Multivariate Fuzzy-Random and Perturbed Neural Network

 ApproximationGeorge A. Anastassiou
Department of Mathematical Sciences University of Memphis, Memphis, TN 38152, U.S.A. ganastss@memphis.edu
Dimitra Kouloumpou
Section of Mathematics
Hellenic Naval Academy, Piraeus, 18539, Greece
dimkouloumpou@hna.gr

Abstract

In this article we estimate the degree of approximation of multivariate pointwise and uniform convergences in the p-mean to the Fuzzy-Random unit operator of multivariate Fuzzy-Random Quasi-Interpolation perturbed activation functions based neural network operators. These multivariate Fuzzy-Random operators arise in a natural way among multivariate Fuzzy-Random neural networks. The rates are given through multivariate Probabilistic-Jackson type inequalities involving the multivariate Fuzzy-Random modulus of continuity of the engaged multivariate Fuzzy-Random function.

2020 AMS Subject Classification: 26A15, 26E50, 41A17, 41A25, 47S40, 60H25.

Keywords and Phrases: Fuzzy-Random analysis, Fuzzy-Random neural networks and operators, Fuzzy-Random modulus of continuity, Fuzzy-Random functions, Jackson type fuzzy and probabilistic inequalities.

1 Fuzzy-Random Functions Background

See also [2], Ch. 22, pp. 497-501.
We start with
Definition 1. (see [8]) Let $\mu: \mathbb{R} \rightarrow[0,1]$ with the following properties:
(i) is normal, i.e., $\exists x_{0} \in \mathbb{R}: \mu\left(x_{0}\right)=1$.
(ii) $\mu(\lambda x+(1-\lambda) y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in[0,1]$ (μ is called a convex fuzzy subset).
(iii) μ is upper semicontinuous on \mathbb{R}, i.e., $\forall x_{0} \in \mathbb{R}$ and $\forall \varepsilon>0$, \exists neighborhood $V\left(x_{0}\right)$: $\mu(x) \leq \mu\left(x_{0}\right)+\varepsilon, \forall x \in V\left(x_{0}\right)$.
(iv) the set $\overline{\operatorname{supp}(\mu)}$ is compact in \mathbb{R} (where $\operatorname{supp}(\mu):=\{x \in \mathbb{R} ; \mu(x)>0\}$).

We call μ a fuzzy real number. Denote the set of all μ with $\mathbb{R}_{\mathcal{F}}$.
E.g., $\chi_{\left\{x_{0}\right\}} \in \mathbb{R}_{\mathcal{F}}$, for any $x_{0} \in \mathbb{R}$, where $\chi_{\left\{x_{0}\right\}}$ is the characteristic function at x_{0}.

For $0<r \leq 1$ and $\mu \in \mathbb{R}_{\mathcal{F}}$ define $[\mu]^{r}:=\{x \in \mathbb{R}: \mu(x) \geq r\}$ and $[\mu]^{0}:=\overline{\{x \in \mathbb{R}: \mu(x)>0\}}$.
Then it is well known that for each $r \in[0,1],[\mu]^{r}$ is a closed and bounded interval of \mathbb{R}. For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$
[u \oplus v]^{r}=[u]^{r}+[v]^{r}, \quad[\lambda \odot u]^{r}=\lambda[u]^{r}, \quad \forall r \in[0,1],
$$

where $[u]^{r}+[v]^{r}$ means the usual addition of two intervals (as subsets of \mathbb{R}) and $\lambda[u]^{r}$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g., [8]). Notice $1 \odot u=u$ and it holds $u \oplus v=v \oplus u, \lambda \odot u=u \odot \lambda$. If $0 \leq r_{1} \leq r_{2} \leq 1$ then $[u]^{r_{2}} \subseteq[u]^{r_{1}}$. Actually $[u]^{r}=\left[u_{-}^{(r)}, u_{+}^{(r)}\right]$, where $u_{-}^{(r)}<u_{+}^{(r)}, u_{-}^{(r)}, u_{+}^{(r)} \in \mathbb{R}, \forall r \in[0,1]$.

Define

$$
D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \rightarrow \mathbb{R}_{+} \cup\{0\}
$$

by

$$
D(u, v):=\sup _{r \in[0,1]} \max \left\{\left|u_{-}^{(r)}-v_{-}^{(r)}\right|,\left|u_{+}^{(r)}-v_{+}^{(r)}\right|\right\},
$$

where $[v]^{r}=\left[v_{-}^{(r)}, v_{+}^{(r)}\right] ; u, v \in \mathbb{R}_{\mathcal{F}}$. We have that D is a metric on $\mathbb{R}_{\mathcal{F}}$. Then $\left(\mathbb{R}_{\mathcal{F}}, D\right)$ is a complete metric space, see [8], with the properties

$$
\begin{gather*}
D(u \oplus w, v \oplus w)=D(u, v), \quad \forall u, v, w \in \mathbb{R}_{\mathcal{F}}, \\
D(k \odot u, k \odot v)=|k| D(u, v), \quad \forall u, v \in \mathbb{R}_{\mathcal{F}}, \forall k \in \mathbb{R}, \tag{1}\\
D(u \oplus v, w \oplus e) \leq D(u, w)+D(v, e), \quad \forall u, v, w, e \in \mathbb{R}_{\mathcal{F}} .
\end{gather*}
$$

Let (M, d) metric space and $f, g: M \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy real number valued functions. The distance between f, g is defined by

$$
D^{*}(f, g):=\sup _{x \in M} D(f(x), g(x)) .
$$

On $\mathbb{R}_{\mathcal{F}}$ we define a partial order by $" \leq ": u, v \in \mathbb{R}_{\mathcal{F}}, u \leq v$ iff $u_{-}^{(r)} \leq v_{-}^{(r)}$ and $u_{+}^{(r)} \leq v_{+}^{(r)}, \forall$ $r \in[0,1]$.
\sum^{*} denotes the fuzzy summation, $\widetilde{o}:=\chi_{\{0\}} \in \mathbb{R}_{\mathcal{F}}$ the neutral element with respect to \oplus. For more see also [9], [10].

We need
Definition 2. (see also [7], Definition 13.16, p. 654) Let (X, \mathcal{B}, P) be a probability space. A fuzzy-random variable is a \mathcal{B}-measurable mapping $g: X \rightarrow \mathbb{R}_{\mathcal{F}}$ (i.e., for any open set $U \subseteq \mathbb{R}_{\mathcal{F}}$, in the topology of $\mathbb{R}_{\mathcal{F}}$ generated by the metric D, we have

$$
\begin{equation*}
\left.g^{-1}(U)=\{s \in X ; g(s) \in U\} \in \mathcal{B}\right) . \tag{2}
\end{equation*}
$$

The set of all fuzzy-random variables is denoted by $\mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$. Let $g_{n}, g \in \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$, $n \in \mathbb{N}$ and $0<p<+\infty$. We say $g_{n}(s) \underset{\substack{\text { "p-mean" } \\ n \rightarrow+\infty}}{\longrightarrow} g(s)$ if

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{X} D\left(g_{n}(s), g(s)\right)^{p} P(d s)=0 \tag{3}
\end{equation*}
$$

Remark 3. (see [7], p. 654) If $f, g \in \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$, let us denote $F: X \rightarrow \mathbb{R}_{+} \cup\{0\}$ by $F(s)=D(f(s), g(s))$, $s \in X$. Here, F is \mathcal{B}-measurable, because $F=G \circ H$, where $G(u, v)=D(u, v)$ is continuous on $\mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}}$, and $H: X \rightarrow \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}}, H(s)=(f(s), g(s))$, $s \in X$, is \mathcal{B}-measurable. This shows that the above convergence in q-mean makes sense.

Definition 4. (see [7], p. 654, Definition 13.17) Let (T, \mathcal{T}) be a topological space. A mapping $f: T \rightarrow \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$ will be called fuzzy-random function (or fuzzy-stochastic process) on T. We denote $f(t)(s)=f(t, s), t \in T, s \in X$.

Remark 5. (see [7], p. 655) Any usual fuzzy real function $f: T \rightarrow \mathbb{R}_{\mathcal{F}}$ can be identified with the degenerate fuzzy-random function $f(t, s)=f(t), \forall t \in T, s \in X$.

Remark 6. (see [7], p. 655) Fuzzy-random functions that coincide with probability one for each $t \in T$ will be consider equivalent.

Remark 7. (see [7], p. 655) Let $f, g: T \rightarrow \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$. Then $f \oplus g$ and $k \odot f$ are defined pointwise, i.e.,

$$
\begin{aligned}
(f \oplus g)(t, s) & =f(t, s) \oplus g(t, s) \\
(k \odot f)(t, s) & =k \odot f(t, s), \quad t \in T, s \in X, k \in \mathbb{R}
\end{aligned}
$$

Definition 8. (see also Definition 13.18, pp. 655-656, [7]) For a fuzzy-random function $f: W \subseteq \mathbb{R}^{N} \rightarrow \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P), N \in \mathbb{N}$, we define the (first) fuzzy-random modulus of continuity

$$
\begin{gathered}
\Omega_{1}^{(\mathcal{F})}(f, \delta)_{L^{p}}= \\
\sup \left\{\left(\int_{X} D^{p}(f(x, s), f(y, s)) P(d s)\right)^{\frac{1}{p}}: x, y \in W,\|x-y\|_{\infty} \leq \delta\right\}
\end{gathered}
$$

$0<\delta, 1 \leq p<\infty$.
Definition 9. ([1]) Here $1 \leq p<+\infty$. Let $f: W \subseteq \mathbb{R}^{N} \rightarrow \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P), N \in \mathbb{N}$, be a fuzzy random function. We call f a (p-mean) uniformly continuous fuzzy random function over W, iff $\forall \varepsilon>0 \exists \delta>0$:whenever $\|x-y\|_{\infty} \leq \delta, x, y \in W$, implies that

$$
\int_{X}(D(f(x, s), f(y, s)))^{p} P(d s) \leq \varepsilon
$$

We denote it as $f \in C_{F R}^{U_{p}}(W)$.
Proposition 10. ([1]) Let $f \in C_{F R}^{U_{p}}(W)$, where $W \subseteq \mathbb{R}^{N}$ is convex.
Then $\Omega_{1}^{(\mathcal{F})}(f, \delta)_{L^{p}}<\infty$, any $\delta>0$.

Proposition 11. ([1]) Let $f, g: W \subseteq \mathbb{R}^{N} \rightarrow \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P), N \in \mathbb{N}$, be fuzzy random functions. It holds
(i) $\Omega_{1}^{(\mathcal{F})}(f, \delta)_{L^{p}}$ is nonnegative and nondecreasing in $\delta>0$.
(ii) $\lim _{\delta \downarrow 0} \Omega_{1}^{(\mathcal{F})}(f, \delta)_{L^{p}}=\Omega_{1}^{(\mathcal{F})}(f, 0)_{L^{p}}=0$, iff $f \in C_{F R}^{U_{p}}(W)$.

We need also

Proposition 12. ([1]) Let f, g be fuzzy random variables from \mathcal{S} into $\mathbb{R}_{\mathcal{F}}$. Then
(i) Let $c \in \mathbb{R}$, then $c \odot f$ is a fuzzy random variable.
(ii) $f \oplus g$ is a fuzzy random variable.

2 About Perturbed Neural Network Background

2.1 About q-Deformed and λ-parametrized A-generalized logistic function induced real space valued multivariate multi layer neural network approximation

Here we follow [4].
We consider the q-deformed and λ-parametrized function

$$
\begin{equation*}
\varphi_{q, \lambda}(x)=\frac{1}{1+q A^{-\lambda x}}, \quad x \in \mathbb{R}, \text { where } q, \lambda>0, A>1 \tag{4}
\end{equation*}
$$

which is a sigmoid type function and it is strictly increasing. This is an A-generalized logistic type function. We easily observe that

$$
\begin{equation*}
\varphi_{q, \lambda}(+\infty)=1, \quad \varphi_{q, \lambda}(-\infty)=0 \tag{5}
\end{equation*}
$$

Furthermore we have

$$
\begin{equation*}
\varphi_{q, \lambda}(x)=1-\varphi_{\frac{1}{q}, \lambda}(-x) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{q, \lambda}(0)=\frac{1}{1+q} \tag{7}
\end{equation*}
$$

Moreover $\varphi_{q, \lambda}^{\prime \prime}(x)>0$, for $x<\frac{\log _{A} q}{\lambda}$ and there $\varphi_{q, \lambda}$ is concave up. When $x>\frac{\log _{A} q}{\lambda}$, we have $\varphi_{q, \lambda}^{\prime \prime}(x)<0$ and $\varphi_{q, \lambda}$ is concave down. Of course

$$
\varphi_{q, \lambda}^{\prime \prime}\left(\frac{\log _{A} q}{\lambda}\right)=0
$$

So, $\varphi_{q, \lambda}$ is a sigmoid function, see [3].
We consider the activation function

$$
\begin{equation*}
{ }_{1} \mathcal{L}_{q}(x):=\frac{1}{2}\left(\varphi_{q, \lambda}(x+1)-\varphi_{q, \lambda}(x-1)\right), \quad x \in \mathbb{R} \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
{ }_{1} \mathcal{L}_{q}(-x)={ }_{1} \mathcal{L}_{\frac{1}{q}, \lambda}(x), \quad \forall x \in \mathbb{R} \tag{9}
\end{equation*}
$$

We have that

$$
{ }_{1} \mathcal{L}_{q}^{\prime}(x)=\frac{1}{2}\left(\varphi_{q, \lambda}^{\prime}(x+1)-\varphi_{q, \lambda}^{\prime}(x-1)\right)<0
$$

i.e. ${ }_{1} \mathcal{L}_{q}$ is strictly decreasing over $\left(\frac{\log _{A} q}{\lambda},+\infty\right)$. Furthermore, ${ }_{1} \mathcal{L}_{q}$ is strictly concave down over $\left(\frac{\log _{A} q}{\lambda}-1, \frac{\log _{A} q}{\lambda}+1\right)$. Overall $\mathcal{L}^{\mathcal{L}}$ is a bell-shaped function over \mathbb{R}. Of course it holds ${ }_{1} \mathcal{L} q, \lambda^{\prime \prime}\left(\frac{\log _{A} q}{\lambda}\right)<0$. We have that the global maximul of ${ }_{1} \mathcal{L}_{q}$ is

$$
\begin{equation*}
{ }_{1} \mathcal{L}_{q}\left(\frac{\log _{A} q}{\lambda}\right)=\frac{A^{\lambda}-1}{2\left(A^{\lambda}+1\right)} \tag{10}
\end{equation*}
$$

Finally we have that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} 1 \mathcal{L}_{q}(x)=\frac{1}{2}\left(\varphi_{q, \lambda}(+\infty)-\varphi_{q, \lambda}(+\infty)\right)=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} 1 \mathcal{L}_{q}(x)=\frac{1}{2}\left(\varphi_{q, \lambda}(-\infty)-\varphi_{q, \lambda}(-\infty)\right)=0 \tag{12}
\end{equation*}
$$

Consequently the x-axis is the horizontal asymptote of ${ }_{1} \mathcal{L}_{q}$. Of course ${ }_{1} \mathcal{L}_{q}(x)>0, \forall x \in \mathbb{R}$. We need

Theorem 13. It holds

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty}{ }_{1} \mathcal{L}_{q}(x-i)=1, \quad \forall x \in \mathbb{R}, \forall q, \lambda>0, A>1 \tag{13}
\end{equation*}
$$

It follows

Theorem 14. It holds

$$
\begin{equation*}
\int_{-\infty}^{\infty}{ }_{1} \mathcal{L}_{q}(x) d x=1, \quad \lambda, q>0, A>1 \tag{14}
\end{equation*}
$$

So that ${ }_{1} \mathcal{L}_{q}$ is a density function on $\mathbb{R} ; \lambda, q>0, A>1$.
We need the following result
Theorem 15. Let $0<\alpha<1$, and $n \in \mathbb{N}$ with $n^{1-\alpha}>2$. Then

$$
\begin{align*}
& \quad \sum_{\quad k=-\infty}^{\infty}{ }_{1} \mathcal{L}_{q}(n x-k)<\max \left\{q, \frac{1}{q}\right\} \frac{1}{A^{\lambda\left(n^{1-\alpha}-2\right)}}=\gamma A^{-\lambda\left(n^{1-\alpha}-2\right)}=: c_{1}(n, a), \tag{15}\\
& :|n x-k| \geq n^{1-\alpha}
\end{align*}
$$

where $q, \lambda>0, A>1 ; \gamma:=\max \left\{q, \frac{1}{q}\right\}$.
Let $\lceil\cdot\rceil$ the ceiling of the number, and $\lfloor\cdot\rfloor$ the integral part of the number.
Theorem 16. Let $x \in[a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil n a\rceil \leq\lfloor n b\rfloor$. For $q>0, \lambda>0, A>1$, we consider the number $\lambda_{q}>z_{0}>0$ with ${ }_{1} \mathcal{L}_{q}\left(z_{0}\right)={ }_{1} \mathcal{L}_{q}(0)$ and $\lambda_{q}>1$. Then

$$
\begin{equation*}
\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{1} \mathcal{L}_{q}(n x-k)}<\max \left\{\frac{1}{{ }_{1} \mathcal{L}_{q}\left(\lambda_{q}\right)}, \frac{1}{{ }_{1} \mathcal{L}_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)}\right\}=: \Psi_{1}(q) . \tag{16}
\end{equation*}
$$

We make
Remark 17. (i) We have that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} 1 \mathcal{L}_{q}(n x-k) \neq 1, \quad \text { for at least some } x \in[a, b] \tag{17}
\end{equation*}
$$

where $\lambda, q>0$.
(ii) Let $[a, b] \subset \mathbb{R}$. For large n we always have $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq\lfloor n b\rfloor$. In general it holds

$$
\begin{equation*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{1} \mathcal{L}_{q}(n x-k) \leq 1 . \tag{18}
\end{equation*}
$$

We introduce

$$
\begin{equation*}
{ }_{1} Z_{q}\left(x_{1}, \ldots, x_{N}\right):={ }_{1} Z_{q}(x):=\prod_{i=1}^{N}{ }_{1} \mathcal{L}_{q}\left(x_{i}\right), \quad x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N} \tag{19}
\end{equation*}
$$

$\lambda, q>0, A>1, N \in \mathbb{N}$.
${ }_{1} Z_{q}(x)$ it has the properties:
(i) ${ }_{1} Z_{q}(x)>0, \quad \forall x \in \mathbb{R}^{N}$,
(ii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}{ }_{1} Z_{q}(x-k):=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty}{ }_{1} Z_{q}\left(x_{1}-k_{1}, \ldots, x_{N}-k_{N}\right)=1 \tag{20}
\end{equation*}
$$

where $k:=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{N}, \forall x \in \mathbb{R}^{N}$,
hence
(iii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}{ }_{1} Z_{q}(n x-k)=1 \tag{21}
\end{equation*}
$$

$\forall x \in \mathbb{R}^{N} ; n \in \mathbb{N}$,
and
(iv)

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}{ }_{1} Z_{q}(x) d x=1 \tag{22}
\end{equation*}
$$

that is ${ }_{1} Z_{q}$ is a multivariate density function.
Here denote $\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right\}, x \in \mathbb{R}^{N}$, also set $\infty:=(\infty, \ldots, \infty),-\infty:=$ $(-\infty, \ldots,-\infty)$ upon the multivariate context, and

$$
\begin{align*}
\lceil n a\rceil & :=\left(\left\lceil n a_{1}\right\rceil, \ldots,\left\lceil n a_{N}\right\rceil\right) \tag{23}\\
\lfloor n b\rfloor & :=\left(\left\lfloor n b_{1}\right\rfloor, \ldots,\left\lfloor n b_{N}\right\rfloor\right)
\end{align*}
$$

where $a:=\left(a_{1}, \ldots, a_{N}\right), b:=\left(b_{1}, \ldots, b_{N}\right)$.

We obviously see that for $0<\beta^{*}<1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^{N}$, we have that

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{1} Z_{q}(n x-k)= \\
\left\{\begin{array}{l}
\sum_{\substack{ \\
k=\lceil n a\rceil \\
\left\|\frac{k}{n}-x\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}}}}{ }_{1} Z_{q}(n x-k)+ \\
\left\{\begin{array}{c}
k=\lceil n a\rceil \\
\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{array}\right.
\end{array}{ }_{1} Z_{q}(n x-k) .\right. \tag{24}
\end{gather*}
$$

(v) We derive that

$$
\begin{align*}
& \sum^{\lfloor n b\rfloor}{ }_{1} Z_{q}(n x-k)<\gamma A^{-\lambda\left(n^{1-\beta^{*}}-2\right)}=c_{1}\left(n, \beta^{*}\right), 0<\beta^{*}<1, \tag{25}\\
& \left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{align*}
$$

with $n \in \mathbb{N}: n^{1-\beta^{*}}>2, x \in \prod_{i=1}^{N}\left[a_{i}, b_{i}\right]$.
(vi) We get that

$$
\begin{equation*}
0<\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z_{q}(n x-k)}<\left(\Psi_{1}(q)\right)^{N} \tag{26}
\end{equation*}
$$

$\forall x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), \quad n \in \mathbb{N}$.
It is also clear that
(vii)

$$
\begin{align*}
& \sum^{\infty}{ }^{\infty} Z_{q}(n x-k)<\gamma A^{-\lambda\left(n^{1-\beta^{*}}-2\right)}, \tag{27}\\
& \left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{align*}
$$

$0<\beta^{*}<1, n \in \mathbb{N}: n^{1-\beta^{*}}>2, x \in \mathbb{R}^{N}$.
Furthermore it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{1} Z_{q}(n x-k) \neq 1 \tag{28}
\end{equation*}
$$

for at least some $x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$.

2.2 About q-deformed and λ-parametrized hyperbolic tangent function $g_{q, \lambda}$

Here we follow [5]. Let us consider the function

$$
\begin{equation*}
g_{q, \lambda}(x):=\frac{e^{\lambda x}-q e^{-\lambda x}}{e^{\lambda x}+q e^{-\lambda x}}, \quad \lambda, q>0, x \in \mathbb{R} \tag{29}
\end{equation*}
$$

We have that $g_{q, \lambda}$ is striclty increasing. We easily observe that,

$$
\begin{equation*}
g_{q, \lambda}(+\infty)=1, \text { and } \quad g_{q, \lambda}(-\infty)=-1 \tag{30}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
g_{q, \lambda}(0)=\frac{1-q}{1+q} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\frac{1}{q}, \lambda}^{\prime}(x)=g_{q, \lambda}^{\prime}(-x) \tag{32}
\end{equation*}
$$

Moreover, in case of $x<\frac{\ln q}{2 \lambda}$, we have that $g_{q, \lambda}$ is strictly concave up, with $g_{q, \lambda}^{\prime \prime}\left(\frac{\ln q}{2 \lambda}\right)=0$.
And in case of $x>\frac{\ln q}{2 \lambda}$, we have that $g_{q, \lambda}$ is strictly concave down.
Clearly, $g_{q, \lambda}$ is a shifted sigmoid function with $g_{q, \lambda}(0)=\frac{1-q}{1+q}$, and $g_{q, \lambda}(-x)=-g_{q^{-1}, \lambda}(x)$, (a semi-odd function), see also [3].

By $1>-1, x+1>x-1$, we consider the activation function

$$
\begin{equation*}
{ }_{2} \mathcal{L}_{q}(x):=\frac{1}{4}\left(g_{q, \lambda}(x+1)-g_{q, \lambda}(x-1)\right)>0 \tag{33}
\end{equation*}
$$

$\forall x \in \mathbb{R} ; q, \lambda>0$. Notice that ${ }_{2} \mathcal{L}_{q}(\pm \infty)=0$, so the x-axis is horizontal asymptote. We have that

$$
\begin{equation*}
{ }_{2} \mathcal{L}_{q}(-x)={ }_{2} \mathcal{L}_{\frac{1}{q}}(x), \quad \forall x \in \mathbb{R} ; q, \lambda>0 \tag{34}
\end{equation*}
$$

a deformed symmetry.
Next, we have that

$$
\begin{equation*}
{ }_{2} \mathcal{L}_{q}^{\prime}(x)=\frac{1}{4}\left(g_{q, \lambda}^{\prime}(x+1)-g_{q, \lambda}^{\prime}(x-1)\right), \quad \forall x \in \mathbb{R} \tag{35}
\end{equation*}
$$

Moreover, ${ }_{2} \mathcal{L}_{q}$ is striclty increasing over $\left(-\infty, \frac{\ln q}{2 \lambda}-1\right)$. and strictly decreasing over $\left(\frac{\ln q}{2 \lambda}+1,+\infty\right)$. Furthermore ${ }_{2} \mathcal{L}_{q}$ is concave down over $\left[\frac{\ln q}{2 \lambda}-1, \frac{\ln q}{2 \lambda}+1\right]$, and strictly concave down over $\left(\frac{\ln q}{2 \lambda}-1, \frac{\ln q}{2 \lambda}+1\right)$. Consequently ${ }_{2} \mathcal{L}_{q}$ has a bell-type shape over \mathbb{R}.

Of course it holds ${ }_{2} \mathcal{L}_{q}^{\prime \prime}\left(\frac{\ln q}{2 \lambda}\right)<0$. We also have that the maximum value of ${ }_{2} \mathcal{L}_{q}$ is

$$
\begin{equation*}
{ }_{2} \mathcal{L}_{q}\left(\frac{\ln q}{2 \lambda}\right)=\frac{\tanh (\lambda)}{2}, \quad \lambda>0 \tag{36}
\end{equation*}
$$

We give
Theorem 18. We have that

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty}{ }_{2} \mathcal{L}_{q}(x-i)=1, \quad \forall x \in \mathbb{R}, \forall \lambda, q>0 \tag{37}
\end{equation*}
$$

We need
Theorem 19. It holds

$$
\begin{equation*}
\int_{-\infty}^{\infty}{ }_{2} \mathcal{L}_{q}(x) d x=1, \quad \lambda, q>0 \tag{38}
\end{equation*}
$$

So that ${ }_{2} \mathcal{L}_{q}$ is a density function on $\mathbb{R} ; \lambda, q>0$.
We need the following result
Theorem 20. Let $0<\alpha<1$, and $n \in \mathbb{N}$ with $n^{1-\alpha}>2 ; q, \lambda>0$. Then

$$
\left\{\begin{array}{l}
\sum_{k=-\infty}^{\infty}{ }_{2} \mathcal{L}_{q}(n x-k)<\max \left\{q, \frac{1}{q}\right\} e^{4 \lambda} e^{-2 \lambda n^{(1-\alpha)}}=T e^{-2 \lambda n^{(1-\alpha)}}=: c_{2}(n, a), \tag{39}\\
:|n x-k| \geq n^{1-\alpha}
\end{array}\right.
$$

where $T:=\max \left\{q, \frac{1}{q}\right\} e^{4 \lambda}$.

Let $\lceil\cdot\rceil$ the ceiling of the number, and $\lfloor\cdot\rfloor$ the integral part of the number.
Theorem 21. Let $x \in[a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil n a\rceil \leq\lfloor n b\rfloor$. For $q>0, \lambda>0$, we consider the number $\lambda_{q}>z_{0}>0$ with ${ }_{2} \mathcal{L}_{q}\left(z_{0}\right)={ }_{2} \mathcal{L}_{q}(0)$ and $\lambda_{q}>1$. Then

$$
\begin{equation*}
\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} 2 \mathcal{L}_{q}(n x-k)}<\max \left\{\frac{1}{{ }_{2} \mathcal{L}_{q}\left(\lambda_{q}\right)}, \frac{1}{{ }_{2} \mathcal{L}_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)}\right\}=: \Psi_{2}(q) \tag{40}
\end{equation*}
$$

We make
Remark 22. (i) We have that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{2} \mathcal{L}_{q}(n x-k) \neq 1, \text { for at least some } x \in[a, b] \tag{41}
\end{equation*}
$$

where $\lambda, q>0$.
(ii) Let $[a, b] \subset \mathbb{R}$. For large n we always have $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq\lfloor n b\rfloor$. In general it holds

$$
\begin{equation*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{2} \mathcal{L}_{q}(n x-k) \leq 1 \tag{42}
\end{equation*}
$$

We introduce

$$
\begin{equation*}
{ }_{2} Z_{q}\left(x_{1}, \ldots, x_{N}\right):={ }_{2} Z_{q}(x):=\prod_{i=1}^{N}{ }_{2} \mathcal{L}_{q}\left(x_{i}\right), \quad x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}, \lambda, q>0, N \in \mathbb{N} . \tag{43}
\end{equation*}
$$

${ }_{2} Z_{q}(x)$ it has the properties:
(i) ${ }_{2} Z_{q}(x)>0, \quad \forall x \in \mathbb{R}^{N}$,
(ii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}{ }_{2} Z_{q}(x-k):=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty} Z_{q}\left(x_{1}-k_{1}, \ldots, x_{N}-k_{N}\right)=1 \tag{44}
\end{equation*}
$$

where $k:=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{N}, \forall x \in \mathbb{R}^{N}$,
hence
(iii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}{ }_{2} Z_{q}(n x-k)=1 \tag{45}
\end{equation*}
$$

$\forall x \in \mathbb{R}^{N} ; n \in \mathbb{N}$,
and
(iv)

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}{ }_{2} Z_{q}(x) d x=1 \tag{46}
\end{equation*}
$$

that is ${ }_{2} Z_{q}$ is a multivariate density function.

We obviously see that

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{2} Z_{q}(n x-k)=\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(\prod_{i=1}^{N}{ }_{2} \mathcal{L}_{q}\left(n x_{i}-k_{i}\right)\right)= \\
\sum_{k_{1}=\left\lceil n a_{1}\right\rceil}^{\left\lfloor n b_{1}\right\rfloor} \ldots \sum_{k_{N}=\left\lceil n a_{N}\right\rceil}^{\left\lfloor n b_{N}\right\rfloor}\left(\prod_{i=1}^{N}{ }_{2} \mathcal{L}_{q}\left(n x_{i}-k_{i}\right)\right)=\prod_{i=1}^{N}\left(\sum_{k_{i}=\left\lceil n a_{i}\right\rceil}^{\left\lfloor n b_{i}\right\rfloor}{ }_{2} \mathcal{L}_{q}\left(n x_{i}-k_{i}\right)\right) . \tag{47}
\end{gather*}
$$

For $0<\beta^{*}<1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^{N}$, we have that

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{2} Z_{q}(n x-k)= \\
\left\{\begin{array}{c}
\sum_{\substack{ \\
k=\lceil n a\rceil \\
\left\|\frac{k}{n}-x\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}}}}^{{ }_{2} Z_{q}(n x-k)+} \sum_{2}^{\lfloor n b\rfloor}{ }_{2}(n x-k) . \\
k=\lceil n a\rceil \\
\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{array}\right. \tag{48}
\end{gather*}
$$

In the last two sums the counting is over disjoint vector sets of k 's, because the condition $\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}$ implies that there exists at least one $\left|\frac{k_{r}}{n}-x_{r}\right|>\frac{1}{n^{\beta^{*}}}$, where $r \in\{1, \ldots, N\}$.
(v) We also have that

$$
\begin{aligned}
& \sum^{\lfloor n b\rfloor}{ }_{2} Z_{q}(n x-k)<T e^{-2 \lambda n^{\left(1-\beta^{*}\right)}}=c_{2}\left(n, \beta^{*}\right), \quad 0<\beta^{*}<1, \\
& \| n a\rceil \\
& \left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{aligned}
$$

with $n \in \mathbb{N}: n^{1-\beta^{*}}>2, x \in \prod_{i=1}^{N}\left[a_{i}, b_{i}\right]$.
(vi) Moreover

$$
\begin{equation*}
0<\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} 2 Z_{q}(n x-k)}<\left(\Psi_{2}(q)\right)^{N}, \tag{50}
\end{equation*}
$$

$\forall x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), \quad n \in \mathbb{N}$.
It is also clear that
(vii)

$$
\begin{gather*}
\sum^{\infty}{ }_{2} Z_{q}(n x-k)<T e^{-2 \lambda n^{\left(1-\beta^{*}\right)}}, \tag{51}\\
k=-\infty \\
\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{gather*}
$$

$0<\beta^{*}<1, n \in \mathbb{N}: n^{1-\beta^{*}}>2, x \in \mathbb{R}^{N}$.
Furthermore it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{2} Z_{q}(n x-k) \neq 1, \tag{52}
\end{equation*}
$$

for at least some $x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$.

2.3 About q-deformed and parametrized half hyperbolic tangent function ϑ_{q}

Here we follow [6]. We introduce the function

$$
\begin{equation*}
\vartheta_{q}(t):=\frac{1-q e^{-\beta t}}{1+q e^{-\beta t}}, \quad \forall t \in \mathbb{R}, \tag{53}
\end{equation*}
$$

where $q, \beta>0 . \vartheta_{q}$ is striclty increasing. We also observe that

$$
\begin{equation*}
\vartheta_{q}(-\infty)=-1 \quad \text { and } \quad \vartheta_{q}(+\infty)=1 \tag{54}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\vartheta_{q}(0)=\frac{1-q}{1+q} \tag{55}
\end{equation*}
$$

In case of $t<\frac{\ln q}{\beta}$, we have that ϑ_{q} is strictly concave up, with $\vartheta_{q}^{\prime \prime}\left(\frac{\ln q}{\beta}\right)=0$.
And in case of $t>\frac{\ln q}{\beta}$, we have that ϑ_{q} is strictly concave down.
Clearly, ϑ_{q} is a shifted sigmoid function with $\vartheta_{q}(0)=\frac{1-q}{1+q}$, and $\vartheta_{q}(-x)=-\vartheta_{q^{-1}}(x), \forall$ $x \in \mathbb{R}$, (a semi-odd function), see also [3].

By $1>-1, x+1>x-1$, we consider the activation function

$$
\begin{equation*}
{ }_{3} \mathcal{L}_{q}(x):=\frac{1}{4}\left(\vartheta_{q}(x+1)-\vartheta_{q}(x-1)\right)>0, \tag{56}
\end{equation*}
$$

$\forall x \in \mathbb{R} ; \beta, q>0$. Notice that $\mathcal{L}_{q}(\pm \infty)=0$, so the x-axis is horizontal asymptote. Also it holds,

$$
\begin{equation*}
{ }_{3} \mathcal{L}_{q}(-x)={ }_{3} \mathcal{L}_{\frac{1}{q}}(x), \quad \forall x \in \mathbb{R}, \tag{57}
\end{equation*}
$$

a deformed symmetry.
Next we have that

$$
\begin{equation*}
{ }_{3} \mathcal{L}_{q}^{\prime}(x)=\frac{1}{4}\left(\vartheta_{q}^{\prime}(x+1)-\vartheta_{q}^{\prime}(x-1)\right), \quad \forall x \in \mathbb{R} \tag{58}
\end{equation*}
$$

Hence, ${ }_{3} \mathcal{L}_{q}$ is striclty increasing over $\left(-\infty, \frac{\ln q}{\beta}-1\right)$.
and strictly decreasing over $\left(\frac{\ln q}{\beta}+1,+\infty\right)$.
Moreover, ${ }_{3} \mathcal{L}_{q}$ is concave down over $\left[\frac{\ln q}{\beta}-1, \frac{\ln q}{\beta}+1\right]$, and strictly concave down over $\left(\frac{\ln q}{\beta}-1, \frac{\ln q}{\beta}+1\right)$.

Consequently ${ }_{3} \mathcal{L}_{q}$ has a bell-type shape over \mathbb{R}. Of course it holds ${ }_{3} \mathcal{L}_{q}^{\prime \prime}\left(\frac{\ln q}{\beta}\right)<0$. The maximum value of ${ }_{3} \mathcal{L}_{q}$ is

$$
\begin{equation*}
{ }_{3} \mathcal{L}_{q}\left(\frac{\ln q}{\beta}\right)=\frac{1-e^{-\beta}}{2\left(1+e^{-\beta}\right)} . \tag{59}
\end{equation*}
$$

We give
Theorem 23. We have that

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty}{ }_{3} \mathcal{L}_{q}(x-i)=1, \quad \forall x \in \mathbb{R}, \forall q, \beta>0 . \tag{60}
\end{equation*}
$$

It follows

Theorem 24. It holds

$$
\begin{equation*}
\int_{-\infty}^{\infty}{ }_{3} \mathcal{L}_{q}(x) d x=1, \quad q, \beta>0 . \tag{61}
\end{equation*}
$$

So that ${ }_{3} \mathcal{L}_{q}$ is a density function on $\mathbb{R} ; q, \beta>0$.
We need the following result
Theorem 25. Let $0<\alpha<1$, and $n \in \mathbb{N}$ with $n^{1-\alpha}>2 ; q, \beta>0$. Then

$$
\begin{align*}
& \quad \sum_{\quad k=-\infty}^{\infty}{ }_{3} \mathcal{L}_{q}(n x-k)<\max \left\{q, \frac{1}{q}\right\} e^{2 \beta} e^{-\beta n^{(1-\alpha)}}=K e^{-\beta n^{(1-\alpha)}}=: c_{3}(n, a), \\
& :|n x-k| \geq n^{1-\alpha} \tag{62}
\end{align*}
$$

where $K:=\max \left\{q, \frac{1}{q}\right\} e^{2 \beta}$.
We need,
Theorem 26. Let $x \in[a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil n a\rceil \leq\lfloor n b\rfloor$. For $q>0$, we consider the number $\lambda_{q}>z_{0}>0$ with ${ }_{3} \mathcal{L}_{q}\left(z_{0}\right)={ }_{3} \mathcal{L} \phi_{q}(0)$ and $\beta, \lambda_{q}>1$. Then

$$
\begin{equation*}
\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} 3 \mathcal{L}_{q}(n x-k)}<\max \left\{\frac{1}{{ }_{3} \mathcal{L}_{q}\left(\lambda_{q}\right)}, \frac{1}{{ }_{3} \mathcal{L}_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)}\right\}=: \Psi_{3}(q) \tag{63}
\end{equation*}
$$

We make
Remark 27. (i) We have that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} 3 \mathcal{L}_{q}(n x-k) \neq 1, \quad \text { for at least some } x \in[a, b] \tag{64}
\end{equation*}
$$

where $\beta, q>0$.
(ii) Let $[a, b] \subset \mathbb{R}$. For large n we always have $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq\lfloor n b\rfloor$. In general it holds

$$
\begin{equation*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} 3 \mathcal{L}_{q}(n x-k) \leq 1 . \tag{65}
\end{equation*}
$$

We introduce

$$
\begin{equation*}
{ }_{3} Z_{q}\left(x_{1}, \ldots, x_{N}\right):={ }_{3} Z_{q}(x):=\prod_{i=1}^{N}{ }_{3} \mathcal{L}_{q}\left(x_{i}\right), \quad x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}, \beta, q>0, N \in \mathbb{N} . \tag{66}
\end{equation*}
$$

It has the properties:
(i) ${ }_{3} Z_{q}(x)>0, \forall x \in \mathbb{R}^{N}$,
(ii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}{ }_{3} Z_{q}(x-k):=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \ldots \sum_{k_{N}=-\infty}^{\infty}{ }_{3} Z_{q}\left(x_{1}-k_{1}, \ldots, x_{N}-k_{N}\right)=1 \tag{67}
\end{equation*}
$$

where $k:=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{N}, \forall x \in \mathbb{R}^{N}$,
hence
(iii)

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}{ }_{3} Z_{q}(n x-k)=1 \tag{68}
\end{equation*}
$$

$\forall x \in \mathbb{R}^{N} ; n \in \mathbb{N}$,
and
(iv)

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}{ }_{3} Z_{q}(x) d x=1 \tag{69}
\end{equation*}
$$

that is ${ }_{3} Z_{q}$ is a multivariate density function.
For $0<\beta^{*}<1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^{N}$, we have that

$$
\begin{gather*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{3} Z_{q}(n x-k)= \\
\left\{\begin{array}{c}
\sum_{\substack{ \\
k=\lceil n a\rceil \\
\left\|\frac{k}{n}-x\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}}}}^{{ }_{3} Z_{q}(n x-k)+} \sum_{3}^{\lfloor n b\rfloor}{ }_{3} Z_{q}(n x-k) \\
k=\lceil n a\rceil \\
\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{array}\right. \tag{70}
\end{gather*}
$$

In the last two sums the counting is over disjoint vector sets of k 's, because the condition $\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}$ implies that there exists at least one $\left|\frac{k_{r}}{n}-x_{r}\right|>\frac{1}{n^{\beta^{*}}}$, where $r \in\{1, \ldots, N\}$.
(v) We also have that

$$
\begin{aligned}
& \sum^{\lfloor n b\rfloor}{ }_{3}{ }_{3} Z_{q}(n x-k)<K e^{-\beta n\left(1-\beta^{*}\right)}=c_{3}\left(n, \beta^{*}\right), 0<\beta^{*}<1, \\
& \left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{aligned}
$$

with $n \in \mathbb{N}: n^{1-\beta^{*}}>2, x \in \prod_{i=1}^{N}\left[a_{i}, b_{i}\right]$.
(vi) Moreover

$$
\begin{equation*}
0<\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z_{q}(n x-k)}<\left(\Psi_{3}(q)\right)^{N} \tag{72}
\end{equation*}
$$

$\forall x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), n \in \mathbb{N}$.
It is also clear that
(vii)

$$
\begin{gather*}
\sum^{\infty}{ }_{3} Z_{q}(n x-k)<K e^{-\beta n\left(1-\beta^{*}\right)} \tag{73}\\
\{=-\infty \\
\left\|\frac{k}{n}-x\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}
\end{gather*}
$$

$0<\beta^{*}<1, n \in \mathbb{N}: n^{1-\beta^{*}}>2, x \in \mathbb{R}^{N}$. Furthermore it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{3} Z_{q}(n x-k) \neq 1 \tag{74}
\end{equation*}
$$

for at least some $x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$. Let $f \in C\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, and $n \in \mathbb{N}$ such that $\left\lceil n a_{i}\right\rceil \leq$ $\left\lfloor n b_{i}\right\rfloor, i=1, \ldots, N$.

We define the multivariate averaged positive linear quasi-interpolation neural network operators $\left(x:=\left(x_{1}, \ldots, x_{N}\right) \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)\right) ; j=1,2,3$:

$$
\begin{gather*}
{ }_{j} F_{n}\left(f, x_{1}, \ldots, x_{N}\right):={ }_{j} F_{n}(f, x):=\frac{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f\left(\frac{k}{n}\right)_{j} Z_{q}(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} Z_{q}(n x-k)}= \tag{75}\\
\frac{\sum_{k_{1}=\left\lceil n a_{1}\right\rceil}^{\left\lfloor n b_{1}\right\rfloor} \sum_{k_{2}=\left\lceil n a_{2}\right\rceil}^{\left\lfloor n b_{2}\right\rfloor} \cdots \sum_{k_{N}=\left\lceil n a_{N}\right\rceil}^{\left\lfloor n b_{N}\right\rfloor} f\left(\frac{k_{1}}{n}, \ldots, \frac{k_{N}}{n}\right)\left(\prod_{i=1}^{N} \mathcal{L}_{q}\left(n x_{i}-k_{i}\right)\right)}{\prod_{i=1}^{N}\left(\sum_{k_{i}=\left\lceil n a_{i}\right\rceil}^{\left\lfloor n b_{i}\right\rfloor} \mathcal{L}_{q}\left(n x_{i}-k_{i}\right)\right)} .
\end{gather*}
$$

For large enough $n \in \mathbb{N}$ we always obtain $\left\lceil n a_{i}\right\rceil \leq\left\lfloor n b_{i}\right\rfloor, i=1, \ldots, N$. Also $a_{i} \leq \frac{k_{i}}{n} \leq b_{i}$, iff $\left\lceil n a_{i}\right\rceil \leq k_{i} \leq\left\lfloor n b_{i}\right\rfloor, i=1, \ldots, N$.

For the next we need, for $f \in C\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$ the first multivariate modulus of continuity

$$
\begin{gather*}
\omega_{1}(f, h):=\sup _{x, y \in \prod_{i=1}^{N}\left[a_{i}, b_{i}\right]}|f(x)-f(y)|, h>0 . \tag{76}\\
\\
\|x-y\|_{\infty} \leq h
\end{gather*}
$$

It holds that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \omega_{1}(f, h)=0 . \tag{77}
\end{equation*}
$$

We mention
Theorem 28. (see [4], [5], [6]) Let $f \in C\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 0<\beta^{*}<1, x \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, $N, n \in \mathbb{N}$ with $n^{1-\beta^{*}}>2 ; j=1,2,3$. Then
1)

$$
\begin{equation*}
\left|{ }_{j} F_{n}(f, x)-f(x)\right| \leq\left(\Psi_{j}(q)\right)^{N}\left[\omega_{1}\left(f, \frac{1}{n^{\beta}}\right)+2 c_{j}\left(n, \beta^{*}\right)\|f\|_{\infty}\right]=: \lambda_{j}, \tag{78}
\end{equation*}
$$

and
2)

$$
\begin{equation*}
\left\|_{j} F_{n}(f)-f\right\|_{\infty} \leq \lambda_{j} . \tag{79}
\end{equation*}
$$

We notice that $\lim _{n \rightarrow \infty}{ }_{j} F_{n}(f)=f$, pointwise and uniformly.
In this article we extend Theorem 28 to the fuzzy-random level.

3 Main Result

About p-mean Approximation by Fuzzy-Random Perturbed Quasi-Interpolation Neural Network Operators

All terms and assumptions here as in Sections 1, 2
Let $f \in C_{\mathcal{F R}}^{U_{p}}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 1 \leq p<+\infty, n, N \in \mathbb{N}, 0<\beta<1, \vec{x} \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, (X, \mathcal{B}, P) probability space, $s \in X ; j=1,2,3$.

We define the following multivariate fuzzy random perturbed quasi-interpolation linear neural network operators

$$
\begin{equation*}
\left({ }_{j} F_{n}^{\mathcal{F R}}(f)\right)(\vec{x}, s):=\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor *} f\left(\frac{\vec{k}}{n}, s\right) \odot \frac{{ }^{n} Z_{q}(n \vec{x}-\vec{k})}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor} j Z_{q}(n \vec{x}-\vec{k})}, \tag{80}
\end{equation*}
$$

(see also (75)).
We present
Theorem 29. Let $f \in C_{\mathcal{F R}}^{U_{p}}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right), 0<\beta^{*}<1, \vec{x} \in\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, $n, N \in \mathbb{N}$, with $n^{1-\beta^{*}}>2,1 \leq p<+\infty$. Assume that $\int_{X}\left(D^{*}(f(\cdot, s), \widetilde{o})\right)^{p} P(d s)<\infty ; j=1,2,3$. Then
1)

$$
\begin{gather*}
\left(\int_{X} D^{p}\left(\left({ }_{j} F_{n}^{\mathcal{F} \mathcal{R}}(f)\right)(\vec{x}, s), f(\vec{x}, s)\right) P(d s)\right)^{\frac{1}{p}} \leq \tag{81}\\
\left(\Psi_{j}(q)\right)^{N}\left\{\Omega_{1}\left(f, \frac{1}{n^{\beta^{*}}}\right)_{L^{p}}+2 c_{j}\left(n, \beta^{*}\right)\left(\int_{X}\left(D^{*}(f(\cdot, s), \widetilde{o})\right)^{p} P(d s)\right)^{\frac{1}{p}}\right\}=: \mu_{j}^{(\mathcal{F} \mathcal{R})},
\end{gather*}
$$

2)

$$
\begin{equation*}
\left\|\left(\int_{X} D^{p}\left(\left({ }_{j} F n^{\mathcal{F} \mathcal{R}}(f)\right)(\vec{x}, s), f(\vec{x}, s)\right) P(d s)\right)^{\frac{1}{p}}\right\|_{\infty,\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)} \leq \mu_{j}^{(\mathcal{F R})} \tag{82}
\end{equation*}
$$

where $\left(\Psi_{j}(q)\right)^{N}$ as in (26), (50), (72) and $c_{j}\left(n, \beta^{*}\right)$ as in (25), (49), (71).
Proof. We notice that

$$
\begin{align*}
D\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) & \leq D\left(f\left(\frac{\vec{k}}{n}, s\right), \widetilde{o}\right)+D(f(\vec{x}, s), \widetilde{o}) \tag{83}\\
\leq & 2 D^{*}(f(\cdot, s), \widetilde{o})
\end{align*}
$$

Hence

$$
\begin{equation*}
D^{p}\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) \leq 2^{p} D^{* p}(f(\cdot, s), \widetilde{o}) \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{X} D^{p}\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) P(d s)\right)^{\frac{1}{p}} \leq 2\left(\int_{X}\left(D^{*}(f(\cdot, s), \widetilde{o})\right)^{p} P(d s)\right)^{\frac{1}{p}} \tag{86}
\end{equation*}
$$

We observe that

$$
\begin{gather*}
D\left(\left({ }_{j} F_{n}^{\mathcal{F R}}(f)\right)(\vec{x}, s), f(\vec{x}, s)\right)= \tag{87}\\
D\left(\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor *} f\left(\frac{\vec{k}}{n}, s\right) \odot \frac{j Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor} j Z_{q}(n x-k)}, f(\vec{x}, s) \odot 1\right)=
\end{gather*}
$$

$$
\begin{align*}
& D\left(\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor *} f\left(\frac{\vec{k}}{n}, s\right) \odot \frac{{ }_{j} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{\lfloor n q}(n x-k)}, f(\vec{x}, s) \odot \frac{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{\lfloor n} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{\circ} Z_{q}(n x-k)}\right)= \tag{88}\\
& D\left(\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor *} f\left(\frac{\vec{k}}{n}, s\right) \odot \frac{{ }_{2} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor} j Z_{q}(n x-k)}, \sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor *} f(\vec{x}, s) \odot \frac{{ }_{j} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{\lfloor n} Z_{q}(n x-k)}\right) \\
& \leq \sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(\frac{{ }_{j} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor} j Z_{q}(n x-k)}\right) D\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) . \tag{89}
\end{align*}
$$

So that

$$
\begin{align*}
& D\left(\left({ }_{j} F_{n}^{\mathcal{F} \mathcal{R}}(f)\right)(\vec{x}, s), f(\vec{x}, s)\right) \leq \\
& \sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(\frac{{ }_{j} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }_{j} Z_{q}(n x-k)}\right) D\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right)= \tag{90}\\
& \sum_{\substack{\vec{k}=\lceil n a\rceil \\
\left\|\overrightarrow{\frac{k}{n}}-\vec{x}\right\|_{\infty} \leq \frac{1}{n \beta^{*}}}}^{\lfloor n b\rfloor}\left(\frac{j Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{n n} Z_{q}(n x-k)}\right) D\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right)+ \\
& \left.\sum_{\substack{\vec{k}=\lceil n a\rceil \\
\left\|\frac{\vec{k}}{n}-\vec{x}\right\|_{\infty}>\frac{1}{n^{\beta^{*}}}}}^{\lfloor n b\rfloor} \frac{{ }_{c} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n\rfloor\rfloor} j Z_{q}(n x-k)}\right) D\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) .
\end{align*}
$$

$$
\begin{align*}
& \text { Hence it holds } \\
& \left(\int_{X} D^{p}\left(\left({ }_{j} F_{n}^{\mathcal{F R}}(f)\right)(\vec{x}, s), f(\vec{x}, s)\right) P(d s)\right)^{\frac{1}{p}} \leq \tag{91}\\
& \sum_{\substack{\vec{k}=\lceil n a\rceil \\
\left\|\frac{\vec{k}}{n}-\vec{x}\right\|_{\infty} \leq \frac{1}{\beta^{\beta^{*}}}}}^{\lfloor\lfloor n b\rfloor}\left(\frac{j Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{\lfloor n} Z_{q}(n x-k)}\right)\left(\int_{X} D^{p}\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) P(d s)\right)^{\frac{1}{p}}+
\end{align*}
$$

$$
\begin{align*}
& \sum_{\substack{\vec{k}=\lceil n a\rceil \\
\|\vec{k}-\vec{x} \\
n\\
\|_{\infty} \gg \frac{1}{n^{\beta^{*}}}}}^{\lfloor n b\rfloor}\left(\frac{{ }_{j} Z_{q}(n x-k)}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor}{ }^{n} Z_{q}(n x-k)}\right)\left(\int_{X} D^{p}\left(f\left(\frac{\vec{k}}{n}, s\right), f(\vec{x}, s)\right) P(d s)\right)^{\frac{1}{p}} \leq \\
& \left(\frac{1}{\sum_{\vec{k}=\lceil n a\rceil}^{\lfloor n b\rfloor} j Z_{q}(n x-k)}\right) \cdot\left\{\Omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\beta^{*}}}\right)_{L^{p}}+\right. \tag{92}\\
& \left.2\left(\int_{X}\left(D^{*}(f(\cdot, s), \widetilde{o})\right)^{p} P(d s)\right)^{\frac{1}{p}}\left(\sum_{\substack{\vec{k}=\lceil n a\rceil \\
\left\lvert\, \frac{\vec{k}}{n}-\vec{x}\right. \|_{\infty}>\frac{1}{n^{*}}}}^{\lfloor n b\rfloor} Z_{q}(n x-k)\right)\right\}
\end{align*}
$$

(by (25), (26); (49), (50); (71), (72)

$$
\begin{equation*}
\leq\left(\Psi_{j}(q)\right)^{N}\left\{\Omega_{1}^{(\mathcal{F})}\left(f, \frac{1}{n^{\beta^{*}}}\right)_{L^{p}}+2 c_{j}\left(n, \beta^{*}\right)\left(\int_{X}\left(D^{*}(f(\cdot, s), \widetilde{o})\right)^{p} P(d s)\right)^{\frac{1}{p}}\right\} \tag{93}
\end{equation*}
$$

We have proved claim.
Conclusion 30. By Theorem 29 we obtain the pointwise and uniform convergences with rates in the p-mean and D-metric of the operator ${ }_{j} F_{n}^{\mathcal{F} \mathcal{R}}$ to the unit operator for $f \in C_{\mathcal{F} \mathcal{R}}^{U_{p}}\left(\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]\right)$, $j=1,2,3$.

References

[1] G.A. Anastassiou, Multivariate Fuzzy-Random Quasi-interpolation neural network approximation operators, J. Fuzzy Mathematics, Vol. 22, No. 1, 2014, 167-184.
[2] G.A. Anastassiou, Intelligent Systems II: Complete Approximation by Neural Network Operators, Springer, Heidelberg, New York, 2016.
[3] G.A. Anastassiou, General sigmoid based Banach space valued neural network approximation, J. of Computational Analysis and Applications, 31 (4) (2023), 520-534.
[4] G.A. Anastassiou, Parametrized Deformed and General Neural Networks, Chapter 15, Springer, Heidelberg, New York, 2023.
[5] G.A. Anastassiou, Parametrized Deformed and General Neural Networks, Chapter 17, Springer, Heidelberg, New York, 2023.
[6] G.A. Anastassiou, Parametrized Deformed and General Neural Networks, Chapter 19, Springer, Heidelberg, New York, 2023.
[7] S. Gal, Approximation Theory in Fuzzy Setting, Chapter 13 in Handbook of AnalyticComputational Methods in Applied Mathematics, pp. 617-666, edited by G. Anastassiou, Chapman \& Hall/CRC, 2000, Boca Raton, New York.
[8] Wu Congxin, Gong Zengtai, On Henstock integral of interval-valued functions and fuzzy valued functions, Fuzzy Sets and Systems, Vol. 115, No. 3, 2000, 377-391.
[9] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120, No. 3, (2001), 523-532.
[10] C. Wu, M. Ma, On embedding problem of fuzzy number space: Part 1, Fuzzy Sets and Systems, 44 (1991), 33-38.

