SOME NEW p-SCHATTEN NORM INEQUALITIES FOR OPERATORS IN HILBERT SPACES VIA A KITTANEH RESULT

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let H be a complex Hilbert space and $\alpha \in[0,1], r \geq 1$. In this paper we show, among others that, if $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis of H and $\left|S^{*} D\right|^{2},|V E|^{2} \in \mathcal{B}_{r}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and $$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|\left\|S^{*} D\right\|_{2 r}^{2 \alpha r}\|V E\|_{2 r}^{2(1-\alpha) r}
$$

where we define for $A \in \mathcal{B}_{p}(H), p \geq 1$

$$
\|A\|_{\mathcal{E}, p}:=\left(\sum_{i \in I}\left|\left\langle A e_{i}, e_{i}\right\rangle\right|^{p}\right)^{1 / p}
$$

and $\|\cdot\|_{p}$ is the usual p-Schatten norm. Some examples concerning the generalized Aluthge transform are also provided.

1. Introduction

Let $(H ;\langle.,\rangle$.$) be a complex Hilbert space and \mathcal{B}(H)$ the Banach algebra of all bounded linear operators on H. If $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is of trace class if

$$
\begin{equation*}
\|A\|_{1}:=\sum_{i \in I}\langle | A\left|e_{i}, e_{i}\right\rangle<\infty \tag{1.1}
\end{equation*}
$$

The definition of $\|A\|_{1}$ does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$. We denote by $\mathcal{B}_{1}(H)$ the set of trace class operators in $\mathcal{B}(H)$.

We define the trace of a trace class operator $A \in \mathcal{B}_{1}(H)$ to be

$$
\begin{equation*}
\operatorname{tr}(A):=\sum_{i \in I}\left\langle A e_{i}, e_{i}\right\rangle \tag{1.2}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.2) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:
Theorem 1. We have:
(i) If $A \in \mathcal{B}_{1}(H)$ then $A^{*} \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}\left(A^{*}\right)=\overline{\operatorname{tr}(A)} \tag{1.3}
\end{equation*}
$$

(ii) If $A \in \mathcal{B}_{1}(H)$ and $T \in \mathcal{B}(H)$, then $A T$, $T A \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}(A T)=\operatorname{tr}(T A) \text { and }|\operatorname{tr}(A T)| \leq\|A\|_{1}\|T\| \tag{1.4}
\end{equation*}
$$

[^0](iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_{1}(H)$ with $\|\operatorname{tr}\|=1$;
(iv) If $A, B \in \mathcal{B}_{2}(H)$ then $A B, B A \in \mathcal{B}_{1}(H)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(v) $\mathcal{B}_{\text {fin }}(H)$, the space of operators of finite rank, is a dense subspace of $\mathcal{B}_{1}(H)$.

An operator $A \in \mathcal{B}(H)$ is said to belong to the von Neumann-Schatten class $\mathcal{B}_{p}(H), 1 \leq p<\infty$ if the p-Schatten norm is finite [16, p. 60-64]

$$
\left.\|A\|_{p}:=\left[\operatorname{tr}\left(|A|^{p}\right)\right]^{1 / p}=\left(\left.\sum_{i \in I}\langle | A\right|^{p} e_{i}, e_{i}\right\rangle\right)^{1 / p}<\infty
$$

For $1<p<q<\infty$ we have that

$$
\begin{equation*}
\mathcal{B}_{1}(H) \subset \mathcal{B}_{p}(H) \subset \mathcal{B}_{q}(H) \subset \mathcal{B}(H) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A\|_{1} \geq\|A\|_{p} \geq\|A\|_{q} \geq\|A\| . \tag{1.6}
\end{equation*}
$$

For $p \geq 1$ the functional $\|\cdot\|_{p}$ is a norm on the $*$-ideal $\mathcal{B}_{p}(H)$ and $\left(\mathcal{B}_{p}(H),\|\cdot\|_{p}\right)$ is a Banach space.

Also, see for instance [16, p. 60-64],

$$
\begin{gather*}
\|A\|_{p}=\left\|A^{*}\right\|_{p}, A \in \mathcal{B}_{p}(H) \tag{1.7}\\
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p}, A, B \in \mathcal{B}_{p}(H) \tag{1.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|, \quad\|B A\|_{p} \leq\|B\|\|A\|_{p}, A \in \mathcal{B}_{p}(H), B \in \mathcal{B}(H) \tag{1.9}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\|C A B\|_{p} \leq\|C\|\|A\|_{p}\|B\|, A \in \mathcal{B}_{p}(H), B, C \in \mathcal{B}(H) \tag{1.10}
\end{equation*}
$$

In terms of p-Schatten norm we have the Hölder inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$

$$
\begin{equation*}
(|\operatorname{tr}(A B)| \leq)\|A B\|_{1} \leq\|A\|_{p}\|B\|_{q}, A \in \mathcal{B}_{p}(H), B \in \mathcal{B}_{q}(H) \tag{1.11}
\end{equation*}
$$

For the theory of trace functionals and their applications the reader is referred to [14] and [16].

For $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H we define for $A \in \mathcal{B}_{p}(H), p \geq 1$

$$
\|A\|_{\mathcal{E}, p}:=\left(\sum_{i \in I}\left|\left\langle A e_{i}, e_{i}\right\rangle\right|^{p}\right)^{1 / p}
$$

We observe that $\|\cdot\|_{\mathcal{E}, p}$ is a norm on $\mathcal{B}_{p}(H)$ and

$$
\|A\|_{\mathcal{E}, p} \leq\|A\|_{p} \text { for } A \in \mathcal{B}_{p}(H)
$$

It is known that, if $\mathcal{E}=\left\{e_{i}\right\}_{i \in I}$ and $\mathcal{F}=\left\{f_{i}\right\}_{i \in I}$ are orthonormal basis, then [15]

$$
\begin{equation*}
\sup _{\mathcal{E}, \mathcal{F}} \sum_{i \in I}\left|\left\langle T e_{i}, f_{i}\right\rangle\right|^{s}=\|T\|_{s}^{s} \text { for } s \geq 1 \tag{1.12}
\end{equation*}
$$

The following result for operator matrices was obtained by F. Kittaneh in [10]:

Lemma 1. Let $A, B, C \in \mathcal{B}(H)$ with $A, B \geq 0$. Then the operator matrix

$$
\left[\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive, if and only if

$$
\begin{equation*}
|\langle C x, y\rangle|^{2} \leq\langle A x, x\rangle\langle B y, y\rangle \tag{1.13}
\end{equation*}
$$

for all $x, y \in H$.
In [10] the author obtained among others that, if A, B, C satisfy the assumptions in Lemma 1 and $A \in \mathcal{B}_{p}(H), B \in \mathcal{B}_{q}(H)$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ with $p, q \geq 1$, then $C \in \mathcal{B}_{2 r}(H)$ and

$$
\|C\|_{2 r}^{2} \leq\|A\|_{p}\|B\|_{q}
$$

In particular, if $A, B \in \mathcal{B}_{p}(H)$, then $C \in \mathcal{B}_{p}(H)$ and

$$
\|C\|_{p}^{2} \leq\|A\|_{p}\|B\|_{p}, p \geq 1
$$

In this paper we show, among others that, if $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis of H and $\left|S^{*} D\right|^{2},|V E|^{2} \in \mathcal{B}_{r}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|\left\|S^{*} D\right\|_{2 r}^{2 \alpha r}\|V E\|_{2 r}^{2(1-\alpha) r} .
$$

Some examples concerning the generalized Aluthge transform are also provided.

2. Main Results

We recall the following vector inequality for positive operators $A \geq 0$, obtained by C. A. McCarthy in [13]

$$
\langle A x, x\rangle^{p} \leq\left\langle A^{p} x, x\right\rangle, p \geq 1
$$

for $x \in H,\|x\|=1$ and Buzano's inequality [5],

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|y\|+|\langle x, y\rangle|] \geq|\langle x, e\rangle\langle e, y\rangle| \tag{2.1}
\end{equation*}
$$

that holds for any $x, y, e \in H$ with $\|e\|=1$.
Our first main result is as follows:
Theorem 2. Let $A, B, C, D, E \in \mathcal{B}(H)$ with $A, B \geq 0$ and such that the operator matrix

$$
\left[\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive. Let $\alpha \in[0,1]$ and $r \geq 1$. If $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis of H and $D^{*} A D, E^{*} B E \in \mathcal{B}_{r}(H)$, then $E^{*} C D \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
& \left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.2}\\
& \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\|\left\|D^{*} A D\right\|_{\mathcal{E}, r}^{\alpha r}\left\|E^{*} B E\right\|_{\mathcal{E}, r}^{(1-\alpha) r} \\
& \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\|\left\|D^{*} A D\right\|_{r}^{\alpha r}\left\|E^{*} B E\right\|_{r}^{(1-\alpha) r}
\end{align*}
$$

and, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $\left(D^{*} A D\right)^{r},\left(E^{*} B E\right)^{r} \in \mathcal{B}_{p}(H) \cap$ $\mathcal{B}_{q}(H)$ that

$$
\begin{align*}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\|_{\mathcal{E}, p}^{p} \tag{2.3}\\
& \times\left\|\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right\|_{\mathcal{E}, q}^{q} \\
& \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\|_{p}^{p} \\
& \times\left\|\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right\|_{q}^{q} .
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|D^{*} A D\right\|^{r \alpha}\left\|E^{*} B E\right\|^{r(1-\alpha)} \tag{2.4}\\
& \times \operatorname{tr}\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right]
\end{align*}
$$

and

$$
\begin{align*}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\| \tag{2.5}\\
& \times \operatorname{tr}\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right]
\end{align*}
$$

provided that $D^{*} A D, E^{*} B E \in \mathcal{B}_{r}(H)$.
Proof. From (1.13) we get

$$
\left|\left\langle E^{*} C D x, y\right\rangle\right|^{2} \leq\left\langle D^{*} A D x, x\right\rangle\left\langle E^{*} B E y, y\right\rangle
$$

for all $x, y \in H$.
If we take $y=x$, then we get by the $A-G$-inequality that

$$
\begin{aligned}
& \left|\left\langle E^{*} C D x, x\right\rangle\right|^{2} \\
& \leq\left\langle D^{*} A D x, x\right\rangle\left\langle E^{*} B E x, x\right\rangle \\
& =\left\langle D^{*} A D x, x\right\rangle^{1-\alpha}\left\langle E^{*} B E x, x\right\rangle^{\alpha}\left\langle D^{*} A D x, x\right\rangle^{\alpha}\left\langle E^{*} B E x, x\right\rangle^{1-\alpha} \\
& \leq\left[(1-\alpha)\left\langle D^{*} A D x, x\right\rangle+\alpha\left\langle E^{*} B E x, x\right\rangle\right]\left\langle D^{*} A D x, x\right\rangle^{\alpha}\left\langle E^{*} B E x, x\right\rangle^{1-\alpha}
\end{aligned}
$$

for all $x \in H$.
If we take the power $r \geq 1$, then we get by the convexity of power function and McCarthy inequality that

$$
\begin{align*}
\left|\left\langle E^{*} C D x, x\right\rangle\right|^{2 r} & \leq\left[(1-\alpha)\left\langle D^{*} A D x, x\right\rangle+\alpha\left\langle E^{*} B E x, x\right\rangle\right]^{r} \tag{2.6}\\
& \times\left\langle D^{*} A D x, x\right\rangle^{r \alpha}\left\langle E^{*} B E x, x\right\rangle^{r(1-\alpha)} \\
& \leq\left[(1-\alpha)\left\langle D^{*} A D x, x\right\rangle^{r}+\alpha\left\langle E^{*} B E x, x\right\rangle^{r}\right] \\
& \times\left\langle D^{*} A D x, x\right\rangle^{r \alpha}\left\langle E^{*} B E x, x\right\rangle^{r(1-\alpha)} \\
& \leq\left[(1-\alpha)\left\langle\left(D^{*} A D\right)^{r} x, x\right\rangle+\alpha\left\langle\left(E^{*} B E\right)^{r} x, x\right\rangle\right] \\
& \times\left\langle D^{*} A D x, x\right\rangle^{r \alpha}\left\langle E^{*} B E x, x\right\rangle^{r(1-\alpha)} \\
& =\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] x, x\right\rangle \\
& \times\left\langle D^{*} A D x, x\right\rangle^{r \alpha}\left\langle E^{*} B E x, x\right\rangle^{r(1-\alpha)}
\end{align*}
$$

for all $x \in H$.

Let $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ be an orthonormal basis of H. If we take $x=e_{i}$ and sum over $i \in I$, then we get

$$
\begin{align*}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \tag{2.7}\\
& \leq \sum_{i \in I}\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& \times\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r \alpha}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r(1-\alpha)} \\
& \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\| \\
& \times \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r \alpha}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r(1-\alpha)}
\end{align*}
$$

If we use Hölder's inequality for $p=\frac{1}{\alpha}$ and $q=\frac{1}{1-\alpha}$, then we get

$$
\begin{aligned}
& \sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r \alpha}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r(1-\alpha)} \\
& \leq\left(\sum_{i \in I}\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r}\right)^{\alpha}\left(\sum_{i \in I}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r}\right)^{1-\alpha} \\
& =\left\|D^{*} A D\right\|_{\mathcal{E}, r}^{\alpha r}\left\|E^{*} B E\right\|_{\mathcal{E}, r}^{(1-\alpha) r} \leq\left\|D^{*} A D\right\|_{r}^{\alpha r}\left\|E^{*} B E\right\|_{r}^{(1-\alpha) r}
\end{aligned}
$$

and by (2.7) we get (2.2).
From (2.6) we also have that

$$
\begin{align*}
\left|\left\langle E^{*} C D x, x\right\rangle\right|^{2 r} & \leq\left[(1-\alpha)\left\langle D^{*} A D x, x\right\rangle+\alpha\left\langle E^{*} B E x, x\right\rangle\right]^{r} \tag{2.8}\\
& \times\left[\alpha\left\langle D^{*} A D x, x\right\rangle+(1-\alpha)\left\langle E^{*} B E x, x\right\rangle\right]^{r} \\
& \leq\left[(1-\alpha)\left\langle D^{*} A D x, x\right\rangle^{r}+\alpha\left\langle E^{*} B E x, x\right\rangle^{r}\right] \\
& \times\left[\alpha\left\langle D^{*} A D x, x\right\rangle^{r}+(1-\alpha)\left\langle E^{*} B E x, x\right\rangle^{r}\right] \\
& \leq\left[(1-\alpha)\left\langle\left(D^{*} A D\right)^{r} x, x\right\rangle+\alpha\left\langle\left(E^{*} B E\right)^{r} x, x\right\rangle\right] \\
& \times\left[\alpha\left\langle\left(D^{*} A D\right)^{r} x, x\right\rangle+(1-\alpha)\left\langle\left(E^{*} B E\right)^{r} x, x\right\rangle\right] \\
& =\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] x, x\right\rangle \\
& \times\left\langle\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right] x, x\right\rangle
\end{align*}
$$

for all $x \in H$.

If we take $x=e_{i}$ and sum, then we get by using Hölder's inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq \sum_{i \in I}\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& \times\left\langle\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& \leq\left(\sum_{i \in I}\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle^{p}\right)^{1 / p} \\
& \times\left(\sum_{i \in I}\left\langle\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle^{q}\right)^{1 / q} \\
& =\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\|_{\mathcal{E}, p}^{p} \\
& \times\left\|\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right\|_{\mathcal{E}, q}^{q}
\end{aligned}
$$

which proves (2.3).
From (2.6) we also have

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq \sum_{i \in I}\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& \times\left\langle D^{*} A D e_{i}, e_{i}\right\rangle^{r \alpha}\left\langle E^{*} B E e_{i}, e_{i}\right\rangle^{r(1-\alpha)} \\
& \leq\left\|D^{*} A D\right\|^{r \alpha}\left\|E^{*} B E\right\|^{r(1-\alpha)} \\
& \times \sum_{i \in I}\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& =\left\|D^{*} A D\right\|^{r \alpha}\left\|E^{*} B E\right\|^{r(1-\alpha)} \operatorname{tr}\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right]
\end{aligned}
$$

which proves (2.4).
From (2.8) we also get

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2 r}^{2 r} & =\sum_{i \in I}\left|\left\langle E^{*} C D e_{i}, e_{i}\right\rangle\right|^{2 r} \\
& \leq \sum_{i \in I}\left\langle\left[(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& \times\left\langle\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& \leq\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\| \\
& \times \sum_{i \in I}\left\langle\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right] e_{i}, e_{i}\right\rangle \\
& =\left\|(1-\alpha)\left(D^{*} A D\right)^{r}+\alpha\left(E^{*} B E\right)^{r}\right\| \\
& \times \operatorname{tr}\left[\alpha\left(D^{*} A D\right)^{r}+(1-\alpha)\left(E^{*} B E\right)^{r}\right],
\end{aligned}
$$

which proves (2.5).

Remark 1. If we take $r=1$ and assume that $D^{*} A D, E^{*} B E \in \mathcal{B}_{1}(H)$, then $E^{*} C D \in \mathcal{B}_{2}(H)$ and

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} & \leq\left\|(1-\alpha) D^{*} A D+\alpha E^{*} B E\right\|\left\|D^{*} A D\right\|_{\mathcal{E}, 1}^{\alpha}\left\|E^{*} B E\right\|_{\mathcal{E}, 1}^{1-\alpha} \\
& \leq\left\|(1-\alpha) D^{*} A D+\alpha E^{*} B E\right\|\left\|D^{*} A D\right\|_{1}^{\alpha}\left\|E^{*} B E\right\|_{1}^{1-\alpha}
\end{aligned}
$$

and, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $D^{*} A D, E^{*} B E \in \mathcal{B}_{p}(H) \cap \mathcal{B}_{q}(H)$ that

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} & \leq\left\|(1-\alpha) D^{*} A D+\alpha E^{*} B E\right\|_{\mathcal{E}, p}^{p} \\
& \times\left\|\alpha D^{*} A D+(1-\alpha) E^{*} B E\right\|_{\mathcal{E}, q}^{q} \\
& \leq\left\|(1-\alpha) D^{*} A D+\alpha E^{*} B E\right\|_{p}^{p} \\
& \times\left\|\alpha D^{*} A D+(1-\alpha) E^{*} B E\right\|_{q}^{q}
\end{aligned}
$$

Moreover, we have for $D^{*} A D, E^{*} B E \in \mathcal{B}_{1}(H)$ that

$$
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} \leq\left\|D^{*} A D\right\|^{\alpha}\left\|E^{*} B E\right\|^{1-\alpha} \operatorname{tr}\left[(1-\alpha) D^{*} A D+\alpha E^{*} B E\right]
$$

and

$$
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} \leq\left\|(1-\alpha) D^{*} A D+\alpha E^{*} B E\right\| \operatorname{tr}\left[\alpha D^{*} A D+(1-\alpha) E^{*} B E\right]
$$

for $\alpha \in[0,1]$.
If we take $\alpha=1 / 2$, then we obtain

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} & \leq \frac{1}{2}\left\|D^{*} A D+E^{*} B E\right\|\left\|D^{*} A D\right\|_{\mathcal{E}, 1}^{1 / 2}\left\|E^{*} B E\right\|_{\mathcal{E}, 1}^{1 / 2} \\
& \leq \frac{1}{2}\left\|D^{*} A D+E^{*} B E\right\|\left\|D^{*} A D\right\|_{1}^{1 / 2}\left\|E^{*} B E\right\|_{1}^{1 / 2}
\end{aligned}
$$

and, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have that

$$
\begin{aligned}
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} & \leq \frac{1}{2^{p+q}}\left\|D^{*} A D+E^{*} B E\right\|_{\mathcal{E}, p}^{p}\left\|D^{*} A D+E^{*} B E\right\|_{\mathcal{E}, q}^{q} \\
& \leq \frac{1}{2^{p+q}}\left\|D^{*} A D+E^{*} B E\right\|_{p}^{p}\left\|D^{*} A D+E^{*} B E\right\|_{q}^{q}
\end{aligned}
$$

Moreover, we have

$$
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2}\left\|D^{*} A D\right\|^{1 / 2}\left\|E^{*} B E\right\|^{1 / 2} \operatorname{tr}\left(D^{*} A D+E^{*} B E\right)
$$

and

$$
\left\|E^{*} C D\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{4}\left\|D^{*} A D+E^{*} B E\right\| \operatorname{tr}\left(D^{*} A D+E^{*} B E\right)
$$

Corollary 1. Let $\alpha \in[0,1]$ and $r \geq 1$. If $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis of H and $\left|S^{*} D\right|^{2},|V E|^{2} \in \mathcal{B}_{r}(H)$, then $D^{*} S V E \in \mathcal{B}_{2 r}(H)$ and

$$
\begin{align*}
& \left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.9}\\
& \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|\left\|\left|S^{*} D\right|^{2}\right\|_{\mathcal{E}, r}^{\alpha r}\left\||V E|^{2}\right\|_{\mathcal{E}, r}^{(1-\alpha) r} \\
& \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|\left\|S^{*} D\right\|_{2 r}^{2 \alpha r}\|V E\|_{2 r}^{2(1-\alpha) r}
\end{align*}
$$

and, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $\left|S^{*} D\right|^{2 r},|V E|^{2 r} \in \mathcal{B}_{p}(H) \cap \mathcal{B}_{q}(H)$ that

$$
\begin{align*}
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|_{\mathcal{E}, p}^{p} \tag{2.10}\\
& \times\left\|\alpha\left|S^{*} D\right|^{2 r}+(1-\alpha)|V E|^{2 r}\right\|_{\mathcal{E}, q}^{q} \\
& \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|_{p}^{p} \\
& \times\left\|\alpha\left|S^{*} D\right|^{2 r}+(1-\alpha)|V E|^{2 r}\right\|_{q}^{q}
\end{align*}
$$

Moreover, we have

$$
\begin{equation*}
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \leq\left\|S^{*} D\right\|^{2 r \alpha}\|V E\|^{2 r(1-\alpha)} \operatorname{tr}\left[(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right] \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.12}\\
& \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\| \operatorname{tr}\left[\alpha\left|S^{*} D\right|^{2 r}+(1-\alpha)|V E|^{2 r}\right]
\end{align*}
$$

provided that $S^{*} D, V E \in \mathcal{B}_{2 r}(H)$.
Proof. Observe that the operator matrix

$$
\left[\begin{array}{cc}
S S^{*} & S V \\
V^{*} S^{*} & V^{*} V
\end{array}\right] \in \mathcal{B}(H \oplus H)
$$

is positive. Then by (2.2) for $A=\left|S^{*}\right|^{2}, B=|V|^{2}$ and $C=V^{*} S^{*}$ we get

$$
\begin{align*}
& \left\|E^{*} V^{*} S^{*} D\right\|_{\mathcal{E}, 2 r}^{2 r} \tag{2.13}\\
& \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|\left\|\left|S^{*} D\right|^{2}\right\|_{\mathcal{E}, r}^{\alpha r}\left\||V E|^{2}\right\|_{\mathcal{E}, r}^{(1-\alpha) r} \\
& \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2 r}+\alpha|V E|^{2 r}\right\|\left\|\left|S^{*} D\right|^{2}\right\|_{r}^{\alpha r}\left\||V E|^{2}\right\|_{r}^{(1-\alpha) r}
\end{align*}
$$

Since

$$
\left\|E^{*} V^{*} S^{*} D\right\|_{\mathcal{E}, 2 r}^{2 r}=\left\|D^{*} S V E\right\|_{\mathcal{E}, 2 r}^{2 r}
$$

and

$$
\left\|\left|S^{*} D\right|^{2}\right\|_{r}^{\alpha r}=\left\|S^{*} D\right\|_{2 r}^{2 \alpha r},\left\||V E|^{2}\right\|_{r}^{(1-\alpha) r}=\|V E\|_{2 r}^{2(1-\alpha) r}
$$

then by (2.13) we obtain (2.9).
The other inequalities follow from (2.3)-(2.5) in a similar manner.
Remark 2. If we take $r=1$ in Corollary 1 and assume that $\alpha \in[0,1],\left|S^{*} D\right|^{2}$, $|V E|^{2} \in \mathcal{B}_{1}(H)$, then $D^{*} S V E \in \mathcal{B}_{2}(H)$ and

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2}+\alpha|V E|^{2}\right\|\left\|S^{*} D\right\|_{2}^{2 \alpha}\|V E\|_{2}^{2(1-\alpha)}
$$

and, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $S^{*} D, V E \in \mathcal{B}_{p}(H) \cap \mathcal{B}_{q}(H)$ that

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2}+\alpha|V E|^{2}\right\|_{p}^{p}\left\|\alpha\left|S^{*} D\right|^{2}+(1-\alpha)|V E|^{2}\right\|_{q}^{q}
$$

Moreover, we have

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq\left\|S^{*} D\right\|^{2 \alpha}\|V E\|^{2(1-\alpha)} \operatorname{tr}\left[(1-\alpha)\left|S^{*} D\right|^{2}+\alpha|V E|^{2}\right]
$$

and
$\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq\left\|(1-\alpha)\left|S^{*} D\right|^{2}+\alpha|V E|^{2}\right\| \operatorname{tr}\left[\alpha\left|S^{*} D\right|^{2}+(1-\alpha)|V E|^{2}\right]$
for $S^{*} D, V E \in \mathcal{B}_{2}(H)$.
If we take $\alpha=1 / 2$, then we obtain for $S^{*} D, V E \in \mathcal{B}_{2}(H)$ that

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2}\left\|\left|S^{*} D\right|^{2}+|V E|^{2}\right\|\left\|S^{*} D\right\|_{2}\|V E\|_{2}
$$

and, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $S^{*} D, V E \in \mathcal{B}_{p}(H) \cap \mathcal{B}_{q}(H)$ that

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2^{p+q}}\left\|\left|S^{*} D\right|^{2}+|V E|^{2}\right\|_{p}^{p}\left\|\left|S^{*} D\right|^{2}+|V E|^{2}\right\|_{q}^{q}
$$

Moreover, we have

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2}\left\|S^{*} D\right\|\|V E\| \operatorname{tr}\left(\left|S^{*} D\right|^{2}+|V E|^{2}\right)
$$

and

$$
\left\|D^{*} S V E\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{4}\left\|\left|S^{*} D\right|^{2}+|V E|^{2}\right\| \operatorname{tr}\left(\left|S^{*} D\right|^{2}+|V E|^{2}\right)
$$

for $S^{*} D, V E \in \mathcal{B}_{2}(H)$.

3. Inequalities Via Polar Decomposition

If the operator T has the polar decomposition $T=U|T|$ with U a partial isometry, we define the transform

$$
\Delta_{p, q}(T):=|T|^{p} U|T|^{q}
$$

for $p, q \geq 0$. Here we assume that $|T|^{0}=I$.
The p-generalized Dougal transform is defined by

$$
\widehat{T}_{p}:=|T|^{p} U
$$

the usual Dougal transform is then

$$
\widehat{T}:=|T| U
$$

and the p-generalized Aluthge transform

$$
\widetilde{T}_{p}:=|T|^{p} U|T|^{p}
$$

which for $p=1 / 2$ gives the usual Aluthge transform [1]

$$
\widetilde{T}:=|T|^{1 / 2} U|T|^{1 / 2}
$$

Also

$$
T_{q}:=U|T|^{q}
$$

which gives for $q=1$ the usual polar decomposition $T=U|T|$.
For $p=t, q=1-t$, where $t \in[0,1]$ we have

$$
\Delta_{t}(T):=\Delta_{t, 1-t}(T)=|T|^{t} V|T|^{1-t}
$$

The transform $\Delta_{t}(T)$ was introduced and studied in [6].
For some recent result concerning these transforms, see [2]-[4], [6]-[8] and [10][12].

We also have:

Proposition 1. Let $\alpha, t \in[0,1]$ and $r, v \geq 1$. If $\mathcal{E}:=\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis of H and $|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s},|T|^{2(v-t)} \in \mathcal{B}_{r}(H)$, then $\Delta_{s, v}(T) \in \mathcal{B}_{2 r}(H)$ and we have

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+\alpha|T|^{2 r(v-t)}\right\| \\
& \times\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{\alpha r}\|T\|_{2(v-t) r}^{2(v-t)(1-\alpha) r}
\end{aligned}
$$

For $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s},|T|^{2(v-t)} \in \mathcal{B}_{r p}(H) \cap$ $\mathcal{B}_{\text {rq }}(H)$ that

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+\alpha|T|^{2 r(v-t)}\right\|_{p}^{p} \\
& \times\left\|\alpha\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+(1-\alpha)|T|^{2 r(v-t)}\right\|_{q}^{q}
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{\alpha r}\|T\|_{2(v-t) r}^{2(v-t)(1-\alpha) r} \\
& \times \operatorname{tr}\left[(1-\alpha)\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+\alpha|T|^{2 r(v-t)}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+\alpha|T|^{2 r(v-t)}\right\| \\
& \times \operatorname{tr}\left[\alpha\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+(1-\alpha)|T|^{2 r(v-t)}\right]
\end{aligned}
$$

provided that $|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s},|T|^{2(v-t)} \in \mathcal{B}_{r}(H)$.
Proof. If we take $S=U|T|^{t}$ and $V=|T|^{1-t}, t \in[0,1]$, then observe that $S V=$ $U|T|=T$ and

$$
S S^{*}=U|T|^{t}|T|^{t} U^{*}=U|T|^{2 t} U^{*}=\left|T^{*}\right|^{2 t}
$$

If we take $D=|T|^{s}$ and $E=|T|^{v-1}$ for $s \geq 0$ and $v \geq 1$, then we get

$$
\begin{gathered}
\left|S^{*} D\right|^{2}=\left.\left.\left|S^{*}\right| T\right|^{s}\right|^{2}=|T|^{s} S S^{*}|T|^{s}=|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s} \\
|V E|^{2}=\left.\left.\left||T|^{1-t}\right| T\right|^{v-1}\right|^{2}=|T|^{2(v-t)}
\end{gathered}
$$

Also

$$
\begin{gathered}
\left\|D^{*} T E\right\|_{\mathcal{E}, 2 r}^{2 r}=\left\||T|^{s} U|T||T|^{v-1}\right\|_{\mathcal{E}, 2 r}^{2 r}=\left\||T|^{s} U|T|^{v}\right\|_{\mathcal{E}, 2 r}^{2 r}=\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r}, \\
\left\|\left|S^{*} D\right|^{2}\right\|_{r}^{\alpha r}=\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{\alpha r}
\end{gathered}
$$

and

$$
\left\||V E|^{2}\right\|_{r}^{(1-\alpha) r}=\left\||T|^{2(v-t)}\right\|_{r}^{(1-\alpha) r}=\|T\|_{2(v-t) r}^{2(v-t)(1-\alpha) r},
$$

then by (2.9) we get

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2 r}^{2 r} & \leq\left\|(1-\alpha)\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{r}+\alpha|T|^{2 r(v-t)}\right\| \\
& \times\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{r}^{\alpha r}\|T\|_{2(v-t) r}^{2(v-t)(1-\alpha) r}
\end{aligned}
$$

The other inequalities follow from (2.10)-(2.12).

For $r=1$ we get for $|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s},|T|^{2(v-t)} \in \mathcal{B}_{1}(H)$, that $\Delta_{s, v}(T) \in \mathcal{B}_{2}(H)$ and

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} & \leq\left\|(1-\alpha)|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+\alpha|T|^{2(v-t)}\right\| \\
& \times\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{1}^{\alpha}\|T\|_{2(v-t)}^{2(v-t)(1-\alpha)}
\end{aligned}
$$

For $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we also have for $|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s},|T|^{2(v-t)} \in \mathcal{B}_{p}(H) \cap$ $\mathcal{B}_{q}(H)$ that

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} & \leq\left\|(1-\alpha)|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+\alpha|T|^{2(v-t)}\right\|_{p}^{p} \\
& \times\left\|\alpha|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+(1-\alpha)|T|^{2(v-t)}\right\|_{q}^{q}
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} & \leq\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{1}^{\alpha}\|T\|_{2(v-t)}^{2(v-t)(1-\alpha)} \\
& \times \operatorname{tr}\left[(1-\alpha)|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+\alpha|T|^{2(v-t)}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} & \leq\left\|(1-\alpha)|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+\alpha|T|^{2(v-t)}\right\| \\
& \times \operatorname{tr}\left[\alpha|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+(1-\alpha)|T|^{2(v-t)}\right]
\end{aligned}
$$

provided that $|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s},|T|^{2(v-t)} \in \mathcal{B}_{1}(H)$.
The choice $\alpha=1 / 2$ gives some simpler inequalities,

$$
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2}\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+|T|^{2(v-t)}\right\|\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{1}^{1 / 2}\|T\|_{2(v-t)}^{v-t}
$$

and

$$
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2^{p+q}}\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+|T|^{2(v-t)}\right\|_{p}^{p}\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+|T|^{2(v-t)}\right\|_{q}^{q}
$$

for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
Moreover, we have

$$
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{2}\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right\|_{1}^{1 / 2}\|T\|_{2(v-t)}^{v-t} \operatorname{tr}\left[\left|T^{*}\right|^{2 t}|T|^{2 s}+|T|^{2(v-t)}\right]
$$

and

$$
\left\|\Delta_{s, v}(T)\right\|_{\mathcal{E}, 2}^{2} \leq \frac{1}{4}\left\||T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}+|T|^{2(v-t)}\right\| \operatorname{tr}\left[\left|T^{*}\right|^{2 t}|T|^{2 s}+|T|^{2(v-t)}\right]
$$

since $\operatorname{tr}\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)=\operatorname{tr}\left(\left|T^{*}\right|^{2 t}|T|^{2 s}\right)$.

References

[1] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[2] A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216 (1) (2013) 69-75.
[3] P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra and its Applications, vol. 573 (2019) pp. 166-177.
[4] P. Bhunia, S. S. Dragomir , M. S. Moslehian , K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
[5] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
[6] M. Cho and K. Tanahashi, Spectral relations for Aluthge transform, Scientiae Mathematicae Japonicae, 55 (1) (2002), 77-83.
[7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013. https://doi.org/10.1007/978-3-319-01448-7.
[8] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), No. 2, 133-140.
[9] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212.
[10] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
[11] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), No. 1, 11-17.
[12] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), No. 1, 73-80.
[13] C. A. McCarthy, C_{p}, Israel J. Math. 5 (1967), 249-271.
[14] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
[15] J. R. Ringrose, Compact Non-self-adjoint Operators, Van Nostrand Reinhold, New York, 1971.
[16] V. A. Zagrebnov, Gibbs Semigroups, Operator Theory: Advances and Applications, Volume 273, Birkhäuser, 2019
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand, , Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.
 Key words and phrases. Vector inequality, Bounded operators, Aluthge transform, Dougal transform, Partial isometry, Numerical radius, p-Schatten norm.

