Multivariate Fuzzy-Random and Perturbed Neural Network Approximation

George A. Anastassiou

Department of Mathematical Sciences University of Memphis, Memphis, TN 38152, U.S.A. ganastss@memphis.edu

Dimitra Kouloumpou

Section of Mathematics

Hellenic Naval Academy, Piraeus, 18539, Greece

dimkouloumpou@hna.gr

Abstract

In this article we estimate the degree of approximation of multivariate pointwise and uniform convergences in the *p*-mean to the Fuzzy-Random unit operator of multivariate Fuzzy-Random Quasi-Interpolation perturbed activation functions based neural network operators. These multivariate Fuzzy-Random operators arise in a natural way among multivariate Fuzzy-Random neural networks. The rates are given through multivariate Probabilistic-Jackson type inequalities involving the multivariate Fuzzy-Random modulus of continuity of the engaged multivariate Fuzzy-Random function.

2020 AMS Subject Classification: 26A15, 26E50, 41A17, 41A25, 47S40, 60H25.

Keywords and Phrases: Fuzzy-Random analysis, Fuzzy-Random neural networks and operators, Fuzzy-Random modulus of continuity, Fuzzy-Random functions, Jackson type fuzzy and probabilistic inequalities.

1 Fuzzy-Random Functions Background

See also [2], Ch. 22, pp. 497-501. We start with

Definition 1. (see [8]) Let $\mu : \mathbb{R} \to [0, 1]$ with the following properties: (i) is normal, i.e., $\exists x_0 \in \mathbb{R} : \mu(x_0) = 1$.

RGMIA Res. Rep. Coll. **26** (2023), Art. 65, 18 pp.¹ Received 17/12/23

(ii) $\mu(\lambda x + (1 - \lambda)y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in [0, 1] \ (\mu \text{ is called a convex fuzzy subset}).$

(iii) μ is upper semicontinuous on \mathbb{R} , i.e., $\forall x_0 \in \mathbb{R}$ and $\forall \varepsilon > 0, \exists$ neighborhood $V(x_0)$: $\mu(x) \leq \mu(x_0) + \varepsilon, \forall x \in V(x_0).$

(iv) the set $\overline{supp(\mu)}$ is compact in \mathbb{R} (where $supp(\mu) := \{x \in \mathbb{R}; \mu(x) > 0\}$). We call μ a fuzzy real number. Denote the set of all μ with $\mathbb{R}_{\mathcal{F}}$.

E.g., $\chi_{\{x_0\}} \in \mathbb{R}_F$, for any $x_0 \in \mathbb{R}$, where $\chi_{\{x_0\}}$ is the characteristic function at x_0 . For $0 < r \le 1$ and $\mu \in \mathbb{R}_F$ define $[\mu]^r := \{x \in \mathbb{R} : \mu(x) \ge r\}$ and $[\mu]^0 := \overline{\{x \in \mathbb{R} : \mu(x) > 0\}}$.

Then it is well known that for each $r \in [0, 1]$, $[\mu]^r$ is a closed and bounded interval of \mathbb{R} . For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$[u \oplus v]^r = [u]^r + [v]^r$$
, $[\lambda \odot u]^r = \lambda [u]^r$, $\forall r \in [0, 1]$,

where $[u]^r + [v]^r$ means the usual addition of two intervals (as subsets of \mathbb{R}) and $\lambda [u]^r$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g., [8]). Notice $1 \odot u = u$ and it holds $u \oplus v = v \oplus u$, $\lambda \odot u = u \odot \lambda$. If $0 \le r_1 \le r_2 \le 1$ then $[u]^{r_2} \subseteq [u]^{r_1}$. Actually $[u]^r = \left[u_{-}^{(r)}, u_{+}^{(r)}\right]$, where $u_{-}^{(r)} < u_{+}^{(r)}, u_{-}^{(r)}, u_{+}^{(r)} \in \mathbb{R}, \forall r \in [0, 1]$. Define

$$D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \to \mathbb{R}_+ \cup \{0\}$$

by

$$D(u,v) := \sup_{r \in [0,1]} \max\left\{ \left| u_{-}^{(r)} - v_{-}^{(r)} \right|, \left| u_{+}^{(r)} - v_{+}^{(r)} \right| \right\}$$

where $[v]^r = [v_-^{(r)}, v_+^{(r)}]; u, v \in \mathbb{R}_F$. We have that D is a metric on \mathbb{R}_F . Then (\mathbb{R}_F, D) is a complete metric space, see [8], with the properties

$$D(u \oplus w, v \oplus w) = D(u, v), \quad \forall u, v, w \in \mathbb{R}_{\mathcal{F}},$$

$$D(k \odot u, k \odot v) = |k| D(u, v), \quad \forall u, v \in \mathbb{R}_{\mathcal{F}}, \forall k \in \mathbb{R},$$

$$D(u \oplus v, w \oplus e) \leq D(u, w) + D(v, e), \quad \forall u, v, w, e \in \mathbb{R}_{\mathcal{F}}.$$
(1)

Let (M, d) metric space and $f, g : M \to \mathbb{R}_{\mathcal{F}}$ be fuzzy real number valued functions. The distance between f, g is defined by

$$D^{*}(f,g) := \sup_{x \in M} D(f(x),g(x))$$

On $\mathbb{R}_{\mathcal{F}}$ we define a partial order by " \leq ": $u, v \in \mathbb{R}_{\mathcal{F}}$, $u \leq v$ iff $u_{-}^{(r)} \leq v_{-}^{(r)}$ and $u_{+}^{(r)} \leq v_{+}^{(r)}$, $\forall r \in [0, 1]$.

 $\sum_{i=1}^{*} \text{ denotes the fuzzy summation, } \widetilde{o} := \chi_{\{0\}} \in \mathbb{R}_{\mathcal{F}} \text{ the neutral element with respect to } \oplus.$ For more see also [9], [10].

We need

Definition 2. (see also [7], Definition 13.16, p. 654) Let (X, \mathcal{B}, P) be a probability space. A fuzzy-random variable is a \mathcal{B} -measurable mapping $g: X \to \mathbb{R}_{\mathcal{F}}$ (i.e., for any open set $U \subseteq \mathbb{R}_{\mathcal{F}}$, in the topology of $\mathbb{R}_{\mathcal{F}}$ generated by the metric D, we have

$$g^{-1}(U) = \{ s \in X; g(s) \in U \} \in \mathcal{B} \}.$$
 (2)

The set of all fuzzy-random variables is denoted by $\mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$. Let $g_n, g \in \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$, $n \in \mathbb{N}$ and $0 . We say <math>g_n(s) \xrightarrow[n \to +\infty]{p-mean} g(s)$ if

$$\lim_{n \to +\infty} \int_X D\left(g_n\left(s\right), g\left(s\right)\right)^p P\left(ds\right) = 0.$$
(3)

Remark 3. (see [7], p. 654) If $f, g \in \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$, let us denote $F : X \to \mathbb{R}_+ \cup \{0\}$ by $F(s) = D(f(s), g(s)), s \in X$. Here, F is \mathcal{B} -measurable, because $F = G \circ H$, where G(u, v) = D(u, v) is continuous on $\mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}}$, and $H : X \to \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}}$, H(s) = (f(s), g(s)), $s \in X$, is \mathcal{B} -measurable. This shows that the above convergence in q-mean makes sense.

Definition 4. (see [7], p. 654, Definition 13.17) Let (T, \mathcal{T}) be a topological space. A mapping $f: T \to \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$ will be called fuzzy-random function (or fuzzy-stochastic process) on T. We denote $f(t)(s) = f(t, s), t \in T, s \in X$.

Remark 5. (see [7], p. 655) Any usual fuzzy real function $f: T \to \mathbb{R}_{\mathcal{F}}$ can be identified with the degenerate fuzzy-random function $f(t, s) = f(t), \forall t \in T, s \in X$.

Remark 6. (see [7], p. 655) Fuzzy-random functions that coincide with probability one for each $t \in T$ will be consider equivalent.

Remark 7. (see [7], p. 655) Let $f, g: T \to \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P)$. Then $f \oplus g$ and $k \odot f$ are defined pointwise, i.e.,

$$\begin{array}{lll} \left(f \oplus g\right)(t,s) &=& f\left(t,s\right) \oplus g\left(t,s\right), \\ \left(k \odot f\right)(t,s) &=& k \odot f\left(t,s\right), \ t \in T, s \in X, \ k \in \mathbb{R}. \end{array}$$

Definition 8. (see also Definition 13.18, pp. 655-656, [7]) For a fuzzy-random function $f: W \subseteq \mathbb{R}^N \to \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P), N \in \mathbb{N}$, we define the (first) fuzzy-random modulus of continuity

$$\Omega_{1}^{(\mathcal{F})}(f,\delta)_{L^{p}} = \sup\left\{\left(\int_{X} D^{p}\left(f\left(x,s\right), f\left(y,s\right)\right) P\left(ds\right)\right)^{\frac{1}{p}} : x, y \in W, \ \|x-y\|_{\infty} \le \delta\right\}, \\ p < \infty.$$

 $0<\delta,\,1\leq p<\infty.$

Definition 9. ([1]) Here $1 \le p < +\infty$. Let $f : W \subseteq \mathbb{R}^N \to \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P), N \in \mathbb{N}$, be a fuzzy random function. We call f a (p-mean) uniformly continuous fuzzy random function over W, iff $\forall \varepsilon > 0 \exists \delta > 0$:whenever $||x - y||_{\infty} \le \delta, x, y \in W$, implies that

$$\int_{X} \left(D\left(f\left(x,s\right), f\left(y,s\right) \right) \right)^{p} P\left(ds\right) \leq \varepsilon.$$

We denote it as $f \in C_{FR}^{U_p}(W)$.

Proposition 10. ([1]) Let $f \in C_{FR}^{U_p}(W)$, where $W \subseteq \mathbb{R}^N$ is convex. Then $\Omega_1^{(\mathcal{F})}(f,\delta)_{L^p} < \infty$, any $\delta > 0$. **Proposition 11.** ([1]) Let $f, g : W \subseteq \mathbb{R}^N \to \mathcal{L}_{\mathcal{F}}(X, \mathcal{B}, P), N \in \mathbb{N}$, be fuzzy random functions. It holds

 $\begin{array}{l} (i) \ \Omega_1^{(\mathcal{F})} \ (f,\delta)_{L^p} \ is \ nonnegative \ and \ nondecreasing \ in \ \delta > 0. \\ (ii) \ \lim_{\delta \downarrow 0} \Omega_1^{(\mathcal{F})} \ (f,\delta)_{L^p} = \Omega_1^{(\mathcal{F})} \ (f,0)_{L^p} = 0, \ i\!f\!f \ f \in C_{FR}^{U_p} \left(W\right). \end{array}$

We need also

Proposition 12. ([1]) Let f, g be fuzzy random variables from S into $\mathbb{R}_{\mathcal{F}}$. Then (i) Let $c \in \mathbb{R}$, then $c \odot f$ is a fuzzy random variable.

(ii) $f \oplus g$ is a fuzzy random variable.

2 About Perturbed Neural Network Background

2.1 About q-Deformed and λ -parametrized A-generalized logistic function induced real space valued multivariate multi layer neural network approximation

Here we follow [4].

We consider the q-deformed and λ -parametrized function

$$\varphi_{q,\lambda}\left(x\right) = \frac{1}{1 + qA^{-\lambda x}}, \quad x \in \mathbb{R}, \text{ where } q, \lambda > 0, \ A > 1.$$

$$\tag{4}$$

which is a sigmoid type function and it is strictly increasing. This is an A-generalized logistic type function. We easily observe that

$$\varphi_{q,\lambda}\left(+\infty\right) = 1, \ \varphi_{q,\lambda}\left(-\infty\right) = 0. \tag{5}$$

Furthermore we have

$$\varphi_{q,\lambda}\left(x\right) = 1 - \varphi_{\frac{1}{q},\lambda}\left(-x\right). \tag{6}$$

and

$$\varphi_{q,\lambda}\left(0\right) = \frac{1}{1+q}.\tag{7}$$

Moreover $\varphi_{q,\lambda}''(x) > 0$, for $x < \frac{\log_A q}{\lambda}$ and there $\varphi_{q,\lambda}$ is concave up. When $x > \frac{\log_A q}{\lambda}$, we have $\varphi_{q,\lambda}''(x) < 0$ and $\varphi_{q,\lambda}$ is concave down. Of course

$$\varphi_{q,\lambda}^{\prime\prime}\left(\frac{\log_A q}{\lambda}\right) = 0$$

So, $\varphi_{q,\lambda}$ is a sigmoid function, see [3].

We consider the activation function

$${}_{1}\mathcal{L}_{q}\left(x\right) := \frac{1}{2}\left(\varphi_{q,\lambda}\left(x+1\right) - \varphi_{q,\lambda}\left(x-1\right)\right), \quad x \in \mathbb{R}.$$
(8)

Then

$${}_{1}\mathcal{L}_{q}\left(-x\right) = {}_{1}\mathcal{L}_{\frac{1}{q},\lambda}\left(x\right), \quad \forall \ x \in \mathbb{R}.$$
(9)

We have that

$${}_{1}\mathcal{L}_{q}'(x) = \frac{1}{2} \left(\varphi_{q,\lambda}'(x+1) - \varphi_{q,\lambda}'(x-1) \right) < 0.$$

i.e. ${}_{1}\mathcal{L}_{q}$ is strictly decreasing over $\left(\frac{\log_{A}q}{\lambda}, +\infty\right)$. Furthermore, ${}_{1}\mathcal{L}_{q}$ is strictly concave down over $\left(\frac{\log_{A}q}{\lambda}-1, \frac{\log_{A}q}{\lambda}+1\right)$. Overall ${}_{1}\mathcal{L}_{q}$ is a bell-shaped function over \mathbb{R} . Of course it holds ${}_{1}\mathcal{L}_{q}, \lambda''\left(\frac{\log_{A}q}{\lambda}\right) < 0$. We have that the global maximul of ${}_{1}\mathcal{L}_{q}$ is

$${}_{1}\mathcal{L}_{q}\left(\frac{\log_{A}q}{\lambda}\right) = \frac{A^{\lambda} - 1}{2\left(A^{\lambda} + 1\right)}.$$
(10)

Finally we have that

$$\lim_{x \to +\infty} \mathcal{L}_q(x) = \frac{1}{2} \left(\varphi_{q,\lambda}(+\infty) - \varphi_{q,\lambda}(+\infty) \right) = 0, \tag{11}$$

and

$$\lim_{x \to -\infty} \mathcal{L}_q(x) = \frac{1}{2} \left(\varphi_{q,\lambda}(-\infty) - \varphi_{q,\lambda}(-\infty) \right) = 0.$$
(12)

Consequently the x-axis is the horizontal asymptote of ${}_{1}\mathcal{L}_{q}$. Of course ${}_{1}\mathcal{L}_{q}(x) > 0, \forall x \in \mathbb{R}$. We need

Theorem 13. It holds

$$\sum_{i=-\infty}^{\infty} {}_{1}\mathcal{L}_{q}\left(x-i\right) = 1, \quad \forall x \in \mathbb{R}, \ \forall \ q, \lambda > 0, A > 1.$$
(13)

It follows

Theorem 14. It holds

$$\int_{-\infty}^{\infty} {}_{1}\mathcal{L}_{q}\left(x\right) dx = 1, \quad \lambda, q > 0, \ A > 1.$$
(14)

So that ${}_{1}\mathcal{L}_{q}$ is a density function on \mathbb{R} ; $\lambda, q > 0, A > 1$. We need the following result

Theorem 15. Let $0 < \alpha < 1$, and $n \in \mathbb{N}$ with $n^{1-\alpha} > 2$. Then

$$\sum_{\substack{k = -\infty \\ |nx - k| \ge n^{1 - \alpha}}}^{\infty} {}_{1}\mathcal{L}_{q}(nx - k) < \max\left\{q, \frac{1}{q}\right\} \frac{1}{A^{\lambda(n^{1 - \alpha} - 2)}} = \gamma A^{-\lambda(n^{1 - \alpha} - 2)} =: c_{1}(n, a),$$

$$(15)$$

where $q, \lambda > 0, A > 1; \gamma := \max\left\{q, \frac{1}{q}\right\}$.

Let $\lceil \cdot \rceil$ the ceiling of the number, and $\lfloor \cdot \rfloor$ the integral part of the number.

Theorem 16. Let $x \in [a,b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil na \rceil \leq \lfloor nb \rfloor$. For q > 0, $\lambda > 0$, A > 1, we consider the number $\lambda_q > z_0 > 0$ with ${}_1\mathcal{L}_q(z_0) = {}_1\mathcal{L}_q(0)$ and $\lambda_q > 1$. Then

$$\frac{1}{\sum_{k=\lceil na\rceil}^{\lfloor nb \rfloor} {}_{1}\mathcal{L}_{q}\left(nx-k\right)}} < max \left\{ \frac{1}{{}_{1}\mathcal{L}_{q}\left(\lambda_{q}\right)}, \frac{1}{{}_{1}\mathcal{L}_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)} \right\} =: \Psi_{1}\left(q\right).$$
(16)

We make

Remark 17. (i) We have that

$$\lim_{n \to +\infty} \sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} {}_{1}\mathcal{L}_{q} (nx-k) \neq 1, \text{ for at least some } x \in [a,b],$$
(17)

where $\lambda, q > 0$.

(ii) Let $[a,b] \subset \mathbb{R}$. For large n we always have $\lceil na \rceil \leq \lfloor nb \rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil na \rceil \leq k \leq \lfloor nb \rfloor$. In general it holds

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{1}\mathcal{L}_{q}\left(nx-k\right) \leq 1.$$
(18)

We introduce

$${}_{1}Z_{q}(x_{1},...,x_{N}) := {}_{1}Z_{q}(x) := \prod_{i=1}^{N} {}_{1}\mathcal{L}_{q}(x_{i}), \quad x = (x_{1},...,x_{N}) \in \mathbb{R}^{N},$$
(19)

 $\lambda,q>0,\,A>1,\,N\in\mathbb{N}.$

 ${}_{1}Z_{q}(x)$ it has the properties: (i) ${}_{1}Z_{q}(x) > 0, \ \forall x \in \mathbb{R}^{N},$

- $(1) \ 1 \ 2q \ (x) > 0, \quad \forall \ x \in \mathbb{I}$
- (ii)

$$\sum_{k=-\infty}^{\infty} {}_{1}Z_{q}\left(x-k\right) := \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \dots \sum_{k_{N}=-\infty}^{\infty} {}_{1}Z_{q}\left(x_{1}-k_{1},\dots,x_{N}-k_{N}\right) = 1,$$
(20)

where $k := (k_1, ..., k_n) \in \mathbb{Z}^N, \forall x \in \mathbb{R}^N$,

hence

(iii)

$$\sum_{k=-\infty}^{\infty} {}_{1}Z_{q}\left(nx-k\right) = 1,$$
(21)

 $\forall \ x \in \mathbb{R}^N; \ n \in \mathbb{N},$ and

anu

(iv)

$$\int_{\mathbb{R}^N} {}_1 Z_q\left(x\right) dx = 1,\tag{22}$$

that is ${}_1Z_q$ is a multivariate density function.

Here denote $||x||_{\infty} := \max\{|x_1|, ..., |x_N|\}, x \in \mathbb{R}^N$, also set $\infty := (\infty, ..., \infty), -\infty := (-\infty, ..., -\infty)$ upon the multivariate context, and

$$[na] := ([na_1], ..., [na_N]),$$

$$[nb] := ([nb_1], ..., [nb_N]),$$

$$(23)$$

where $a := (a_1, ..., a_N), b := (b_1, ..., b_N)$.

We obviously see that for $0 < \beta^* < 1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^N$, we have that

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{1}Z_{q} (nx-k) =$$

$$\begin{cases} \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{1}Z_{q} (nx-k) + \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{1}Z_{q} (nx-k). \qquad (24)$$

$$\begin{cases} k=\lceil na\rceil {}_{1} \\ \|\frac{k}{n}-x\|_{\infty} \leq \frac{1}{n^{\beta^{*}}} \end{cases} \qquad \begin{cases} \frac{k}{n}-x\|_{\infty} > \frac{1}{n^{\beta^{*}}} \end{cases}$$

(v) We derive that

$$\begin{cases} \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{1}Z_{q}\left(nx-k\right) < \gamma A^{-\lambda\left(n^{1-\beta^{*}}-2\right)} = c_{1}(n,\beta^{*}), \ 0 < \beta^{*} < 1, \qquad (25) \end{cases}$$

$$\begin{cases} k=\lceil na\rceil \\ \left\|\frac{k}{n}-x\right\|_{\infty} > \frac{1}{n^{\beta^{*}}} \end{cases}$$

with $n \in \mathbb{N}$: $n^{1-\beta^*} > 2$, $x \in \prod_{i=1}^{N} [a_i, b_i]$.

(vi) We get that

$$0 < \frac{1}{\sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} {}_{1}Z_{q} \left(nx - k \right)} < \left(\Psi_{1} \left(q \right) \right)^{N},$$

$$(26)$$

 $\forall x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right), \ n \in \mathbb{N}.$ It is also clear that

It is also clear that

(vii)

$$\sum_{\substack{k = -\infty \\ \left\|\frac{k}{n} - x\right\|_{\infty} > \frac{1}{n^{\beta^*}}} 2q \left(nx - k\right) < \gamma A^{-\lambda \left(n^{1-\beta^*} - 2\right)},$$
(27)

 $0<\beta^*<1,\,n\in\mathbb{N}:n^{1-\beta^*}>2,\,x\in\mathbb{R}^N.$

Furthermore it holds

$$\lim_{n \to \infty} \sum_{k = \lceil na \rceil}^{\lfloor nb \rfloor} {}_{1}Z_{q} \left(nx - k \right) \neq 1,$$
(28)

for at least some $x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right)$.

2.2 About q-deformed and λ -parametrized hyperbolic tangent function $g_{q,\lambda}$

Here we follow [5]. Let us consider the function

$$g_{q,\lambda}(x) := \frac{e^{\lambda x} - qe^{-\lambda x}}{e^{\lambda x} + qe^{-\lambda x}}, \quad \lambda, q > 0, \ x \in \mathbb{R}.$$
(29)

We have that $g_{q,\lambda}$ is stricl ty increasing. We easily observe that,

$$g_{q,\lambda}(+\infty) = 1, \text{ and } g_{q,\lambda}(-\infty) = -1$$
 (30)

Furthermore,

$$g_{q,\lambda}(0) = \frac{1-q}{1+q}.$$
 (31)

and

$$g'_{\frac{1}{q},\lambda}\left(x\right) = g'_{q,\lambda}\left(-x\right). \tag{32}$$

Moreover, in case of $x < \frac{\ln q}{2\lambda}$, we have that $g_{q,\lambda}$ is strictly concave up, with $g''_{q,\lambda}\left(\frac{\ln q}{2\lambda}\right) = 0$. And in case of $x > \frac{\ln q}{2\lambda}$, we have that $g_{q,\lambda}$ is strictly concave down.

Clearly, $g_{q,\lambda}$ is a shifted sigmoid function with $g_{q,\lambda}(0) = \frac{1-q}{1+q}$, and $g_{q,\lambda}(-x) = -g_{q^{-1},\lambda}(x)$, (a semi-odd function), see also [3].

By 1 > -1, x + 1 > x - 1, we consider the activation function

$${}_{2}\mathcal{L}_{q}(x) := \frac{1}{4} \left(g_{q,\lambda} \left(x+1 \right) - g_{q,\lambda} \left(x-1 \right) \right) > 0, \tag{33}$$

 $\forall x \in \mathbb{R}; q, \lambda > 0$. Notice that ${}_{2}\mathcal{L}_{q}(\pm \infty) = 0$, so the *x*-axis is horizontal asymptote. We have that

$${}_{2}\mathcal{L}_{q}\left(-x\right) = {}_{2}\mathcal{L}_{\frac{1}{q}}\left(x\right), \ \forall \ x \in \mathbb{R}; \ q, \lambda > 0,$$

$$(34)$$

a deformed symmetry.

Next, we have that

$${}_{2}\mathcal{L}_{q}'(x) = \frac{1}{4} \left(g_{q,\lambda}'(x+1) - g_{q,\lambda}'(x-1) \right), \quad \forall \ x \in \mathbb{R}.$$

$$(35)$$

Moreover, ${}_{2}\mathcal{L}_{q}$ is strictly increasing over $\left(-\infty, \frac{\ln q}{2\lambda} - 1\right)$. and strictly decreasing over $\left(\frac{\ln q}{2\lambda} + 1, +\infty\right)$. Furthermore ${}_{2}\mathcal{L}_{q}$ is concave down over $\left[\frac{\ln q}{2\lambda} - 1, \frac{\ln q}{2\lambda} + 1\right]$, and strictly concave down over $\left(\frac{\ln q}{2\lambda} - 1, \frac{\ln q}{2\lambda} + 1\right)$. Consequently ${}_{2}\mathcal{L}_{q}$ has a bell-type shape over \mathbb{R} .

Of course it holds $_{2}\mathcal{L}_{q}''\left(\frac{\ln q}{2\lambda}\right) < 0$. We also have that the maximum value of $_{2}\mathcal{L}_{q}$ is

$${}_{2}\mathcal{L}_{q}\left(\frac{\ln q}{2\lambda}\right) = \frac{\tanh\left(\lambda\right)}{2}, \quad \lambda > 0.$$
(36)

We give

Theorem 18. We have that

$$\sum_{i=-\infty}^{\infty} {}_{2}\mathcal{L}_{q}\left(x-i\right) = 1, \ \forall \ x \in \mathbb{R}, \ \forall \ \lambda, q > 0.$$
(37)

We need

Theorem 19. It holds

$$\int_{-\infty}^{\infty} {}_{2}\mathcal{L}_{q}\left(x\right) dx = 1, \quad \lambda, q > 0.$$
(38)

So that ${}_{2}\mathcal{L}_{q}$ is a density function on \mathbb{R} ; $\lambda, q > 0$. We need the following result

Theorem 20. Let $0 < \alpha < 1$, and $n \in \mathbb{N}$ with $n^{1-\alpha} > 2$; $q, \lambda > 0$. Then

$$\sum_{\substack{k = -\infty \\ |nx - k| \ge n^{1 - \alpha}}}^{\infty} {}_{2}\mathcal{L}_{q} (nx - k) < \max\left\{q, \frac{1}{q}\right\} e^{4\lambda} e^{-2\lambda n^{(1 - \alpha)}} = T e^{-2\lambda n^{(1 - \alpha)}} =: c_{2}(n, a),$$

$$\begin{cases} k = -\infty \\ |nx - k| \ge n^{1 - \alpha} \end{cases}$$

$$(39)$$
where $T := \max\left\{q, \frac{1}{q}\right\} e^{4\lambda}.$

Let $\left[\cdot\right]$ the ceiling of the number, and $\left|\cdot\right|$ the integral part of the number.

Theorem 21. Let $x \in [a,b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil na \rceil \leq \lfloor nb \rfloor$. For q > 0, $\lambda > 0$, we consider the number $\lambda_q > z_0 > 0$ with ${}_2\mathcal{L}_q(z_0) = {}_2\mathcal{L}_q(0)$ and $\lambda_q > 1$. Then

$$\frac{1}{\sum_{k=\lceil na\rceil}^{\lfloor nb \rfloor} {}_{2}\mathcal{L}_{q}\left(nx-k\right)}} < max \left\{ \frac{1}{{}_{2}\mathcal{L}_{q}\left(\lambda_{q}\right)}, \frac{1}{{}_{2}\mathcal{L}_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)} \right\} =: \Psi_{2}\left(q\right).$$
(40)

We make

Remark 22. (i) We have that

$$\lim_{n \to +\infty} \sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} {}_{2}\mathcal{L}_{q}\left(nx-k\right) \neq 1, \quad \text{for at least some } x \in [a,b],$$

$$\tag{41}$$

where $\lambda, q > 0$.

(ii) Let $[a,b] \subset \mathbb{R}$. For large n we always have $\lceil na \rceil \leq \lfloor nb \rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil na \rceil \leq k \leq \lfloor nb \rfloor$. In general it holds

$$\sum_{k=\lceil na\rceil}^{\lfloor nb \rfloor} {}_{2}\mathcal{L}_{q}\left(nx-k\right) \le 1.$$
(42)

We introduce

$${}_{2}Z_{q}(x_{1},...,x_{N}) := {}_{2}Z_{q}(x) := \prod_{i=1}^{N} {}_{2}\mathcal{L}_{q}(x_{i}), \quad x = (x_{1},...,x_{N}) \in \mathbb{R}^{N}, \ \lambda,q > 0, \ N \in \mathbb{N}.$$
(43)

 $_{2}Z_{q}\left(x\right)$ it has the properties:

(i) $_{2}Z_{q}(x) > 0, \forall x \in \mathbb{R}^{N},$ (ii)

$$\sum_{k=-\infty}^{\infty} {}_{2}Z_{q}\left(x-k\right) := \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \dots \sum_{k_{N}=-\infty}^{\infty} Z_{q}\left(x_{1}-k_{1},\dots,x_{N}-k_{N}\right) = 1,$$
(44)

where $k := (k_1, ..., k_n) \in \mathbb{Z}^N, \forall x \in \mathbb{R}^N$,

hence

(iii)

$$\sum_{k=-\infty}^{\infty} {}_2Z_q \left(nx-k\right) = 1,\tag{45}$$

 $\forall \; x \in \mathbb{R}^N; \, n \in \mathbb{N},$

and

(iv)

$$\int_{\mathbb{R}^N} {}_2 Z_q\left(x\right) dx = 1,\tag{46}$$

that is $_2 \mathbb{Z}_q$ is a multivariate density function.

We obviously see that

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{2}Z_{q}\left(nx-k\right) = \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} \left(\prod_{i=1}^{N} {}_{2}\mathcal{L}_{q}\left(nx_{i}-k_{i}\right)\right) =$$
$$\sum_{k_{1}=\lceil na_{1}\rceil}^{\lfloor nb_{1}\rfloor} \cdots \sum_{k_{N}=\lceil na_{N}\rceil}^{\lfloor nb_{N}\rfloor} \left(\prod_{i=1}^{N} {}_{2}\mathcal{L}_{q}\left(nx_{i}-k_{i}\right)\right) = \prod_{i=1}^{N} \left(\sum_{k_{i}=\lceil na_{i}\rceil}^{\lfloor nb_{i}\rfloor} {}_{2}\mathcal{L}_{q}\left(nx_{i}-k_{i}\right)\right).$$
(47)

For $0 < \beta^* < 1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^N$, we have that

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{2}Z_{q}\left(nx-k\right) =$$

$$\begin{cases} \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{2}Z_{q}\left(nx-k\right) + \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{2}Z_{q}\left(nx-k\right). \tag{48} \\ \left\|\frac{k}{n}-x\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}} \end{cases} \qquad \left\{ \begin{array}{c} k=\lceil na\rceil \\ \left\|\frac{k}{n}-x\right\|_{\infty} > \frac{1}{n^{\beta^{*}}} \end{array} \right.$$

In the last two sums the counting is over disjoint vector sets of k's, because the condition $\left\|\frac{k}{n} - x\right\|_{\infty} > \frac{1}{n^{\beta^*}}$ implies that there exists at least one $\left|\frac{k_r}{n} - x_r\right| > \frac{1}{n^{\beta^*}}$, where $r \in \{1, ..., N\}$. (v) We also have that

$$\begin{cases} \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} 2Z_q (nx-k) < Te^{-2\lambda n^{\left(1-\beta^*\right)}} = c_2(n,\beta^*), \quad 0 < \beta^* < 1, \qquad (49) \end{cases}$$

$$\begin{cases} k=\lceil na\rceil \\ \left\|\frac{k}{n}-x\right\|_{\infty} > \frac{1}{n^{\beta^*}} \end{cases}$$

with $n \in \mathbb{N} : n^{1-\beta^*} > 2, x \in \prod_{i=1}^{N} [a_i, b_i].$ (vi) Moreover

$$0 < \frac{1}{\sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} {}_{2}Z_{q} \left(nx - k \right)} < \left(\Psi_{2} \left(q \right) \right)^{N},$$

$$(50)$$

 $\forall x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right), \ n \in \mathbb{N}.$ It is also clear that

(vii)

$$\sum_{\substack{k = -\infty \\ \left\| \frac{k}{n} - x \right\|_{\infty} > \frac{1}{n^{\beta^*}}} 2Z_q \left(nx - k \right) < T e^{-2\lambda n^{\left(1 - \beta^*\right)}},$$
(51)

 $0<\beta^*<1,\,n\in\mathbb{N}:n^{1-\beta^*}>2,\,x\in\mathbb{R}^N.$

Furthermore it holds

$$\lim_{n \to \infty} \sum_{k = \lceil na \rceil}^{\lfloor nb \rfloor} {}_{2}Z_{q} \left(nx - k \right) \neq 1,$$
(52)

for at least some $x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right)$.

2.3 About q-deformed and parametrized half hyperbolic tangent function ϑ_q

Here we follow [6]. We introduce the function

$$\vartheta_q(t) := \frac{1 - q e^{-\beta t}}{1 + q e^{-\beta t}}, \quad \forall \ t \in \mathbb{R},$$
(53)

where $q, \beta > 0$. ϑ_q is strictly increasing. We also observe that

$$\vartheta_q(-\infty) = -1 \quad \text{and} \quad \vartheta_q(+\infty) = 1$$
(54)

Furthermore

$$\vartheta_q\left(0\right) = \frac{1-q}{1+q} \tag{55}$$

In case of $t < \frac{\ln q}{\beta}$, we have that ϑ_q is strictly concave up, with $\vartheta''_q \left(\frac{\ln q}{\beta}\right) = 0$.

And in case of $t > \frac{\ln q}{\beta}$, we have that ϑ_q is strictly concave down.

Clearly, ϑ_q is a shifted sigmoid function with $\vartheta_q(0) = \frac{1-q}{1+q}$, and $\vartheta_q(-x) = -\vartheta_{q^{-1}}(x)$, $\forall x \in \mathbb{R}$, (a semi-odd function), see also [3].

By 1 > -1, x + 1 > x - 1, we consider the activation function

$${}_{3}\mathcal{L}_{q}\left(x\right) := \frac{1}{4} \left(\vartheta_{q}\left(x+1\right) - \vartheta_{q}\left(x-1\right)\right) > 0,$$
(56)

 $\forall x \in \mathbb{R}; \beta, q > 0$. Notice that $\mathcal{L}_q(\pm \infty) = 0$, so the x-axis is horizontal asymptote. Also it holds,

$${}_{3}\mathcal{L}_{q}\left(-x\right) = {}_{3}\mathcal{L}_{\frac{1}{q}}\left(x\right), \ \forall \ x \in \mathbb{R},$$
(57)

a deformed symmetry.

Next we have that

$${}_{3}\mathcal{L}'_{q}(x) = \frac{1}{4} \left(\vartheta'_{q}(x+1) - \vartheta'_{q}(x-1) \right), \quad \forall \ x \in \mathbb{R}.$$

$$(58)$$

Hence, ${}_{3}\mathcal{L}_{q}$ is strictly increasing over $\left(-\infty, \frac{\ln q}{\beta} - 1\right)$. and strictly decreasing over $\left(\frac{\ln q}{\beta} + 1, +\infty\right)$.

Moreover, ${}_{3}\mathcal{L}_{q}$ is concave down over $\left[\frac{\ln q}{\beta}-1,\frac{\ln q}{\beta}+1\right]$, and strictly concave down over $\left(\frac{\ln q}{\beta}-1,\frac{\ln q}{\beta}+1\right)$.

Consequently ${}_{3}\mathcal{L}_{q}$ has a bell-type shape over \mathbb{R} . Of course it holds ${}_{3}\mathcal{L}''_{q}\left(\frac{\ln q}{\beta}\right) < 0$. The maximum value of ${}_{3}\mathcal{L}_{q}$ is

$${}_{3}\mathcal{L}_{q}\left(\frac{\ln q}{\beta}\right) = \frac{1 - e^{-\beta}}{2\left(1 + e^{-\beta}\right)}.$$
(59)

We give

Theorem 23. We have that

$$\sum_{i=-\infty}^{\infty} {}_{3}\mathcal{L}_{q}\left(x-i\right) = 1, \ \forall \ x \in \mathbb{R}, \ \forall \ q, \beta > 0.$$

$$(60)$$

It follows

Theorem 24. It holds

$$\int_{-\infty}^{\infty} {}_{3}\mathcal{L}_{q}\left(x\right)dx = 1, \quad q, \beta > 0.$$
(61)

So that ${}_{3}\mathcal{L}_{q}$ is a density function on \mathbb{R} ; $q, \beta > 0$. We need the following result

Theorem 25. Let $0 < \alpha < 1$, and $n \in \mathbb{N}$ with $n^{1-\alpha} > 2$; $q, \beta > 0$. Then

$$\sum_{\substack{k = -\infty \\ |nx - k| \ge n^{1 - \alpha}}}^{\infty} {}_{3}\mathcal{L}_{q} (nx - k) < \max\left\{q, \frac{1}{q}\right\} e^{2\beta} e^{-\beta n^{(1 - \alpha)}} = K e^{-\beta n^{(1 - \alpha)}} =: c_{3}(n, a),$$

$$\begin{cases} k = -\infty \\ |nx - k| \ge n^{1 - \alpha} \end{cases}$$
(62)

where $K := \max\left\{q, \frac{1}{q}\right\} e^{2\beta}$.

We need,

Theorem 26. Let $x \in [a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil na \rceil \leq \lfloor nb \rfloor$. For q > 0, we consider the number $\lambda_q > z_0 > 0$ with ${}_{3}\mathcal{L}_q(z_0) = {}_{3}\mathcal{L}\phi_q(0)$ and $\beta, \lambda_q > 1$. Then

$$\frac{1}{\sum_{k=\lceil na\rceil}^{\lfloor nb \rfloor} {}_{3}\mathcal{L}_{q}\left(nx-k\right)} < max\left\{\frac{1}{{}_{3}\mathcal{L}_{q}\left(\lambda_{q}\right)}, \frac{1}{{}_{3}\mathcal{L}_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)}\right\} =: \Psi_{3}\left(q\right).$$
(63)

We make

Remark 27. (i) We have that

$$\lim_{n \to +\infty} \sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} {}_{3}\mathcal{L}_{q} \left(nx - k \right) \neq 1, \quad \text{for at least some } x \in [a, b], \tag{64}$$

where $\beta, q > 0$.

(ii) Let $[a,b] \subset \mathbb{R}$. For large n we always have $\lceil na \rceil \leq \lfloor nb \rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil na \rceil \leq k \leq \lfloor nb \rfloor$. In general it holds

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{3}\mathcal{L}_{q}\left(nx-k\right) \le 1.$$
(65)

We introduce

$${}_{3}Z_{q}(x_{1},...,x_{N}) := {}_{3}Z_{q}(x) := \prod_{i=1}^{N} {}_{3}\mathcal{L}_{q}(x_{i}), \quad x = (x_{1},...,x_{N}) \in \mathbb{R}^{N}, \ \beta,q > 0, \ N \in \mathbb{N}.$$
(66)

It has the properties:

(i) $_{3}Z_{q}\left(x
ight) >0,\ \forall\ x\in\mathbb{R}^{N},$

$$\sum_{k=-\infty}^{\infty} {}_{3}Z_{q}\left(x-k\right) := \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \dots \sum_{k_{N}=-\infty}^{\infty} {}_{3}Z_{q}\left(x_{1}-k_{1},\dots,x_{N}-k_{N}\right) = 1,$$
(67)

where $k := (k_1, ..., k_n) \in \mathbb{Z}^N, \forall x \in \mathbb{R}^N$,

hence

(iii)

$$\sum_{k=-\infty}^{\infty} {}_{3}Z_q \left(nx-k\right) = 1,\tag{68}$$

 $\forall x \in \mathbb{R}^N; n \in \mathbb{N},$

and

(iv)

$$\int_{\mathbb{R}^N} {}_3Z_q\left(x\right) dx = 1,\tag{69}$$

that is ${}_{3}Z_{q}$ is a multivariate density function.

For $0 < \beta^* < 1$ and $n \in \mathbb{N}$, a fixed $x \in \mathbb{R}^N$, we have that

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_3Z_q\left(nx-k\right) =$$

$$\begin{cases} \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{3}Z_{q}\left(nx-k\right) + \sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{3}Z_{q}\left(nx-k\right). \tag{70} \\ \left\|\frac{k}{n}-x\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}} \end{cases} \begin{cases} \left\|\frac{k}{n}-x\right\|_{\infty} > \frac{1}{n^{\beta^{*}}} \\ \left\|\frac{k}{n}-x\right\|_{\infty} > \frac{1}{n^{\beta^{*}}} \end{cases}$$

In the last two sums the counting is over disjoint vector sets of k's, because the condition $\left\|\frac{k}{n} - x\right\|_{\infty} > \frac{1}{n^{\beta^*}} \text{ implies that there exists at least one } \left|\frac{k_r}{n} - x_r\right| > \frac{1}{n^{\beta^*}}, \text{ where } r \in \{1, ..., N\}.$ (v) We also have that

$$\sum_{k=\lceil na\rceil}^{\lfloor nb\rfloor} {}_{3}Z_{q}\left(nx-k\right) < Ke^{-\beta n^{\left(1-\beta^{*}\right)}} = c_{3}(n,\beta^{*}), \ 0 < \beta^{*} < 1, \qquad (71)$$

$$\begin{cases} k = \lceil na\rceil \\ \|\frac{k}{n} - x\|_{\infty} > \frac{1}{n^{\beta^{*}}}
\end{cases}$$

with $n \in \mathbb{N} : n^{1-\beta^*} > 2, x \in \prod_{i=1}^{N} [a_i, b_i].$ (vi) Moreover

 $0 < \frac{1}{\sum_{k=\lceil nq \rceil}^{\lfloor nb \rfloor} {}_{3}Z_{q} \left(nx - k \right)} < \left(\Psi_{3} \left(q \right) \right)^{N},$ (72)

 $\forall x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right), n \in \mathbb{N}.$ It is also clear that

(vii)

$$\sum_{\substack{k = -\infty \\ \left\|\frac{k}{n} - x\right\|_{\infty} > \frac{1}{n^{\beta^*}}}^{\infty}} {}_{3}Z_q \left(nx - k\right) < Ke^{-\beta n^{\left(1 - \beta^*\right)}},$$
(73)

 $0<\beta^*<1,\,n\in\mathbb{N}:n^{1-\beta^*}>2,\,x\in\mathbb{R}^N.$ Furthermore it holds

$$\lim_{n \to \infty} \sum_{k = \lceil na \rceil}^{\lfloor nb \rfloor} {}_{3}Z_q \left(nx - k \right) \neq 1, \tag{74}$$

for at least some $x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right)$. Let $f \in C\left(\prod_{i=1}^{N} [a_i, b_i]\right)$, and $n \in \mathbb{N}$ such that $\lceil na_i \rceil \leq \lfloor nb_i \rfloor$, i = 1, ..., N.

We define the multivariate averaged positive linear quasi-interpolation neural network operators $(x := (x_1, ..., x_N) \in \left(\prod_{i=1}^N [a_i, b_i]\right); j = 1, 2, 3$:

$${}_{j}F_{n}\left(f,x_{1},...,x_{N}\right) := {}_{j}F_{n}\left(f,x\right) := \frac{\sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} f\left(\frac{k}{n}\right){}_{j}Z_{q}\left(nx-k\right)}{\sum_{k=\lceil na \rceil}^{\lfloor nb \rfloor} {}_{j}Z_{q}\left(nx-k\right)} =$$

$$\frac{\sum_{k_{1}=\lceil na_{1} \rceil}^{\lfloor nb_{1} \rfloor} \sum_{k_{2}=\lceil na_{2} \rceil}^{\lfloor nb_{2} \rfloor} ... \sum_{k_{N}=\lceil na_{N} \rceil}^{\lfloor nb_{N} \rfloor} f\left(\frac{k_{1}}{n},...,\frac{k_{N}}{n}\right) \left(\prod_{i=1}^{N} {}_{j}\mathcal{L}_{q}\left(nx_{i}-k_{i}\right)\right)}{\prod_{i=1}^{N} \left(\sum_{k_{i}=\lceil na_{i} \rceil}^{\lfloor nb_{i} \rfloor} {}_{j}\mathcal{L}_{q}\left(nx_{i}-k_{i}\right)\right)}.$$

$$(75)$$

For large enough $n \in \mathbb{N}$ we always obtain $\lceil na_i \rceil \leq \lfloor nb_i \rfloor$, i = 1, ..., N. Also $a_i \leq \frac{k_i}{n} \leq b_i$, iff $\lceil na_i \rceil \leq k_i \leq \lfloor nb_i \rfloor$, i = 1, ..., N.

For the next we need, for $f \in C\left(\prod_{i=1}^{N} [a_i, b_i]\right)$ the first multivariate modulus of continuity

$$\omega_{1}(f,h) := \sup_{\substack{x, y \in \prod_{i=1}^{N} [a_{i}, b_{i}] \\ \|x - y\|_{\infty} \le h}} |f(x) - f(y)|, \quad h > 0.$$
(76)

It holds that

$$\lim_{h \to 0} \omega_1(f,h) = 0. \tag{77}$$

We mention

Theorem 28. (see [4], [5], [6]) Let $f \in C\left(\prod_{i=1}^{N} [a_i, b_i]\right), 0 < \beta^* < 1, x \in \left(\prod_{i=1}^{N} [a_i, b_i]\right), N, n \in \mathbb{N} \text{ with } n^{1-\beta^*} > 2; j = 1, 2, 3.$ Then 1)

$$\left|{}_{j}F_{n}\left(f,x\right) - f\left(x\right)\right| \leq \left(\Psi_{j}\left(q\right)\right)^{N} \left[\omega_{1}\left(f,\frac{1}{n^{\beta}}\right) + 2c_{j}\left(n,\beta^{*}\right)\left\|f\right\|_{\infty}\right] =: \lambda_{j},$$
(78)

and

2)

$$\|_{j}F_{n}\left(f\right) - f\|_{\infty} \le \lambda_{j}.$$
(79)

We notice that $\lim_{n\to\infty} {}_{j}F_{n}(f) = f$, pointwise and uniformly.

In this article we extend Theorem 28 to the fuzzy-random level.

3 Main Result

About *p*-mean Approximation by Fuzzy-Random Perturbed Quasi-Interpolation Neural Network Operators

All terms and assumptions here as in Sections 1, 2.

Let
$$f \in C_{\mathcal{FR}}^{U_p}\left(\prod_{i=1}^N [a_i, b_i]\right), \ 1 \le p < +\infty, \ n, N \in \mathbb{N}, \ 0 < \beta < 1, \ \overrightarrow{x} \in \left(\prod_{i=1}^N [a_i, b_i]\right), (X, \mathcal{B}, P)$$
 probability space, $s \in X; \ j = 1, 2, 3.$

We define the following multivariate fuzzy random perturbed quasi-interpolation linear neural network operators

$$\left({}_{j}F_{n}^{\mathcal{FR}}\left(f\right)\right)\left(\overrightarrow{x},s\right) := \sum_{\overrightarrow{k}=\lceil na\rceil}^{\lfloor nb \rfloor *} f\left(\frac{\overrightarrow{k}}{n},s\right) \odot \frac{{}_{j}Z_{q}\left(n\overrightarrow{x}-\overrightarrow{k}\right)}{\sum\limits_{\overrightarrow{k}=\lceil na\rceil}^{\lfloor nb \rfloor} {}_{j}Z_{q}\left(n\overrightarrow{x}-\overrightarrow{k}\right)},\tag{80}$$

(see also (75)).

We present

Theorem 29. Let $f \in C_{\mathcal{FR}}^{U_p}\left(\prod_{i=1}^N [a_i, b_i]\right), \ 0 < \beta^* < 1, \ \overrightarrow{x} \in \left(\prod_{i=1}^N [a_i, b_i]\right), \ n, N \in \mathbb{N}, \ with n^{1-\beta^*} > 2, \ 1 \le p < +\infty.$ Assume that $\int_X \left(D^*\left(f\left(\cdot, s\right), \widetilde{o}\right)\right)^p P\left(ds\right) < \infty; \ j = 1, 2, 3.$ Then 1)

$$\left(\int_{X} D^{p}\left(\left({}_{j}F_{n}^{\mathcal{FR}}\left(f\right)\right)\left(\overrightarrow{x},s\right), f\left(\overrightarrow{x},s\right)\right) P\left(ds\right)\right)^{\frac{1}{p}} \leq$$

$$(81)$$

$$(\Psi_j(q))^N \left\{ \Omega_1\left(f, \frac{1}{n^{\beta^*}}\right)_{L^p} + 2c_j\left(n, \beta^*\right) \left(\int_X \left(D^*\left(f\left(\cdot, s\right), \widetilde{o}\right)\right)^p P\left(ds\right)\right)^{\frac{1}{p}} \right\} =: \mu_j^{(\mathcal{FR})},$$
2)

$$\left\| \left(\int_{X} D^{p} \left(\left(jFn^{\mathcal{FR}} \left(f \right) \right) \left(\overrightarrow{x}, s \right), f\left(\overrightarrow{x}, s \right) \right) P\left(ds \right) \right)^{\frac{1}{p}} \right\|_{\infty, \left(\prod_{i=1}^{N} \left[a_{i}, b_{i} \right] \right)} \le \mu_{j}^{(\mathcal{FR})}, \tag{82}$$

where $(\Psi_j(q))^N$ as in (26), (50), (72) and $c_j(n, \beta^*)$ as in (25), (49), (71).

Proof. We notice that

$$D\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right) \le D\left(f\left(\frac{\overrightarrow{k}}{n},s\right),\widetilde{o}\right) + D\left(f\left(\overrightarrow{x},s\right),\widetilde{o}\right)$$

$$\le 2D^*\left(f\left(\cdot,s\right),\widetilde{o}\right).$$
(83)

Hence

$$D^{p}\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right) \leq 2^{p}D^{*p}\left(f\left(\cdot,s\right),\widetilde{o}\right),\tag{85}$$

and

$$\left(\int_{X} D^{p}\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right)P\left(ds\right)\right)^{\frac{1}{p}} \leq 2\left(\int_{X} \left(D^{*}\left(f\left(\cdot,s\right),\widetilde{o}\right)\right)^{p}P\left(ds\right)\right)^{\frac{1}{p}}.$$
(86)

We observe that

$$D\left(\left({}_{j}F_{n}^{\mathcal{FR}}\left(f\right)\right)\left(\overrightarrow{x},s\right),f\left(\overrightarrow{x},s\right)\right) =$$
(87)

$$D\left(\sum_{\overrightarrow{k}=\lceil na\rceil}^{\lfloor nb \rfloor *} f\left(\frac{\overrightarrow{k}}{n},s\right) \odot \frac{jZ_q\left(nx-k\right)}{\sum\limits_{\overrightarrow{k}=\lceil na \rceil}^{\lfloor nb \rfloor} jZ_q\left(nx-k\right)}, f\left(\overrightarrow{x},s\right) \odot 1\right) =$$

$$D\left(\sum_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor *} f\left(\frac{\overrightarrow{k}}{n},s\right) \odot \frac{jZ_q\left(nx-k\right)}{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} jZ_q\left(nx-k\right)}, f\left(\overrightarrow{x},s\right) \odot \frac{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} jZ_q\left(nx-k\right)}{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} jZ_q\left(nx-k\right)}\right) = (88)$$

$$D\left(\sum_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor *} f\left(\frac{\overrightarrow{k}}{n},s\right) \odot \frac{jZ_q\left(nx-k\right)}{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} jZ_q\left(nx-k\right)}, \sum_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor *} f\left(\overrightarrow{x},s\right) \odot \frac{jZ_q\left(nx-k\right)}{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} jZ_q\left(nx-k\right)}\right)$$

$$\leq \sum_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} \left(\frac{jZ_q\left(nx-k\right)}{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor} jZ_q\left(nx-k\right)}\right) D\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right). \tag{89}$$

So that

$$D\left(\left({}_{j}F_{n}^{\mathcal{FR}}\left(f\right)\right)\left(\overrightarrow{x},s\right),f\left(\overrightarrow{x},s\right)\right) \leq D\left(\left(\frac{jZ_{q}\left(nx-k\right)}{\left[\sum\limits_{k=\left\lceil na \right\rceil}^{\left\lfloor nb \right\rfloor} jZ_{q}\left(nx-k\right)\right]}\right) D\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right) =$$

$$\sum_{\substack{k=\left\lceil na \right\rceil}}^{\left\lfloor nb \right\rfloor} \left(\frac{jZ_{q}\left(nx-k\right)}{\left[\sum\limits_{k=\left\lceil na \right\rceil}^{\left\lfloor nb \right\rfloor} jZ_{q}\left(nx-k\right)\right]}\right) D\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right) + \left(\left\|\frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}} \left(\sum\limits_{k=\left\lceil na \right\rceil}^{\left\lfloor nb \right\rfloor} jZ_{q}\left(nx-k\right)\right)\right) D\left(f\left(\frac{\overrightarrow{k}}{n},s\right),f\left(\overrightarrow{x},s\right)\right) +$$

$$\left\|\frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\|_{\infty} \leq \frac{1}{n^{\beta^{*}}} \left(\sum\limits_{k=\left\lceil na \right\rceil}^{\left\lfloor nb \right\rfloor} jZ_{q}\left(nx-k\right)\right)\right) D\left(\frac{f\left(\overrightarrow{k},s\right)}{n},f\left(\overrightarrow{x},s\right)\right) +$$

$$\sum_{\substack{\overrightarrow{k} = \lceil na \rceil \\ m} \geq \frac{1}{n\beta^{*}}}^{\lfloor nb \rfloor} \left(\frac{jZ_{q} (nx-k)}{\sum_{\substack{i=1 \\ m} j}^{\lfloor nb \rfloor} Z_{q} (nx-k)} \right) D\left(f\left(\frac{\overrightarrow{k}}{n}, s\right), f\left(\overrightarrow{x}, s\right) \right).$$

Hence it holds

the it holds

$$\left(\int_{X} D^{p}\left(\left({}_{j}F_{n}^{\mathcal{FR}}\left(f\right)\right)\left(\overrightarrow{x},s\right),f\left(\overrightarrow{x},s\right)\right)P\left(ds\right)\right)^{\frac{1}{p}} \leq \qquad (91)$$

$$\sum_{\substack{\vec{k}=\lceil na\rceil\\ \|\overrightarrow{k}-\overrightarrow{x}\|_{\infty}\leq\frac{1}{n^{\beta^{*}}}}^{\lfloor nb\rfloor} \left(\frac{jZ_{q}\left(nx-k\right)}{\sum\limits_{\substack{k=\lceil na\rceil}}^{\lfloor nb\rfloor}jZ_{q}\left(nx-k\right)}\right)\left(\int_{X} D^{p}\left(f\left(\overrightarrow{k},s\right),f\left(\overrightarrow{x},s\right)\right)P\left(ds\right)\right)^{\frac{1}{p}} + \qquad (91)$$

$$\sum_{\substack{\vec{k} \in [na]\\ \vec{k} = [na]\\ \vec{k} = [na]}} \left(\frac{jZ_q(nx-k)}{\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)} \right) \left(\int_X D^p \left(f\left(\frac{\vec{k}}{n}, s\right), f\left(\vec{x}, s\right) \right) P(ds) \right)^{\frac{1}{p}} \leq \left(\frac{1}{\left(\frac{1}{\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)}\right) \cdot \left\{ \Omega_1^{(\mathcal{F})} \left(f, \frac{1}{n^{\beta^*}} \right)_{L^p} + \right) \right) \left(\frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) \cdot \left\{ \Omega_1^{(\mathcal{F})} \left(f, \frac{1}{n^{\beta^*}} \right)_{L^p} + \right) \right) \left(\frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) \cdot \left\{ \frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) \cdot \left\{ \frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) - \left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) \right\} \right) \right\} \right) \left(\frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) \cdot \left\{ \frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) - \left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) \right\} \right) \right) \left(\frac{1}{\left(\sum\limits_{\vec{k} \in [na]} jZ_q(nx-k)\right) - \left(\sum\limits_{\vec{k} \in [na]}$$

(by (25), (26); (49), (50); (71), (72)

$$\leq (\Psi_j(q))^N \left\{ \Omega_1^{(\mathcal{F})} \left(f, \frac{1}{n^{\beta^*}} \right)_{L^p} + 2c_j \left(n, \beta^* \right) \left(\int_X \left(D^* \left(f\left(\cdot, s \right), \widetilde{o} \right) \right)^p P\left(ds \right) \right)^{\frac{1}{p}} \right\}.$$
(93)

We have proved claim. \Box

Conclusion 30. By Theorem 29 we obtain the pointwise and uniform convergences with rates in the p-mean and D-metric of the operator ${}_{j}F_{n}^{\mathcal{FR}}$ to the unit operator for $f \in C_{\mathcal{FR}}^{U_{p}}\left(\prod_{i=1}^{N} [a_{i}, b_{i}]\right)$, j = 1, 2, 3.

References

- G.A. Anastassiou, Multivariate Fuzzy-Random Quasi-interpolation neural network approximation operators, J. Fuzzy Mathematics, Vol. 22, No. 1, 2014, 167-184.
- [2] G.A. Anastassiou, Intelligent Systems II: Complete Approximation by Neural Network Operators, Springer, Heidelberg, New York, 2016.
- [3] G.A. Anastassiou, General sigmoid based Banach space valued neural network approximation, J. of Computational Analysis and Applications, 31 (4) (2023), 520-534.
- G.A. Anastassiou, Parametrized Deformed and General Neural Networks, Chapter 15, Springer, Heidelberg, New York, 2023.
- [5] G.A. Anastassiou, Parametrized Deformed and General Neural Networks, Chapter 17, Springer, Heidelberg, New York, 2023.
- [6] G.A. Anastassiou, Parametrized Deformed and General Neural Networks, Chapter 19, Springer, Heidelberg, New York, 2023.

- [7] S. Gal, Approximation Theory in Fuzzy Setting, Chapter 13 in Handbook of Analytic-Computational Methods in Applied Mathematics, pp. 617-666, edited by G. Anastassiou, Chapman & Hall/CRC, 2000, Boca Raton, New York.
- [8] Wu Congxin, Gong Zengtai, On Henstock integral of interval-valued functions and fuzzy valued functions, Fuzzy Sets and Systems, Vol. 115, No. 3, 2000, 377-391.
- C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120, No. 3, (2001), 523-532.
- [10] C. Wu, M. Ma, On embedding problem of fuzzy number space: Part 1, Fuzzy Sets and Systems, 44 (1991), 33-38.