 t}|T|^{2 s}\right)$.
For $r=1$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ in (3.6) we get

$$
\begin{equation*}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} \leq \operatorname{tr}\left(\frac{1}{p}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{p}+\frac{1}{q}|T|^{2(v-t) q}\right) \tag{3.10}
\end{equation*}
$$

for $s \geq 0, v \geq 1$ and $t \in[0,1]$.
Similar inequalities can be obtained from (3.7) and (3.8). We omit the details.

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia, S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
[6] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[9] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212.
[10] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
[11] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[12] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
[13] C. A. McCarthy, C_{p}, Israel J. Math. 5 (1967), 249-271.
[14] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
[15] J. R. Ringrose, Compact Non-self-adjoint Operators, Van Nostrand Reinhold, New York, 1971.
[16] V. A. Zagrebnov, Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkhäuser, 2019
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
$U R L$: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Vector inequality, Bounded operators, Aluthge transform, Dougal transform, Partial isometry, Numerical radius, p-Schatten norm.

