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3 Yıldız Technical University, Graduate School of Applied and Natural
Sciences, Department of Mathematics, Istanbul, Turkey.
∗Corresponding author: abdullatif.yalcin@std.yildiz.edu.tr

Abstract: There have been many proposed forms of fractional calculus, which
can be grouped into a few broad classes of operators. By replacing the kernel
of the power function with another kernel function, the traditional Riemann-
Liouville formula and its generalisations are modified. Recent research has
focused on Minkowski fractional inequalities and other inequalities for frac-
tional integrals of certain types of functions. We also provide many concrete
examples of applications to demonstrate the power of our key findings. It is
no longer necessary to prove such statements separately for each model. This
is because in a single study we have provided theorems that are valid for the
entire general class of fractional operators. We can also study fractional inte-
grals and derivatives with respect to functions.

Key words:Fractional integrals; Minkowski inequality; Integral inequalities;
General analytic kernels.

1.Introduction

Through differential and integral calculations, calculus, one of the fundamen-
tal ideas of mathematics, is essential to many scientific and engineering disci-
plines. However, there are occasions when the conventional integer-order dif-
ferentiation and integration processes are insufficient for the analysis of com-
plex systems or the modelling of natural phenomena. For example, mathe-
maticians have been fascinated by the 1/2 order derivative for hundreds of
years. At present, applications and research in mathematics are gaining a new
perspective thanks to fractional calculus. However, there is still no conclusive
answer to this question. In the 21st century, research in this area, which has its
origins in the 17th century, has grown and deepened, and many more useful
definitions have been developed. And each has its own advantages and disad-
vantages. One of the most useful fractional integrals is the Riemann-Liouville
fractional integral operator (see [1-5]). By challenging mathematical thinking
in new ways, fractional calculus has had a major impact on various fields of
application. Fractional operators arise in two areas, pure mathematical theory
and real-world modelling, and play an important role in disciplines such as
engineering, physics, statistics, biology and economics. They also allow us to
better understand and model complex phenomena (see [6-9]).

In recent years, researchers have introduced the Caputo model by modify-
ing the differentiation and integration operations of the most popular model,
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the Riemann-liouville fractional integral operator (see [10]). Caputo is of-
ten preferred for modeling initial value problems, but the disadvantage of
this model is that the analyticity is lost during differential integration (see
[11]). Most of the definitions of fractional operators are based on replacing
the kernel of the power function by a different kernel function. In partic-
ular, we refer to the Atangana Baleanu and Prabhakar definitions involving
the Mitag-Lefler kernel function (which is nonsingular and interpolates be-
tween Riemann-Liouville and Caputo) (see [12-18,38]). These definitions are
not equivalent to each other, each has its own specific properties and appli-
cations, with the Prabhakar formula attracting attention in recent years for its
application in viscoelasticity and scotastic processes (see [19,20]). For example,
to model systems with power law behavior, logarithmic behavior, exponential
behavior and other more complex behaviors or for different initial conditions.
An individual type of fractional calculus can be useful in different types of
application domains. However, from a mathematical point of view, it is not
efficient to prove the same properties and theorems over and over again. For
each fractional operator, researchers try to generalize and prove results again
and again.

It is a natural question to ask from a mathematical point of view whether it
is possible to implement them only once in a general setting and then as spe-
cial cases for each operator. A similar question has been raised by researchers
working in applied sciences, such as engineers, in terms of real-world appli-
cations. Therefore, recently many results in the class of fractional integrals
and derivative operators with analytic kernels have been proved in a general
setting (see [21]).

In this work we try to stop the flow of similar papers by proving results
about general classes. By eliminating the proofs of each class of fractional op-
erators, we try to eliminate the problems of wasted time and class differences.
We continue this paper with proofs involving the inverse Minkowski inequal-
ity and related results and the general class of fractional operators with ana-
lytic kernel.

The paper is organized as follows: In Section 2 we discuss notions of results
and basic definitions of the newly introduced general analytic kernel fractional
operators. We also present results on the inverse Minkowski inequality. Sec-
tion 3 defends fundamental results such as the inverse Minkowski inequality
involving integrals with general analytic kernels. Section 4, we show related
variants. Section 5 is we offer many concrete examples as applications. Section
6 is devoted to conclusions.

2. Preliminaries

2.1 Fractional Calculus

We begin this chapter by describing the most popular point of the fractional
integral, the Riemann-Liouville fractional integral operator, and fractional in-
tegral models based on replacing the kernel of a power function by a different
kernel function.
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Definition 2.1 ([22,23]). Let f ∈L1 [a,b] and R (α)> 0 the right and left Rie-
mann Liouville fractional integrals RLI

α
a+f and RLI

α
b−f of order α of f (x) is are

defined by:

RLI
α
b−f (x)=

1

Γ (α)

∫ b

x
f (θ) (θ−x)α−1dθ, b> x. (1)

and

RLI
α
b−f (x)=

1

Γ (α)

∫ b

x
f (θ) (θ−x)α−1dθ, b> x. (2)

Where Γ (α) is gamma function.

Definition 2.2 ([5,22,23]). Let f ∈Cn [a,b] a function n−1≤R (α)< 0. Then, the
Riemann–Liouville fractional derivative with order α of the function f with
respect to x and with constant of integration a is defined by:

RLD
α
a+f (x)=

dn

dxn
(

RLI
n−α
a+ f (x)

)

, (3)

and
RLD

α
b−f (x)=

dn

dxn
(

RLI
n−α
b− f (x)

)

. (4)

By conventional, we have RLD
−α
a+ f (x)=

RLI
α
a+ , we find that RLD

α
a+f (x) and

RLI
α
a+ are defined for all α∈C.

By differentiation and fractional integration of the kernel of the power func-
tion of the Riemann-Liouville fractional operator, i.e. another function, this
gives rise to the Caputo and Atangana-Baleanu model. The Caputo-Fabrizio
fractional operator, which is used in dynamical systems, physical phenomena,
disease models, and many other fields, is a highly functional operator by defi-
nition, But has a deficiency in terms of not meeting the initial conditions in the
special case α = 1. The improvement to eliminate this deficiency has been pro-
vided by the new derivative operator developed by Atangana-Baleanu, which
has versions in the sense of Caputo and Riemann (see [10,12,14,15]).

Definition 2.3 ([24]). Let [a,b] be a real interval, α and β be complex pa-
rameters with non-negative real parts, and R be a positive number satisfying

R>(b−a)Re(β) Let A be a complex function analytic on the disc D (0,R) and de-
fined on this disc by the locally uniformly convergent power series

A(x)=
∞
∑

n=0

anx
n, (5)

where the coefficients an=an (α,β) are permitted to depend on α and β if de-
sired. We define the following fractional integral operatör f ∈L [a,b] and α,β> 0,
the right and left Riemann Liouville fractional integral with analytic kernel

function AI
α,β
a+ f and AI

α,β
b− f of order α of f (x) is are defined by:

AI
α,β
a+ f (x)=

∫ x

a
f (θ) (x−θ)α−1A

(

(x−θ) β
)

dθ, x> a, (6)
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and

AI
α,β
b− f (x)=

∫ b

x
f (θ) (θ−x)α−1A

(

(t−θ) β
)

dθ, b> x. (7)

The formula (6) and (7) is an extreme generalisation of the assortment of frac-
tional models we considered above.

Definition 2.4 ([24]). For any analytic function A as in Definition 2.3, we
define AΓ to be the transformed function

AΓ (x)=
∞
∑

n=0

anΓ (βn+α)x
n. (8)

The relationship between the pair of functions A and AΓ is vital to the under-
standing of our generalised operators. Alternatively,the generalised integral
operator with analytical kernel (6) and (7) can be written as an infinite series
of Riemann-Liouville fractional integrals. It is thus confirmed that the frac-
tional calculus is part of the calculus by the following theorem expressed as
follows (see [24]).

Theorem 2.1 ([24]). With all notation as in Definition 2.3, for any func-
tion f ∈L1 [a,b], we have the following locally uniformly convergent series for
AI

α
a+f (x) as a function on [a,b]:

AI
α,β
a+ f (x)=

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f (x) (9)

Alternatively, this identity can be written more concisely in terms of the trans-
formed function AΓ introduced in (8):

AI
α,β
a+ f (x)=AΓ

(

RLI
β
a+f (x)

)

(

RLI
α
a+f (x)

)

. (10)

Similarly, the right fractional integral can also be defined with the analytic
kernel function A and the parameters α, β of f (x). It has been shown that
the Prabhakar kernel is general enough to include as special cases some other
kernel functions of fractional calculus, including the AB kernel (see [13]). It
has also been shown that all the fractional models mentioned above can be
viewed as special cases of our generalisedmodel with the new analytical kernel
for appropriate functions f and parameters α, β, A (see [24]).

2.2 Minkowski inequality

The reverse Minkowski inequality and a result relevant to the inequality con-
nected to the Riemann-Liouville fractional integral that corresponds to the fol-
lowing two theorems were proven by Dahmani (see [25]).

Theorem 2.2 ([25]). Let α> 0, p≥1 and let there be two positive functions
f1 and f2 on [0,∞) such that for all x> a, RLI

α
a+f1

p (x)<∞, RLI
α
a+f2

p (x)<∞. If

0 <τ1≤
f1(θ)
f2(θ)
≤τ2, θ∈[a,x], then we have:

(

RLI
α
a+f1

p (x)
) 1
p +

(

RLI
α
a+f2

p (x)
) 1
p≤

1+τ2 (τ1+2)

(τ1+1)(τ2+1)

(

RLI
α
a+(f1 + f2)

p(x)
)1/p

. (11)
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Theorem 2.3 ([25]). Let α> 0, p≥1 and let there be two positive functions
f1 and f2 on [0,∞) such that for all x> a, RLI

α
a+f1

p (x)<∞, RLI
α
a+f2

p (x)<∞. If

0 <τ1≤
f1(θ)
f2(θ)
≤τ2, θ∈[a,x], then we have:

(

RLI
α
a+f1

p (x)
) 2
p +

(

RLI
α
a+f2

p (x)
) 2
p≥

(

(1+τ2) (τ1+1)

τ2
−2

)

[

RLI
α
a+f1

p (x)
]1/p[RLI

α
a+f2

p (x)
]1/p

.

(12)
The classical version of the reverseMinkowski inequality was proved by Bougoffa
in [28], the version with the Mittag-Leffler kernel by Andric et al. in [26], the
version with the AB-fractional operator by Khan et al. in [27], and many other
extensions of the reverse Minkowski inequality have been proved by various
types of fractional calculus.(see [29-37]) We do not give all the proofs in detail
here, but they are often functionally identical to the results of the inequalities
in (11) and (12).

3. Minkowski inequalities for fractional integral with general analytic
kernels

This section comprises our principal involvement of establishing the proof
of the reverse Minkowski inequalities via general analytic kernels fractional
integral operators defined in (6) and (7)an associated theorem insinuated as
the reverse Minkowski inequalities.

Theorem 3.1. Let α,β> 0, p≥1 and let there be two positive functions f1 and f2

on [0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If 0 <τ1≤
f1(θ)
f2(θ)
≤τ2,

holds for τ1,τ2 ∈ R
+ and θ∈[a,x], then we have:

(

AI
α,β
a+ f1

p (x)
) 1
p
+
(

AI
α,β
a+ f2

p (x)
) 1
p
≤

1+τ2 (τ1+2)

(τ1+1)(τ2+1)

(

AI
α,β
a+ (f1 + f2)

p(x)
) 1
p
. (13)

Proof: Under the given condition
f1(θ)
f2(θ)
≤τ2, θ∈[a,x], it can be write as

(τ2+1)
pf1

p (θ) ≤ τ2
p(f1 + f2)

p (θ) . (14)

Multiplying both sides of (14) with
(x− θ)α+nβ−1

Γ(βn+α)
, since the gamma function is

positive R
+, and (x − θ)α+nβ−1 is also positive. Then integrating the resulting

inequalities with respect to θ over (a,x), we obtain

(τ2+1)
p
∫ x

a
(x − θ)α+nβ−1f1

p (θ)dθ ≤ τ2
p

∫ x

a
(x − θ)α+nβ−1(f1 + f2)

p(θ)dθ.

(15)
Consequently, we can write

(τ2+1)
pRLI

α+nβ
a+ f1

p (x) ≤ τ2
pRLI

α+nβ
a+ (f1 + f2)

p (x) . (16)
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If both sides of (16) are multiplied by Γ (βn+α) and all an real positives and
then summed over all n:

(τ2+1)
p
∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f1

p (x) ≤ τ2
p
∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ (f1 + f2)

p (x) .

(17)
Which is equivalent to

AI
α,β
a+ f1

p (x) ≤
τ2

p

(τ2 +1)P
AI

α,β
a+ (f1 + f2)

p (x) .

Hence, we can write

[

AI
α,β
a+ f1

p (x)
] 1
p
≤

τ2
(τ2 +1)

[

AI
α,β
a+ (f1 + f2)

p (x)
] 1
p
. (18)

In contrast, as τ1f2(θ)≤f1(θ), it follows that

(

1+
1

τ1

)p

f2
p (θ) ≤

1

τ1
p [f1 (θ)+f2 (θ)]

p . (19)

Again, if we multiplying both sides of (19) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real

positives and then summed over all n we obtain.

[

AI
α,β
a+ f2

p (x)
] 1
p
≤

1

(τ1 +1)

[

AI
α,β
a+ (f1 + f2)

p (x)
] 1
p
. (20)

Adding the inequalities (18) and (20) yields the desired inequality.

Remark 3.2. Applying Theorem 3.1 for α = 1, β = 0 and for an arbitrary choice
of function A(1) we obtain Theorem 1.2 in [28].
Remark 3.3. In Theorem 3.1, if we choose , β = 0 and A(x) = 1

Γ(α)
, we obtain

Theorem 2.1 in [25].

Remark 3.4. Using Theorem 3.1 with A(x) = 1
ραΓ(α)

exp
(

ρ−1
ρ x

)

, we obtain Theo-

rem 3.1 in [36].
Remark 3.5. In Theorem 3.1, if we choose A(x) = E

ρ
β,α (ωx), we obtain Theorem

2.1 in [26].
Inequality (13) is referred to as the reverse Minkowski inequality for fractional
integral with general analytic kernels.

Theorem 3.2. Let α,β> 0, p≥1 and let there be two positive functions f1 and f2

on [0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If 0 <τ1≤
f1(θ)
f2(θ)
≤τ2,

holds for τ1,τ2 ∈ R
+ and θ∈[a,x], then we have:

(

AI
α,β
a+ f1

p (x)
) 2
p
+
(

AI
α,β
a+ f2

p (x)
) 2
p
≥

(

(1+τ2) (τ1+1)

τ2
−2

)

[

AI
α,β
a+ f1

p (x)
] 1
p
[

AI
α,β
a+ f1

p (x)
] 1
p
.

(21)
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Proof: The product of inequalities (18) and (20) yields

(1+τ2) (τ1+1)

τ2

[

AI
α,β
a+ f1

p (x)
] 1
p
[

AI
α,β
a+ f2

p (x)
] 1
p
≤

[

AI
α,β
a+ (f1 + f2)

p (x)
] 2
p
. (22)

Now, utilizing the Minkowski inequality to the right hand side of (21), one
obtains

(

AI
α,β
a+ (f1 + f2)

p (x)
) 2
p
≤













[

AI
α,β
a+ f1

p (x)
] 1
p
+
[

AI
α,β
a+ f2

p (x)
] 1
p













2

.

Then, we have

(

AI
α,β
a+ (f1 + f2)

p (x)
) 2
p
≤

[

AI
α,β
a+ f1

p (x)
] 2
p
+
[

AI
α,β
a+ f2

p (x)
] 2
p
+2

[

AI
α,β
a+ f1

p (x)
][

AI
α,β
a+ f2

p (x)
]

.

(23)
Thus, from inequalities (22) and (23), we obtain the inequality (21).

Remark 3.6. Applying Theorem 3.1 for α = 1, β = 0 and for an arbitrary choice
of function A(1) we obtain Theorem 2.2 in [28].
Remark 3.7. In Theorem 3.1, if we choose , β = 0 and A(x) = 1

Γ(α)
, we obtain

Theorem 2.3 in [25].

Remark 3.8. Using Theorem 3.1 with A(x) = 1
ραΓ(α)

exp
(

ρ−1
ρ x

)

, we obtain Theo-

rem 3.2 in [36].
Remark 3.9. In Theorem 3.1, if we choose A(x) = E

ρ
β,α (ωx), we obtain Theorem

2.2 in [26].

4. Certain associated inequalities via fractional integral for general
analytic kernels

This section is devoted to deriving certain related inequalities involving a gen-
eralized with analaytic kernels fractional integral operator.

Theorem 4.1. Let α,β> 0, p≥1 and 1
p + 1

q = 1 let there be two positive func-

tions f1 and f2 on [0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞.

If 0 <τ1≤
f1(θ)
f2(θ)
≤τ2, holds for τ1,τ2 ∈ R

+ and θ∈[a,x], then we have:

[

AI
α,β
a+ f1 (x)

] 1
p
[

AI
α,β
a+ f2 (x)

] 1
q
≤

(

τ2
τ1

) 1
pq [

AI
α,β
a+ f1

1
p (x) f2

1
q (x)

]

. (24)

Proof: Under the given condition
f1(θ)
f2(θ)
≤τ2, θ∈[a,x], it can be write as

f1 (θ)≤τ2f2 (θ) ,

τ2
− 1
q f1

1
q (θ)≤f2

1
q . (25)
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Taking the product of both sides of (25) by f1
1
p , we can write as follows

τ2
− 1
q f1 (θ)≤f2

1
q (θ) f 1

1
p (θ) . (26)

Just like in the proof of Theorem 3.1, multiplying both sides of (26) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives and then summed over all n and then in-

tegrating the resulting inequalities with respect to θ over (a,x), we obtain the
following inequalities.

τ2
− 1
q

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f1 (x) ≤

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f2

1
q (x) f1

1
p (x) .

Consequently, we have

τ2
− 1
pq

[

AI
α,β
a+ f1 (x)

] 1
p
≤

[

AI
α,β
a+ f1

1
p (x) f2

1
q (x)

] 1
p
. (27)

On the contary, as τ1≤
f1(θ)
f2(θ)

, we have

τ1
1
p f2

1
p (θ)≤f1

1
p (θ) . (28)

Multiplying both sides of (28) by f2
1
q (θ) and invoke the relation 1

p + 1
q = 1, we

obtain

τ1
1
p f2 (θ)≤f1

1
p (θ) f2

1
q (θ) (29)

Multiplying both sides of (29) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives and

then summed over all n and then integrating the resulting inequalities with
respect to θ over (a,x), we obtain

τ1
1
pq

[

AI
α,β
a+ f2 (x)

] 1
q
≤

[

AI
α,β
a+ f1

1
p (x) f2

1
q (x)

] 1
q
. (30)

Multiplying (27) and (30), the required inequality (24) can be concluded.

Theorem 4.2. Let α,β> 0, p≥1 and 1
p +

1
q = 1 let there be two positive functions

f1 and f2 on [0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If

0 <τ1≤
f1(θ)
f2(θ)
≤τ2, holds for τ1,τ2 ∈ R

+ and θ∈[a,x], then we have:

(

AI
α,β
a+ f1f2

)

(x) ≤ C1

(

AI
α,β
a+ (f1 + f2)

p
)

(x) + C2

(

AI
α,β
a+ (f1 + f2)

q
)

(x) (31)

With C1 =
2p−1τ2

p

p(τ2+1)
p and C2 =

2q−1

q(τ1+1)
q .

Proof: Using the hypothesis, we have

(τ2 +1)pf1
p (θ)≤τ2

p(f1 + f2)
p (θ) . (32)
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Multiplying both sides of (32) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives and

then summed over all n and then integrating the resulting inequalities with
respect to θ over (a,x), we obtain the following inequalities.

(τ2 +1)p
∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f1

p (x) ≤ τ2
p
∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ (f1 + f2)

p (x) .

Consequently, we have

AI
α,β
a+ f1

p (x) ≤
τ2

p

(τ2 +1)p
AI

α,β
a+ (f1 + f2)

p (x) . (33)

In contrast, using 0 <τ1≤
f1(θ)
f2(θ)

, θ∈[a,x] holds we get

(τ1 +1)qf2
q (θ)≤(f1 + f2)

q (θ) . (34)

Similarly, multiplying both sides of (34) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real posi-

tives and then summed over all n and then integrating the resulting inequali-
ties with respect to θ over (a,x), we can write

AI
α,β
a+ f2

q (x) ≤
1

(τ1 +1)q

(

AI
α,β
a+ (f1 + f2)

q (x)
)

(35)

Now, taking into account Young’s inequality,

f1 (θ) f2 (θ) ≤
1

p
f1

p (x) +
1

q
f2

q (x) , (36)

again, multiplying both sides of (36) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives

and then summed over all n and then integrating the resulting inequalities
with respect to θ over (a,x), we obtain

(

AI
α,β
a+ f1 (x) f2 (x)

)

≤
1

p

(

AI
α,β
a+ f1 (x)

)

+
1

q

(

AI
α,β
a+ f2 (x)

)

. (37)

Applying inequalities (33) and (35) in (37) we obtain

(

AI
α,β
a+ f1 (x) f2 (x)

)

≤
τ2

p

p (τ2 +1)p

(

AI
α,β
a+ (f1 + f2)

p (x)
)

+
1

q (τ1 +1)q

(

AI
α,β
a+ (f1 + f2)

q (x)
)

.

(38)

Now, using the inequality (h1 + h2)
ℓ ≤ 2ℓ−1

(

h1
ℓ + h2

ℓ
)

, ℓ ≥ 1 with h1,h2 > 0 in

(38). We have

(

AI
α,β
a+ f1f2

)

(x) ≤
2p−1τ2

p

p (τ2 +1)p

(

AI
α,β
a+ (f1 + f2)

p
)

(x) +
2q−1

q (τ1 +1)q

(

AI
α,β
a+ (f1 + f2)

q
)

(x) .

This is the required result.
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Theorem 4.3. Let α,β> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive functions on

[0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If 0 <τ1≤
f1(θ)
f2(θ)
≤τ2,

holds for τ1,τ2 ∈ R
+ and θ∈[a,x], then:

τ2 +1

τ2 −ϕ

(

AI
α,β
a+ [f1−ϕf2]

p
) 1
p
(x) ≤

(

AI
α,β
a+ f1

p
) 1
p
(x)+

(

AI
α,β
a+ f2

p
) 1
p
(x) ≤

τ1 +1

τ1 −ϕ

(

AI
α,β
a+ [f1−ϕf2]

p
) 1
p
(x) .

Proof: Using the hypothesis, 0 <ϕ<τ1≤
f1(θ)
f2(θ)
≤τ2, we have

ϕτ1≤ϕτ2=⇒τ1ϕ + τ1≤ϕτ1 + τ2≤τ2ϕ+τ2

=⇒ (τ2 +1)(τ1 −ϕ)≤ (τ1 +1)(τ2 −ϕ) .

It follows that
(τ2+1)

(τ2−ϕ)
≤
(τ1+1)

(τ1−ϕ)
.

Furthermore, we obtain

τ1−ϕ≤
f1 (θ)−ϕf2(θ)

f2(θ)
≤τ2 −ϕ

Hence, we obtain

[f1 (θ)−ϕf2(θ)]
p

(τ2 −ϕ)
p ≤f2

p (θ)≤
[f1 (θ)−ϕf2 (θ)]

p

(τ1 −ϕ)
p . (39)

Moreover, we have

1

τ2
≤
f2(θ)

f1(θ)
≤
1

τ1
=⇒

τ1 −ϕ

ϕτ1
≤
f1 (θ)−ϕf2 (θ)

ϕf1 (θ)
≤
τ2 −ϕ

ϕτ2

Which implies that

(

τ2
τ2 −ϕ

)p

≤[f1 (θ)−ϕf2 (θ)]
p≤f1

p (θ)≤

(

τ1
τ1 −ϕ

)p

[f1 (θ)−ϕf2 (θ)]
p . (40)

Multiplying both sides of (39) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives and

then summed over all n and then integrating the resulting inequalities with
respect to θ over (a,x), we obtain the following inequalities.

(

1

τ2 −ϕ

)p ∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ [f1 (x)−ϕf2(x)]

p ≤

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f2

p (x) ≤

(

1

τ1 −ϕ

)p ∞
∑

n=0

anΓ (βn+α)
RLI

α+
a+

Consequently, we have

1

τ2 −ϕ

(

AI
α,β
a+ [f1−ϕf2]

p
) 1
p
(x) ≤

(

AI
α,β
a+ f2

p
) 1
p
(x) ≤

1

τ1 −ϕ

(

AI
α,β
a+ [f1−ϕf2]

p
) 1
p
(x) .

(41)

10



Adopting the same technique with (40), one obtains

τ2
τ2 −ϕ

(

AI
α,β
a+ [f1−ϕf2]

p
) 1
p
(x) ≤

(

AI
α,β
a+ f1

p
) 1
p
(x) ≤

τ1
τ1 −ϕ

(

AI
α,β
a+ [f1−ϕf2]

p
) 1
p
(x) .

(42)
Finally, by adding inequalities (41) and (42), we complete the proof of Theorem
4.3.
Theorem 4.4. Let α,β> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive functions on

[0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If 0≤m≤f1(θ)≤Mand
0≤n≤f2(θ)≤N , θ∈[a,x], then:

(

AI
α,β
a+ f1

p
) 1
p
(x) +

(

AI
α,β
a+ f2

p
)

1
p

(x)≤C3

(

AI
α,β
a+ [f1+f2]

p
) 1
p
(x) . (43)

With C3 =
M(m+N )+N (n+M)

(m+N )(n+M)
.

Proof: Under the given hypothesis, it follows that

1

N
≤

1

f2 (θ)
≤
1

n
. (44)

Conducting the product between (44) and 0 <m≤f1(θ)≤M, we have

m

N
≤
f1 (θ)

f2 (θ)
≤
M

n
. (45)

From (45), we get

f2
p (θ)≤

(

N

m+N

)p

[f1 (θ)+f2 (θ)]
p (46)

and

f1
p (θ)≤

(

M

n+M

)p

[f1 (θ)+f2 (θ)]
p . (47)

Multiplying both sides of (46) and (47) with
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives

and then summed over all n and then integrating the resulting inequalities
with respect to θ over (a,x), we obtain the following inequalities.

(

AI
α,β
a+ f2

p
) 1
p
(x)≤

N

m+N

(

AI
α,β
a+ [f1+f2]

p
) 1
p
(x) (48)

and
(

AI
α,β
a+ f1

p
) 1
p
(x)≤

M

n+M

(

AI
α,β
a+ [f1+f2]

p
) 1
p
(x) . (49)

By adding inequalities (48) and (49), we attain the Theorem 4.4.
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Theorem 4.5. Let α,β> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive functions on

[0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If 0 <τ1≤
f1(θ)
f2(θ)
≤τ2,

holds for τ1,τ2 ∈ R
+ and θ∈[a,x], then:

1

τ2

(

AI
α,β
a+ (f1f2) (x)

)

≤
1

(τ1 +1)(τ2 +1)

(

AI
α,β
a+ (f1+f2)

2
)

(x) ≤
1

τ1

(

AI
α,β
a+ (f1f2) (x)

)

.

Proof: Under the given suppositions 0 <τ1≤
f1(θ)
f2(θ)
≤τ2, it follows that

f2 (θ) (τ1 +1)≤f1 (θ)+f2 (θ)≤f2 (θ) (τ2 +1) . (50)

Also it follows that 1
τ2
≤

f2(θ)
f1(θ)
≤ 1

τ1
, which yields

f1 (θ)

(

τ2 +1

τ2

)

≤f1 (θ)+f2 (θ)≤f1 (θ)

(

τ1+1

τ1

)

. (51)

The product of (50) and (51) gives

f1 (θ) f2 (θ)

τ2
≤
(f1 (θ)+f2 (θ))

2

(τ1 +1)(τ2 +1)
≤
f1 (θ) f2 (θ)

τ1
. (52)

Now, multiplying both sides of (52) by
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives and

then summed over all n and then integrating the resulting inequalities with
respect to θ over (a,x), we obtain the following inequalities.

1

τ2

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ (f1f2) (x) ≤

1

(τ1 +1)(τ2 +1)

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ (f1+f2)

2 (x) ≤
1

τ1

∞
∑

n=0

anΓ (βn+α)
RLI

α+
a+

One observes that

1

τ2

(

AI
α,β
a+ (f1f2) (x)

)

≤
1

(τ1 +1)(τ2 +1)

(

AI
α,β
a+ (f1+f2)

2
)

(x) ≤
1

τ1

(

AI
α,β
a+ (f1f2) (x)

)

.

which is the desired result.

Theorem 4.6. Let α,β> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive functions on

[0,∞) such that for all x> a, AI
α,β
a+ f1

p (x)<∞, AI
α,β
a+ f2

p (x)<∞. If 0 <τ1≤
f1(θ)
f2(θ)
≤τ2,

holds for τ1,τ2 ∈ R
+ and θ∈[a,x], then:

(

AI
α,β
a+ f1

p (x)
) 1
p
+
(

AI
α,β
a+ f2

p (x)
) 1
p
≤ 2

(

AI
α,β
a+ Υ

p (f1, f2)
) 1
p
(x) ,

where Υ (f1 (θ) , f2 (θ)) =max
{

τ2
[(

τ2
τ1

+1
)

f1 (θ)− τ2f2 (θ)
]

,
(τ2+τ1)f2(θ)−f1(θ)

τ1

}

.

Proof: Under the given condition 0 <τ1≤
f1(θ)
f2(θ)
≤τ2, θ∈[a,x], it can be write as

0 <τ1≤τ2+τ1−
f1(θ)

f2(θ)
, (53)
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and

τ2+τ1−
f1 (θ)

f2 (θ)
≤τ2. (54)

Hence, using (53) and (54) we get

f2 (θ)<
(τ2 + τ1) f2 (θ)− f1 (θ)

τ1
≤Υ (f1 (θ) , f2 (θ)) ,

where Υ (f1 (θ) , f2 (θ)) =max
{

τ2
[(

τ2
τ1

+1
)

f1 (θ)− τ2f2 (θ)
]

,
(τ2+τ1)f2(θ)−f1(θ)

τ1

}

. Also

from the given supposition 0 < 1
τ2
≤

f2(θ)
f1(θ)
≤ 1

τ1
. In this way, we have

1

τ2
≤
1

τ2
+

1

τ1
−
f2 (θ)

f1 (θ)
, (55)

and
1

τ2
+

1

τ1
−
f2 (θ)

f1 (θ)
≤
1

τ1
. (56)

From (55) and (56), we obtain

1

τ2
≤

(

1
τ2

+ 1
τ1

)

f1 (θ)− f2 (θ)

f1 (θ)
≤
1

τ1
,

implying

f 1 (θ)≤τ2

(

1

τ2
+

1

τ1

)

f1 (θ)− τ2f2 (θ)

=

(

τ2
τ1

+1

)

f1 (θ)− τ2f2 (θ)

≤τ2

[(

τ2
τ1

+1

)

f1 (θ)− τ2f2 (θ)

]

≤Υ (f1 (θ) , f2 (θ)) .

We have
f1

p (θ)≤Υp (f1 (θ) , f2 (θ)) , (57)

and
f2

p (θ)≤Υp (f1 (θ) , f2 (θ)) . (58)

Now, multiplying both sides of (57) by
(x− θ)α+nβ−1

Γ(βn+α)
, and all an real positives and

then summed over all n and then integrating the resulting inequalities with
respect to θ over (a,x), we obtain.

∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ f1

p (x) ≤
∞
∑

n=0

anΓ (βn+α)
RLI

α+nβ
a+ Υ

p (f1 (x) , f2 (x))
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Accordingly,
(

AI
α,β
a+ f1

p (x)
) 1
p
≤

(

AI
α,β
a+ Υ

p (f1, f2)
) 1
p
(x) .

Adopting the same technique for (58), we have

(

AI
α,β
a+ f2

p (x)
) 1
p
≤

(

AI
α,β
a+ Υ

p (f1, f2)
) 1
p
(x) .

Hence, adding them together, we complete the proof of Theorem 4.6.

5. Examples
Each of the following examples illustrates the findings of this paper in this
section.
Example 5.1. Assume that α,β,k> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive
functions on [0,∞) such that for all x> a≥1 and θ∈[a,x], then we have:

[(

AI
α,β
a+ θp

)

(x)
] 1
p
+
[(

AI
α,β
a+ (k +θ)p

)

(x)
] 1
p
≤

3k +4

2(k +2)

[(

AI
α,β
a+ (k +2θ)p

)

(x)
] 1
p
.

Proof. By selectingTaking f1 (θ) = θ + k and f2 (θ) = k, we have respectively
τ1 = 1 and τ2 = k +1. Applying Theorem 3.1, the desired outcome.

Example 5.2. For any α,β,k> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive functions
on [0,∞) such that for all x> a≥1 and θ∈[a,x], then we have:

[(

AI
α,β
a+ θp

)

(x)
] 2
p
+
[(

AI
α,β
a+ (k +θ)p

)

(x)
] 2
p
≥
(

2

k +1

)[(

AI
α,β
a+ θp

)

(x)
] 1
p
[(

AI
α,β
a+ (k +θ)p

)

(x)
] 1
p
.

Proof. By putting f1 (θ) = θ + k and f2 (θ) = k, we have respectively τ1 = 1 and
τ2 = k +1
Applying Theorem 3.2, the desired outcome.

Example 5.3. Suppose that α,β,k> 0, p≥1 and 1
p+

1
q = 1. Let f1, f2 ∈ L[a,x] be two

positive functions on [0,∞) such that for all x> a≥1 and θ∈[a,x], the following
inequality holds:

[(

AI
α,β
a+ (θ + k)

)

(x)
] 1
p
[(

AI
α,β
a+ θ

)

(x)
] 1
q
≤ (k +1)

1
pq

(

AI
α,β
a+ (θ + k)

1
p θ

1
q

)

(x) .

Proof. Choosing f1 (θ) = θ + k and f2 (θ) = k, we have respectively τ1 = 1 and
τ2 = k +1
Applying Theorem 4.1, the desired outcome.

Example 5.4. Assume that, α,β,k> 0, p≥1 and 1
p + 1

q = 1. Let f1, f2 ∈ L[a,x]

be two positive functions on [0,∞) such that for all x> a≥1 and θ∈[a,x], the
following inequality holds:

(

AI
α,β
a+ θ(θ + k)

)

(x) ≤
2 p−1(1 + k)p

p(2 + k)p

(

AI
α,β
a+ (θp + (θ + k)p)

)

(x)+
1

2q

(

AI
α,β
a+ (θp + (θ + k)p)

)

(x)
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Proof. By setting f1 (θ) = θ + k and f2 (θ) = k, we have respectively τ1 = 1 and
τ2 = k +1
Applying Theorem 4.2, we get the desired result.

Example 5.5. Assume that,α,β,k> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive
functions on [0,∞) such that for all x> a≥1 and θ∈[a,x], the following inequal-
ity holds:

k +2

k +1−ϕ

(

AI
α,β
a+ [θ (1−ϕ) + k]p

) 1
p
(x) ≤

(

AI
α,β
a+ θp

) 1
p
(x)+

(

AI
α,β
a+ (θ + k)p

) 1
p
(x) ≤

2

1−ϕ

(

AI
α,β
a+ [θ (1−ϕ) + k]p

) 1
p
(x) .

Proof. By putting f1 (θ) = θ + k and f2 (θ) = k, we have respectively τ1 = 1 and
τ2 = k +1
Applying Theorem 4.3, we get the desired result.

Example 5.6. Suppose that α,β,k> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive
functions on [0,∞) such that for all x> a≥1 and θ∈[a,x], the following inequal-
ity holds:

(

AI
α,β
a+ sin2pθ

) 1
p
(x) +

(

AI
α,β
a+ cos2pθ

)

1
p

(x)≤2
(

AI
α,β
a+ 1

) 1
p
(x) .

Proof. Taking f1 (θ) = sin2θ and f1 (θ) = cos2θ, we obtain respectively,m = n = 0
andM =N = 1. Applying Theorem 4.4, we get the desired result.

Example 5.7. For any,α,β,k> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive functions
on [0,∞) such that for all x> a≥1 and θ∈[a,x], the following inequality holds:

1

k+1

(

AI
α,β
a+ θ (θ + k) (x)

)

≤
1

2(k +2)

(

AI
α,β
a+ (2θ + k)2

)

(x) ≤
(

AI
α,β
a+ θ (θ + k) (x)

)

Proof. Choosing f1 (θ) = θ + k and f2 (θ) = k, we have respectively τ1 = 1 and
τ2 = k +1
Applying Theorem 4.5, we get the desired result.

Example 5.8. Suppose that,α,β,k> 0, p≥1. Let f1, f2 ∈ L[a,x] be two positive
functions on [0,∞) such that for all x> a≥1 and θ∈[a,x], the following inequal-
ity holds:

(

AI
α,β
a+ θp (x)

) 1
p
+
(

AI
α,β
a+ (θ + k)p (x)

) 1
p
≤ 2

(

AI
α,β
a+ [Υk(θ)]

p
) 1
p
(x) ,

where Υk(θ) =max{k (2 + k) +θ,θ (1 + k)− k } .
Proof. Taking f1 (θ) = θ + k and f2 (θ) = k, we have respectively τ1 = 1 and
τ2 = k +1
Applying Theorem 4.6, we get the desired result.

6. Conclusin
In this paper we study some fractional integral inequalities in a generalised

sense. Then we obtain inverse Minkowski inequalities for fractional integral
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operators with a new analytic kernel. Finally, some concrete examples show
the importance of our results. Not only do we prove that it is mathematically
more valuable than writing individual papers on each operator, but our results
also encourage such research for the future. We hope that our results can stim-
ulate further research in various fields of pure and applied science.
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