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Abstract

Here we research the multivariate quantitative approximation of com-
plex valued continuous functions on a box of RV, N € N, by the mul-
tivariate normalized type neural network operators. We investigate also
the case of approximation by iterated multilayer neural network operators.
These approximations are achieved by establishing multidimensional Jack-
son type inequalities involving the multivariate moduli of continuity of the
engaged function and its partial derivatives. Our multivariate operators
are defined by using a multidimensional density function induced by gen-
eral multiple sigmoid functions. The approximations are pointwise and
uniform. The related feed-forward neural network are with one or multi
hidden layers. The basis of our theory are the introduced multivariate
Taylor formulae of trigonometric and hyperbolic type.
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1 Introduction

The author in [1] and [2], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliaguet-Euvrard and ” Squashing” types,
by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
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there both the univariate and multivariate cases. The defining these operators
"bell-shaped” and ”squashing” functions are assumed to be of compact support.

Motivations for this work are the article [14] of Z. Chen and F. Cao, also by
[3-[12], [15], [16].

Here we perform general multiple sigmoid functions based trigonometric and
hyperbolic neural network approximations to complex valued continuous func-
tions over boxes in RV, N € N and also iterated, multi layer approximations.
All convergences here are with rates expressed via the multivariate moduli of
continuity of the involved function and its partial derivatives and given by very
tight multidimensional Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators based on boxes of RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we mention important properties of the basic multivariate density function in-
duced by a set of general multiple sigmoid functions.

Feed-forward neural networks (FNNs) with one hidden layer here are math-
ematically expressed as

Zc] (aj -x)+b;), xeR’ seN,

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € C are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is a kind of general sigmoid function. About
neural networks read [17] - [19].

2 Basics

2.1 General neural network background

The following come from [12], Ch. 27.

Let ¢ = 1,..,N € N and h; : R — [-1,1] be a general sigmoid activa-
tion function, such that it is strictly increasing, h; (0) = 0, h; (—x) = —h; (z),
hi (400) =1, h; (—o0) = —1. Also h; is strictly convex over (—oo, 0] and striclty
concave over [0, +00), with h ) € C (R).

We consider the scaled function

b; () ::i(hi(erl)fhi(:rfl)), zeR,i=1,..,N. (1)

As in [10], p. 285, we get that 9, (—x) = ¢, (x), thus 1), is an even function.
Since x +1>x — 1, then h; (x +1) > h; (x — 1), and ¢, (z) > 0, all z € R.



We see that

Let z > 1, we have that
1
W) = 5 (W e+ 1) — R (2= 1) <0,

by h} being strictly decreasing over [0, +00).

Let now 0 < z < 1, then 1 —2 > 0and 0 < 1 —2 < 1+ 2. It holds
hi(x —1) = hl (1 —xz) > hl(x + 1), so that again ¢} (z) < 0. Consequently 1,
is stritly decreasing on (0, 400).

Clearly, 1, is strictly increasing on (—o0,0), and ¢} (0) = 0.

See that

. 1
Lim 9, () = 7 (hi (+00) = hi (+00)) =0, (3)

and 1
Jim () = 7 (hi (=00) = i (~00)) = 0. (4)

That is the z-axis is the horizontal asymptote on ;.
Conclusion, % is a bell symmetric function with maximum

hi (1)

Y, (0) = 9

We need
Theorem 1 ([12], Ch. 27) We have that

Y piw—i)=1, VzeR, i=1,.,N. (5)

1=—00

Theorem 2 (/12], Ch. 27) It holds

/OO Y, (x)de=1, i=1,...,N. (6)

Thus 9, (x) is a density function on R, ¢ = 1,..., N.
We give

Theorem 3 ([12], Ch. 27) Let 0 < a < 1, and n € N with n'=® > 2. It holds

i b, (nx — k) < Sl (n;a _2)), i=1,.,N. (7)

k=—o00
Cnw — k| > ntme

Notice that

1—hy (0o — 2
lim ( ("2 ) —0,i=1,..,N.




Denote by |-] the integral part of the number and by [-] the ceiling of the
number.
We further give

Theorem 4 ([12], Ch. 27) Let x € [a,b] CR and n € N so that [na] < |nb].
It holds

< , Vax€lab], i=1,..,N. (8)
nb
ZIE fjmﬂ ¥ (nz— k) i (1)
Remark 5 ([12], Ch. 27) We have that
|nd]
lim Y ¢ (nz—k)#1, i=1,..,N, (9)
k=[na]

for at least some x € [a, b].

Note 6 ([12], Ch. 27) For large enough n we always obtain [na] < [nb]. Also
a<E<b, iff [na] <k < |[nb]. In general it holds (by (5))

Lnb]

> iz —k)<1, i=1,..,N. (10)

k=[na]
‘We make

Remark 7 ([12], Ch. 27) We define
Z(z1,..,xn) = Z (x) := Hz/), (z;), == (21,...,an) ERY, N€N.

It has the properties:

(i)
Z (x) >0, Vo € RY, (11)
(1)
Z Z(.%‘—k) = Z Z Z Z(xl—kl,...,l‘N—kN):
k=—o00 k1=—00 ko=—0o0 kn=—00
o] oo o0 N N o)
ISP Ol | CIEEES I{ R EE)
ki=—00 ko=—00 kny=—001i=1 i=1 \k;=—o0
Hence -
Y Z(z-k) =1 (12)
k=—oc0



That is
(iii)
ZZ(nat—k:):l, vz eRY; neN. (13)
k=—o00

And
(iv)
N

/RN Z(@)do = /RN <1;[ Vi <xl)> dry..dry = 1]_:[1 (/_O; Y, (z4) dxi) ¢ 1,

1
(14)
thus

/ Z(@)de = 1, (15)
RN

that is Z is a multivariate density function.
Here denote ||z := max {|21], ..., |zn]|}, € RY, also set 0o := (00, ..., 00),
—00 := (—00, ..., —00) upon the multivariate context, and

{{n’a] = (’Vna’l—l PRRXE [TLGN]),

[nb] := (|nb1], ..., [nbN]),

where a := (ay,...,an), b:= (b, ...,bn) .
We obviously see that

Lnb] [nb] N
Z Z(nx —k)= Z ( ¢i(nxi—ki)> -

k=[na] k=[na] =1

|nby | [nbw ] N N [nb;]
Sy (mi(mi—m)zn S vi—k) | (10

k1:]'na1'| k‘NZI—TL(LN] i=1 i=1 kiz(na,]

For0<fB<1andn €N, afizedxz € RN, we have that

L)
Z Z (nx — k) =
k=[na]
[nb] [nb]
Z Z (nx — k) + Z Z(nx —k). (17)
k = [na] k= [na]
12 =2l < 7 1w =l > 5

In the last two sums the counting is over disjoint vector sets of k’s, because
the condition H% — x”oo > n% implies that there exists at least one %T — xT’ >
n%, where r € {1,..., N}.




(v) We notice that

[nb] Lnb1 | [nby | N
= fna] ki1=[nai] kn=[nan] \i=1
k
G el
N [nb; ]
H Z ) (nxy — k) | <
=1 { ki = (naﬂ
[
N © [nbr ]
11 ( > vi(nai— fm) ¥, (na, k) | =
5y W= k. = [na,]
-] >
[nb: ]
d)r (Tll’r - kT) S (18)
{ o = [nar]
ow] >0
> - (1)
Z ¢7 (nm'r - kr) - Z Tﬂr (na:r - ky.) <
k, = —oc0 k, = —00
|5 — | > o5 Ina, — k,| > n'=#

L (1 - L (7 2)
<  max ,
2 ie{l,...,N} 2
where 0 < f < 1.
That is we get:
[nb] 1-3
1—h; -2
Z Z(nx —k) < max < (n )
ie{l,...,N} 2
k= [na)

{

0<p<l, withnEN:nl’ﬁ>2,Vz€H£\Ll[ai,bi].

15 =2l > 5



(vi) It is clear that

> 1—h; (n'=P —2)
Z Z (nx — k) <ie{r1I}.§.},<N}< 5 ), (20)
k= —o0
{Hﬁ—xﬂoﬁiﬂ

O<ﬂ<1,neN:nl’ﬁ>2,Vm€]_[£\i1[ai,bi].
(viti) By Theorem 4 we get that

1 1 1
0< =

< s
Z]Lc”ernﬂ (nz — k) HZ\LI ( ,E:li[{m 1 W, (nw; — z)) Hil Y, (1)

thus 1 1
0< [t] < —x , (21)
pI [nal Z(nx—k) ILizg v (1)

Ve (Hl 1 [az,bz]), n € N.

Furthermore it holds

[nb] N [nb; ]
lim Z Z (nx — k) = lim H Z Y, (nz; — ki) | = (22)
k=[na] =1 \ki=[na;]
N Lnb: |

11 lim > (i — k) | #£1,

i=1 ki=[na;]
for at least some x € (vazl [a;, bz]) .
We state

Definition 8 (/12], Ch. 27) We denote by

O (B,m) = _yma (1 —ha (7P - 2)> : (23)

ie{1,...,N 2
where 0 < f < 1.

‘We make

Remark 9 Let f € C (va:l [a, by ,C) ,x = (z1,...,2N) € Hfil [ai,b;],m €N
such that [na;| < |nb;],i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (v = (x1,...,TN) € (Hfil (@i, bl]))

> ,Enbrjmﬂ ( ) Z (nz — k)
A, (f, 21, .y =A,(f,x) = =
m o) ) E;Enb[Jnﬂ (nx — k)




[nb1 | Lnbz] [nbny |
Zk? 1]’na1'| Zk::[nag‘\ Zsz anaN] 7TN ( i=1 w nT; — k; )) (24)
N nb; :
Hi:l ( L»:Hna'\ujl nxl_k )
For large enough n € N we always obtain [na;] < |nb;], ¢ = 1,...,N. Also
a; < lf{ <b, iff [na;] <k; <|nbj],i=1,..,N.
When g € C (Hl 1 las, bz]> we define the companion operator
- ZLanna k) Z (nx — k)
Ao (g,0) = 2 015) . (25)

nb
S 0 Z (nz — k)

Clearly ﬁn is a positive linear operator. We have that

. N
A,(1,z)=1, Vze (H [ai,bi]> :

i=1

Notice that A, (f) € C (va:l [a, by ,(C) and A, (g) € C (HZ 1 las, bl]> .
Furthermore it holds
L"bj }f()fZ(nm—k)

A (f,2)] < kiﬁz‘bj pp— = Ay (|f],2), (26)
k=[na] nr —

Ve [N, [aibi.

Cleatly |f] € C (HZ . lai, b ]) .
So, we have that

|4n (f.2)| < Au (If],2) (27)
VaellY, [anbl], ¥neN, erc(HZ 1[a1,b1],(C).
Let ce Cand g € C (Hi:l [ai,bi]) then cg € C (Hl 1 lai, byl ,(C) .

Furthermore it holds

Ay, (cg, )—cA x,Va:EHa,,l. (28)

Since A, (1) = 1, we get that
Ap(c)=¢, YceC. (29)

We call /~ln the companion operator of A,,.
For convinience we call

Lnb]

A (f, @) Zf() (nz — k) =

k=[na]



[nb1] [nb2 | [nbn ] N
SOy LY f(kl ’ZV) (Hwi(mi—m), (30)

k1:"’na1-| k2:|'na2‘\ k]\] ]'naN-\

vare (I lasbil).

That is A0 (f.2)
An (f ) = : , 31
I S 7 e @
Vaoe (Hfil [ai,bi]), n € N.
Hence
A (F,2) = £ @) (SE ) 2 (0 = B)
A, (f,x) — = . 32
(f.2) ~ (&) S Teers (32)
Consequently we derive
@1 (N - L)
[An (f,2) = f ()] < (H%(D) A (fe) = f@) Y Zne—k),
=1 k=[na]
(33)

V T € (Hzl\il [ai, bl])
We will estimate the right hand side of (33).
For the last we need

Definition 10 (/10/, p. 274) Let M be a convex and compact subset of (RN, ||||p) ,
p € [l,00]. Let f € C(M,C), we define the first modulus of continuity of f as

wi (f,0):=  sup  |f(2)=f(y)l, 0<6<diam(M).  (34)
x,y € M:
lz —yll, <o

If § > diam (M), then
w1 (fa 6) = w1 (f) diam (M)) : (35)
Notice wi (f,d) is increasing in § > 0.

Lemma 11 ([10], p. 274) We have w1 (f,§) — 0 asd | 0, iff f € C(M,C),
where M is a convex compact subset of (RN, H-||p), p € [l,].

In our results we use p = oo.

N
Let now f € C? <H [a;, b;) ,C), N € N. Here f,, denotes a partial derivative

i=1
N
of f, @ = (a1,..,an), a; € Zy, i = 1,..,N, and |a| := > a; = [, where
=1
1 =0,1,2. We write also f, := nn and we say it is of order .




‘We denote

Wi (fa, h) == nax_wy (farh). (36)

Call also
I fall™ = Irglg{llfalloo}, (37)

where ||-|| is the supremum norm.

2.2 Multivariate New Taylor formulae

We will use

Theorem 12 ([13]) Let f € C*([c,d],C), where a,z € [c,d]. Then

F) - 1@ = @sinGe o)+ 2" @i (T30 4 @9

[0+ £ )~ (7 @)+ £ @) sin 1) .
We make

Remark 13 Let now Q be an open convex subset of RF, k> 2; 2 = (21,..., 21),
zo == (To1,...,Tor) € Q. We consider f € C?(Q,C) each second order partial

derivative is denoted by fo = gaf, where o= (a1, ..., ), o €EZT, i =1,...,k

and |a = Zal = 2. We consider g, (t) == f(xzo+t(z—mp)), 0 <t < 1.
Clearly + t (z —x0) € Q. Then

gz (0) =f (.730), 9z (1) =f (Z) )

k 8f
Z — Z0;) (o1 +t (21 —o1) sy ok +t (26 — ok)),  (39)

i=1 Li

k
f
Z — To;) (o1, -, Tok) ,

’L

—

1=

and

(o1 +t (21 — zo1) 5o, Tok + t (26 — Tok))

k P 2
[(Z -TUz > f] (xol,...,x()k).
i=1 Ti

10

(40)




Notice above the second order partials commute.
Clearly g, € C?([0,1],C), and by Theorem 12 we obtain

f (Zla ooy Zk) - f (1.017 "'7x0k) =9z (]-) — 0z (0) =
1
ot O)sin (14202 ©sin? (5 )+ [ 62 (0 +9 (0) = 62 (©)+ 92 O)]sin (1 - )t
(a1)
We also mention

Theorem 14 ([13]) Let f € C?([c,d],C), where a,z € [c,d]. Then

f(z) = f(a) = f'(a)sinh (z — a) + 2f" (a) sinh? (w g a) + (42)

[ 00 =10 - 0" @~ £ @)l s~ 0y
‘We make

Remark 15 Consequently, we get that

fz1y e zi) = f(zo1y oy or) = g2 (1) — g, (0) =

ot Oy s (1)+297 O)sint® (5 )+ [ 12 () = 0 () = (42 (0) =g )] sn (1~ ) .
(3)

‘We make

N
Remark 16 Let f € C? (H [a;, b;] ,(C), N eN.
i=1
Clearly the mized partials commute.
N
Here £ = (B EN) and z = (21,...,2n), with &,z € <H [ai;bi]), then

n’"r on -
=1

(by (41), where gr ) :=f(z+t(E—-2)),0<t<1) we have

(5)-ro- (i (5 o) 5 <x>> sin (1) +

11



+<f <x—|—t<z—z>) —f(:c))}sin(l—t)dt.




Notice here that (0 < 8 <1)

N
1 2 1
max
(¥) < @i <fwn;3) > N (H nﬁai>
ai:(alwuxaz\f)}lvliEZJr IT ai! i=1
i=1,...,N,|a[:=3" a;=2 i=1
i=1

1
o (f, 711[3)}/0 Isin (1 — £)] dt =

max (1 1 2 1
W1,2 > 1B n28
ar=(a,...,an),0; EZ4 H ;!
A i=1
i=1,..., N,\oz|::2 a; =2 -
i=1

ron (£33 )11 = cos (1) = (48)

max 1 2
(1 —cos (1)) {wm (J:jg’gnﬁ) N + w1 (f’ n1ﬁ> } .

We have proved that

S (for ) N?

|R| < (1 —cos(1)) { —5 +wi (ﬁ nlﬁ> } ; (49)

given that H% - xH < A

0o = nB*
We notice also that

! 2
Ri< [ 3
0 N
a:=(a1,...,aN),0; €Ly H ;!
N e
i=1,..,N|ali=> a;=2 =1
1=1

T~
=

Il
—

(bi — ai)’”’) 2[[fallo +2 flloo} [sin (1 —#)[dt < (50)

13



2
( > |
w:(a1,---7a1v)7az€z+ I ei!

i=1,....N,|a|:= Zm =1

20— all2, Mfall25 + 211 (/ (1 - o)) =

(2110 = ol 11l 2% N2+ 271 ) (1 = cos (1),

where a := (a1, ...,an), b= (b1,...,bn).
We have proved that

B < (20— alP Il 25 N2 + 2]/ ) (L= cos () = p. (51)

3 Main Results

Here we discuss the trigonometric approximation by using the smoothness of f.

Theorem 17 Let f € C? (Hl 1 lag, by ,(C) ,0<B<1,nNeN, n=F>2

T,xT9 € (Hf\; [ai,bi}) ,a:=(a1,...,an), b:= (by,....,bn). Then
(i)

A, (f,x) (Z mi),x)> sin (1) —

NG
Q
Jis
2
2
;M
2
m
N
h
=
—
S
N—
:lz
8
< ~
\L: =
|
§
v
«
5
[NV}
VRS
| —
N———
IA

+ (52)

(g v <1>> { [(1 —cos (1) {‘” Uil s (s, nlﬁ)}

(2116 = all%, 1725 N* + 2 £1l.0| (1 = cos (1) o (B,m) }

(i) assume that %;0) =0,i=1,...,N, and fo (x0) =0, a : o] = 2, we
have that

|An (fax) - f(l‘)| §

14



+ (53)

(H " <1>> { [(1 — cos (1)) {ng Vi)V, oy (ﬁ nla)}

(2116 = al%, £l N% + 2 £1l0 | (1 = cos (1) o (B,m) }

[An (f,2) = f (@)] < (mi <1>)

of (x)

dx {1B +(bi —ai) On (B,n)}}sin(1)+

N
izl
1 1 al o (1
4{ Z |fo (2)] ( ) n75+ (H(bi—ai) 1) 5N(ﬂ,n)‘|}sm (2>}—|—
avlal=2 I ! i1
W'S* (far 7z ) N?
{[(1(}08(1)){ : (J;QBH )N + w1 <f, nlﬁ> }]

+ (20— alZ £l 25 N2+ 201l (1 —cos () on (Bm) } L (54)

and

(iv) 1
N .
1A () = fllc < <Hwi<1>>

i=1

of
8332‘

i

4{ S fm(Nl )
aslal=2 T !
1=1

+ { (1 —cos (1)) {W?SX (J;;’Bnlﬁ) N2 o <f7 n15> }_

+ 216 = allZ I Fall 25 N2+ 211 ] (1 = cos (1) dx (B,m) }} = €, ().

We observe that A, — I (unit operator), as n — oo, pointwise and uni-
formly.

{nlﬂ +(b; —a;) 6n (5,n)}}Sin(1)+

N
5)

(5

o0

15



Proof. Here R is as in (45). We see that

Lnb]
U, = Z Z(nx—k)R =

k=[nal
Lnb) [mb)
Z(nz—k)R+ > Z (nz — k) R.
k= Ma] k = [na)
{ 15 -2l < 7 { 15 =2l > 55

Therefore

[nb]

|Un| < > Z (nx — k)
k = [na)
{ 15 -2l < 5

P (far ) N?
[<1cos<1>>{ Ve ) 2y, <f,73ﬁ>H+p5N(ﬂ,n)§

We have established that

(1 cos (1)) {w?gx Uit s (1.3%) H

Un| <

+ (216 = alZ I fall 25 N2 + 201l ] (1 = cos (1)) o (8,m).

By (44) we observe that

[nb] k Lnb]

Z f<n)Z(nm—k)—f(g;) Z Z(nx—k)| =
k=[na] k=na]

N [nb]

k; 0
(Z (( Z Z (nx — k) (n —xz>) 85 (x )))51n(1)—|—
i=1 k=[na] %
[nb]

2{ Z fa (2) N Z Z (nx —

a:=(a1,..., an),x; €24 H az' k=[na]

i=1,...,N,|| :‘]Zj: ;=2 i=1

16

+ pon (B,n).

(57)



Y o

The last says

(60)
‘We notice that
[nb] k.
A5 (=), @) S AL (| —mil2) = Y | = — x| Z(na— k) =
k=[na]
[nb] k.
Z — — x| Z (nx — k) +
n
{ = [na]
[
[nb] .
Z = — x| Z (nx — k) <
n
{ k= [na]
15 =2/l > 7=
1 [nb]
5+ (b; — a;) Z Z (nx —k) < (61)
k= [na]
1% —=ll.>7m
1
—5 T (bi—ai)dn (B,n).
We have proved that
1
|A7 (=), 2)| < —5 T (bi —ai) oy (B,n), (62)

17



Next we see that

[nb] N k. a;
Z (Hz—xi )Z(nx—k):
k=[na] \i=1 n
[nb] N k. o
Z (H ﬁ—mi )Z(nm—k)+ (63)
{ k = [na] =1
IR -l < 75
[nb] N k. o
Z (H #fxi >Z(nxk)<
= [na] =t
15—l > 75
1 o
55 T (H (bi — a;) ) on (B,n)
i=1

We have proved that

N
o[l

IN

1 N
- (H (b —)) on (Bom).  (64)

i=1

At last we observe that

18



4 > fa (2) Nl A;(ﬂ(.—xi)“i,x> Sin2<;).

a:=(a,...,aN),0; €L H 042’! i=1

N J
i=1,...,N,|al:=> a;=2 =1
i=1
(65)
Putting all of the above together we prove the theorem. m
We make
N
Remark 18 Let f € C? <H [a;,b;],C ), N € N. By the mean value theorem
i=1

we have that sinhax = sinhz — sinh0 = (cosh&) (z —0), for some & between
{0,z}, for any x € R.
Hence
sinhz| < [[coshl| [y [z, V2 €[-1,1].
But
[[cosh|| (1,1 = cosh (1).
Thus, we have
|sinhz| < cosh (1) |z], V€ [-1,1].
N
Let % = (k—nl,..., %\’), and x := (21, ..., 2N), with %x € (H [ai,bi]), then
i=1

(by (43), where g t):=f (:E+t(ﬁ —x)), 0<t<1) we have

/ (fj) @)= (ﬁj (k —mi) - <x>> sinh (1) +

{2
_{[(é (’;_x> aiff] (x)—f(x)}}sinh(l—t)dt. (66)

Denote the remainder

e L{{EE ) Cr ) )




(f[l %—x a) fa <x+t<fb—x>) — fu ()| +
+'f (m—l—t(z—x))—f(m) }|sinh(1—t)|dt< (68)

ki

— —x;

[ % (I

=1

a> o <fthkx
n

)

)}cosh(l) (1—t)dt < (%).

——x
oo
Notice here that (0 < 8 <1)
k 1 k; 1

We further see that

N
(¥) < cosh (1) q wi’s™ <fa, nlﬁ> | Z 2 (H nﬁlm>




1 2
max
cosh(1) ¢ Wi’ (fw?%ﬁ) E N
a=(a1,...,an),0; €Ly H ;!
N aly
i=1,..Na|:=% a;=2 =!
i=1

1 1
o (5) )3 -
cosh (1) [ wPs* (fa, 7)) N? 1
5 2B +wi | f, B
We have proved that

cosh (1) [ wPs* (fa, 7)) N? 1
Bl < — { 2B twi{f5 )

given that H% — xHoo < n%.

We notice also that

1
2
|R| < cosh (1)/ Z ~
0 a:=(ai,...,an),0; €% H «;!
N :
i=1,....N,|la|:=> a;=2 i=1
=

N
(H (bi — ai) >2||fa|oo+2||foo}(1—t)dt<

i=1

2
cosh (1) E ~
ar=(ai,...,an),e; €Z4 H ;!
ol i=1
:1,...,N,\a|::z 041',:2 -
i=1

1
200~ all I3 + 2151} ([ 0 ae) =

2 max
cosh (1) {2 b = al%, Ilfal25 N +2 1] }

N =

cosh (1) (I — all% 1£all2%5 N2 + 1)
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(70)

(71)

(72)



where a := (a1, ....,an), b= (b1,...,bn).
We have proved that

[R] < cosh (1) (116 = all%, | fall2t5 N* + 1£1l.0 ) = - (73)
We continue with the hyperbolic approximation.

Theorem 19 Let f € C? (]_L 1 lai, ;] ,(C) ,0<B<1,nNeN, n'=F>2

x, T € (vazl [ai,bi]) ,a:=(ay,...,an), b:=(b1,...,by). Then
(i)

N ! max
(H%‘(U) cosh(l){[Q{ 1,2 (J;O;vﬁnﬁ) +Wl(ﬁﬂlﬁ)}

(16 = all% Ifall2s N2 + 11l On (B,

(ii) assume that (“) =0,i=1,...,N, and fo(z0) =0, a : o] = 2, we

have that
[An (f,2) = f(2)] <

N -1 (omax 1 2
(Hwn) <cosh<1>>{ 2{ B Vo) N2, (fnlﬁ)}

(16 = all%, 1£al25 N2 + 11| ox (B.m) }

+ (75)

(i) »
[An (f,2) = f ()] < (Hw )

of (z)
axi

{nlﬁ + (b — i) b (ﬁ,n)}} sinh (1) +

Wi
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N
40 " fal@) Nl ([I (b — a;)® >5N(ﬁno] smh2<;>
a:|la|=2 I:[ ai! i=1
, W' (far 77) N 1
+ cosh (1) 5 25 +w1 <f,n5> +
(16— @l 1 fall2s N2 + 11| S (B } (76)
and
(iv)

145 ( fm<H% )1

m{;,u@—%wNWm@}mmm+

iibs

> |
4 }:hm(

ox;

! 3 Qi ] . 2 1
a:la|=2 n26 + Ll;[l(b’ o ai) on (5771)_ sinh (2>

N
H Oéi!
i=1

+ cosh (1) { l2 {wgﬂgx ({:2767#3) +wy <f, nlﬂ) }_ + (77)
(16 = all% 1 £all 25 N + 1 £llo | on (B.m) } | =95, (£).

We observe that A,, — I (unit operator), as n — oo, pointwise and uni-

formly.
Proof. Here R is as in (67). We see that
[nb]

Up:= Y Zmzx—k)R= (78)
k=[nal
[nb] Lnb]
Z Z(nx—k)R+ Z Z (nx — k) R.
k = [na) k= [nal
{:||§x||ooénla {:||ﬁx||oo>nlﬁ
Therefore
[nb]
|U,| < Z Z (nx — k)
{ k= [na)
1% -2l < 5



+pon (B;n) < (79)

max 1 2
)
a0 [ { A (1)

‘We have established that

|U,| < cosh (1) [2 {wrlngx ({j;,ﬁ"ﬁ) + w1 (fa nlﬁ> }]

+cosh (1) [1b = all%, 1 fall 25 N2 +11f L] O (8,m). (80)
By (66) we observe that

% f( ) (nz — )—f(x)( % Z(na:—k:)):

+pon (B;7n) .

k=[na] k=[na]
N |nb]
ki 0 .
(Z (( Z Z (nx — k) <n - :cl)> &f (x)) )sinh (1) +
i=1 k=[na] !
9 Lnb]
2 S @ (X Zee-n
a:=(a1,...,an),0; EZ4 H ;! k=[na]

The last says
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As earlier it holds
. 1
[An (= 2i),2)| < —5 + (b — ai) o (B, ), (82)

i=1,...,N.
Also, as earlier we have

N 1 N
Ay (H (- —x)™ ,m) < eyl + (H (b; — ai)a) 0n (B,m) (83)
At last we observe that
N
An (fiz) = f(z) - (Z 830;@ A (=) ,x)) sinh (1) —
=1 g

(Hwim) Un| =

[nb]
A:;<f,x)—f(x>( > Z(nx—k)) -

k=[na]

N
<Z agg) A (=) mc)) sinh (1) —

Putting all of the above together we prove theorem. m
We make

Remark 20 By (24) we get that ||A, (f)|l < [[flle < 00, and A, (f) €
C (Hf\;l [ai, bi] ,(C), given that f € C (Hfil [a;, b;] ,(C).
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Clearly then

147 (Nl = 1140 (An (e < 1140 (Hlloo < 11l » (85)

etc.
Therefore we get

145 (Ao < Ifle» YVEEN, (86)

the contraction property.
Also we see that

A% (Nl S NAT Do < - < 1A (Do S 1 lloo - (87)

Also A, (1) =1, Ak (1) =1,¥V keN.
Following 18.14, pp. 401-402, of [9], similarly we obtain that

1AL = Fle <7114 (f) = fllo, T€N. (88)
We give

Theorem 21 All as in Theorems 17, 19. Then
()
[ALS = Flloe < 7€, (1) (89)
where &, (f) as in (55).
(ii)
[ALS = flloe <70 (), (90)
where ¥, (f) as in (77).

So that the speed of convergence to the unit operator of A], is not worse than
of A, see also [8].
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