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Abstract

In this article we estimate the degree of approximation of multivariate pointwise and
uniform convergences in the p-mean to the Fuzzy-Random unit operator of multivariate
Fuzzy-Random Quasi-Interpolation perturbed activation functions based neural network
operators. These multivariate Fuzzy-Random operators arise in a natural way among
multivariate Fuzzy-Random neural networks. The rates are given through multivariate
Probabilistic-Jackson type inequalities involving the multivariate Fuzzy-Random modulus

of continuity of the engaged multivariate Fuzzy-Random function.
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1 Fuzzy-Random Functions Background

See also [2], Ch. 22, pp. 497-501.
We start with

Definition 1. (see [8]) Let p: R — [0, 1] with the following properties:
(i) is normal, i.e., 3 xg € R : pu(xo) = 1.
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(1)) p(Az+ (1 =N y) > min{u(z),pu(y)}, Vao,y e R,V A e [0,1] (u is called a convex
fuzzy subset).

(117) p is upper semicontinuous on R, i.e., ¥V xg € R and ¥ & > 0, 3 neighborhood V (x¢) :
p(z) < p(zo) +e, VeV ().

(iv) the set supp (1) is compact in R (where supp(u) = {z € R; u(x) > 0}).

We call i a fuzzy real number. Denote the set of all p with Rx.

E.g., X{zo} € RF, for any xo € R, where x4, is the characteristic function at xo.
For0<r<1andpe Ry define (] :={z eR:p(x)>r}and[p)’ :={z eR: p(z) >0}

Then it is well known that for each r € [0, 1], [¢]" is a closed and bounded interval of R.

For u,v € Rr and A € R, we define uniquely the sum u @ v and the product A ® u by
[udv] =u"+", [Aou"=Au|", Vrel01],

where [u]" + [v]" means the usual addition of two intervals (as subsets of R) and A [u]” means
the usual product between a scalar and a subset of R (see, e.g., [8]). Notice 1 ® u = u and
it holds u v =v@u, A\Ou=u®AX If0<r <ry<1then [u]? C [u]™". Actually
[u]" = [u(f),ugf)}, where u”) < US:), u(f),ugf) eER,Vrel0l].
Define
D:RrxRr — R, U{0}

by

D (u,v) := sup max{‘u(j) — "
rel0,1]

r}’

) — o)

where [v]" = {v@,vg)} ; u,v € Rp. We have that D is a metric on Rr. Then (Rx, D) is a

complete metric space, see [8], with the properties

D(u®dw,vdw)=D(uv), YuuvweRs,
D(k®u,k®v)=|k|D(u,v), YuuveRrVYEkER, (1)
Dudv,wde)<D(u,w)+D(ve), VuuvwecRg.

Let (M,d) metric space and f,g : M — Rx be fuzzy real number valued functions. The
distance between f, g is defined by

D*(f,g) = fgﬁD (f (x),9(x)).

On Rr we define a partial order by "<”: u,v € Rr, u < v iff u(_r) < v@ and uS:) < UE:), v
re0,1].

z*: denotes the fuzzy summation, o := x9) € Rz the neutral element with respect to ®.
For more see also [9], [10].

‘We need

Definition 2. (see also [7], Definition 13.16, p. 654) Let (X, B, P) be a probability space. A
fuzzy-random variable is a B-measurable mapping g : X — R (i.e., for any open set U C Rx,
in the topology of Rx generated by the metric D, we have

g (U)={seX;q(s) €U} € B). (2)



The set of all fuzzy-random variables is denoted by Lr (X,B,P). Let gn,g € Lr (X, B, P),

”p—mean”

n €N and 0 < p < +oo. We say gn (5) oo g (s) if
lim [ D (gn(s),9(s))" P (ds) = 0. 3)

n——+oo X

Remark 3. (see [7], p. 654) If f,g € Lr(X,B,P), let us denote F' : X — R4 U {0}
by F(s) = D(f(s),g(s)), s € X. Here, F is B-measurable, because F' = G o H, where
G (u,v) = D (u,v) is continuous on Rr x Rr, and H : X - Rr xRz, H (s) = (f (s),9(s)),

s € X, is B-measurable. This shows that the above convergence in g-mean makes sense.

Definition 4. (see [7], p. 654, Definition 13.17) Let (T, T) be a topological space. A mapping
f:T — Lr(X,B,P) will be called fuzzy-random function (or fuzzy-stochastic process) on T.
We denote f (t) (s) = f(t,s),te€T, s€ X.

Remark 5. (see [7], p. 655) Any usual fuzzy real function f: T — Rz can be identified with
the degenerate fuzzy-random function f(t,s) = f(t),VteT, se€ X.

Remark 6. (see [7], p. 655) Fuzzy-random functions that coincide with probability one for

each t € T will be consider equivalent.

Remark 7. (see [7], p. 655) Let f,g:T — Ly (X,B,P). Then f & g and k ® f are defined

pointwise, i.e.,

(feg)(ts) f(t,s)@glts),
(ko f)(t,s) = kof(ts), teT,seX, keR.

Definition 8. (see also Definition 15.18, pp. 655-656, [1]) For a fuzzy-random function
f:WCRN = L (X,B,P), N €N, we define the (first) fuzzy-random modulus of continuity

ng) (f7 5)Lp =

Sup{</XD”(f(fr,8)>f(y,8))P(d8))p rx,y €W, Hx—yHoo§5}7
0<d,1<p< 0.

Definition 9. (/1)) Here 1 <p < +oo. Let f : W CRY — Lz (X,B,P), N € N, be a fuzzy
random function. We call f a (p-mean) uniformly continuous fuzzy random function over W,
iff Ve >036 >0 :whenever ||z —yl|| <0, z,y € W, implies that

/X (D (f (z,8), f(y,s)))’ P(ds) <e.

We denote it as f € Cg% (W).

Proposition 10. ([1]) Let f € ngz)% (W), where W C RY is convez.
Then Qg}—) (f,0)p <00, any 6 > 0.



Proposition 11. (/1) Let f,g: W C RN — Lz (X,B,P), N € N, be fuzzy random functions.
It holds
(i) Q(lf) (f,0)p is nonnegative and nondecreasing in 6 > 0.

(i6) im0 (£,0) 1, = O (1,001 = 0, ff f € Ol (W),
We need also

Proposition 12. ([1]) Let f,g be fuzzy random variables from S into Rr. Then
(i) Let c € R, then ¢ ® f is a fuzzy random variable.

(ii) f @ g is a fuzzy random variable.

2 About Perturbed Neural Network Background

2.1 About ¢-Deformed and A-parametrized A-generalized logistic function
induced real space valued multivariate multi layer neural network ap-
proximation

Here we follow [4].

We consider the g-deformed and A-parametrized function

1

:m, x € R, where g, A >0, A > 1. (4)
q

Pg.x (2)

which is a sigmoid type function and it is strictly increasing. This is an A-generalized logistic

type function. We easily observe that

Pg,\ (+OO) = 17 Pag,\ (*OO) =0. (5)
Furthermore we have
Par (2) = 1= 1, (~2). (6)
and )
0) = ——. 7
2un (0) = 7 (7
loga g

Moreover ¢y y () > 0, for z < logTAq and there ¢g ) is concave up. When z > =524, we

have ¢ \ (z) < 0 and g\ is concave down. Of course

log 4 q
8051/7)\ ( AA ) = O

S0, g is a sigmoid function, see [3].

We consider the activation function

Ly () = 5 (pga (@ +1) — pga (@ — 1)), zE€R (®)
Then
1Ly (—z) =1 'Cé,/\ (), Yz eR. (9)



We have that
Ly () = 5 (o (2 1) = g (2~ 1)) <0,
i.e. 1L, is strictly decreasing over (logTAq, —i—oo) . Furthermore, 1£, is strictly concave down
over (bgTAq -1, bgTAq + 1) . Overall £, is a bell-shaped function over R. Of course it holds

1Lqg, ' (bgTAq) < 0. We have that the global maximul of £, is

log 4 ¢ AN —1
= ) 1
1£q< A > 2(A> +1) (10)
Finally we have that

) 1
mgg{loolﬁq (x> - 9 (‘Pq,/\ (+OO) — Pg,x (+OO)) =0, (11)

and .
lim 1L (2) = 5 (g (-00) = g (—00)) = 0. (12)

Consequently the z-axis is the horizontal asymptote of 1£,. Of course 1L, () >0,V z € R.
We need

Theorem 13. It holds
Y iLglw—i)=1, V2 €R,V¢,A>0,A>1. (13)

1=—00

It follows

Theorem 14. It holds

/ 1Ly (x)de =1, X\ g>0, A>1 (14)

—0o0
So that 1 £, is a density function on R; A,¢ >0, A > 1.
We need the following result

Theorem 15. Let 0 < a < 1, and n € N with n'=* > 2. Then

o0

1 1 \(nl-o_
Z 1£q (nx—k‘) < max {q,q} m :"yA )\( 1 2) = Cl(n,a)a
k=—o0
{ s nx — k| > nlme

where g, A >0, A > 1; v := max{qjé}.

(15)

Let [-] the ceiling of the number, and || the integral part of the number.

Theorem 16. Let z € [a,b] C R and n € N so that [na] < |nb]. For ¢ >0, A >0, A > 1,
we consider the number Aq > zo > 0 with 1Ly (20) = 1£L4(0) and Ay > 1. Then

1 1 1
0] L,0)
S 1L, (nz — k) ol iz ()
k=[na]




‘We make

Remark 17. (i) We have that

Lnb)
nll)l}_loo k_z[:1 1Ly (nx— k) #1, for at least some x € [a,b], (17)

where A\, q > 0.
(ii) Let [a,b] C R. For large n we always have [na] < |nb]. Also a < % < b, iff
[na] < k < |nb|. In general it holds

[nb)
> 1Ly —k) <1 (18)
k=[na]
We introduce
N
1 Zg (w1, 2n) =12 () == [ [1£4 (@), 2 = (x1,...,2n) €RY, (19)
i=1
Ag>0, A>1, N eN.
1Z4 (x) it has the properties:
(i) 1Z,(z) >0, ¥z € RV,
(ii)
Yo iZi@—k= D> > Y 1Zg(w—ky,ay —ky) =1, (20)
k=—o00 ki=—ooka=—0c0 ky=—0o0

where k := (k1,...,k,) € ZV,V 2z € RV,

hence
(iii)
o0
> 1 Zy(ne—k) =1, (21)
k=—o00
VzeRNV:neN,
and
(iv)
/ 1Zg (x)dz =1, (22)
RN
that is 1 Z, is a multivariate density function.
Here denote ||z||. := max{|z1|,..,|zy|}, = € RV also set 0o := (00, ...,00), —00 =
(=00, ..., —00) upon the multivariate context, and

[na] := ([na1], ..., [nan]),
(23)

|nb| := (|nb1],..., [nbn]),

where a := (a1, ...,an), b := (b1,...,bn) .



We obviously see that for 0 < 8* < 1 and n € N, a fixed z € RY, we have that
[nb]

Z 1Zg (nx — k) =
k=[na]
[nb] |nb|
Z 1Z¢ (nx — k) + Z 1Z¢ (nx — k). (24)
{ k = nal { = [na
15 =2l < 7 15 =2l > 7
(v) We derive that
[nb] .
ISV
> gz — k) <A S, o<1, (25)
k = [na]
15 = 2l > 7
withn € N:n!=8" > 2 2 ¢ Hfil [a;, b;] .
(vi) We get that
1 N
0< < (Y1 ()", (26)
nb
Z,LC:HM] 124 (nx — k)
Ve (Hf\il [ai,bz-]>, n € N.
It is also clear that
(vii)
> Al _
> Zy (n — k) <A 2), (27)
= —00
15 ==l >
0<p*<1l,neN:n"F" >2 zecRVN.
Furthermore it holds i)
nb
nh_}rgo [21 1Zg (nx — k) # 1, (28)
k=[na

for at least some z € (Hf\il [a;, bl]) .

2.2 About ¢-deformed and A\—parametrized hyperbolic tangent function g, \

Here we follow [5]. Let us consider the function

6)\412 _ qef)\x

= g g M40 TER. (29)

ggx () :

We have that g, is striclty increasing. We easily observe that,

g (+00) = L,and  ggx (—00) = —1 (30)
Furthermore,
l—gq
0)=——7. 31
90 (0) = 1 (31)



and
sy 2) = g (<2). (32)

Moreover, in case of z < 1;—/\‘1, we have that g, ) is strictly concave up, with g;’ A (ﬁ) =0.

And in case of x > 1;1—;1, we have that g, \ is strictly concave down.

Clearly, gq.» is a shifted sigmoid function with g, (0) = %g, and gy (—2) = —g4-1.5 (),
(a semi-odd function), see also [3].

By1l>—-1, 2+ 1>z — 1, we consider the activation function

1
oLy (x) := 1 (ggr (x+1) —ggn (x—1)) >0, (33)

Vz € R; g, A > 0. Notice that 2L, (£00) = 0, so the z-axis is horizontal asymptote. We have
that

2£q (_x) - 2£l (:U) ’ Vae Ra q, A> 07 (34)
q
a deformed symmetry.
Next, we have that
!/ ]‘ / /
2L, (v) = z(gq)\ (x+1)—gq’)\ (95—1))7 vV zeR. (35)
Moreover, 2L, is striclty increasing over (—oo, 1;—; — ) . and strictly decreasing over (1;1—)? +1, +oo) .

Furthermore 2L, is concave down over [1;1—/\(1 -1, %? + 1}, and strictly concave down over
(1;—;1 -1, %? + 1) . Consequently 2L, has a bell-type shape over R.

Of course it holds 2£g (1%?) < 0. We also have that the maximum value of 2L, is

Ing\ tanh())

2L, (2/\) = 5 A > 0. (36)
We give
Theorem 18. We have that

Y aLg(w—i)=1, Vz R,V Aqg>0. (37)
We need

Theorem 19. It holds o

/ oLy (z)dz =1, Aq> 0. (38)

So that 2L, is a density function on R; A, ¢ > 0.
We need the following result

Theorem 20. Let 0 < a < 1, and n € N with n'=* > 2; ¢, A > 0. Then

[e.9]

1 —a N
Z 2Ly (nx — k) < max {q, } e e2an ) _ p =220tz ca(n,a),
q

= —00
s nx — k| > ntme
(39)
where T := max {q, %} et



Let [-] the ceiling of the number, and |-| the integral part of the number.

Theorem 21. Let x € [a,b] C R and n € N so that [na] < |nb|. For g > 0, A > 0, we
consider the number \g > zo > 0 with 2L, (20) = 2£4(0) and Ay > 1. Then

1 1 1
ot] < max L) 7 (}\1> =: Uy (q). (40)
> oLy (nx—k) 220\

k=[na]
We make

Remark 22. (i) We have that

Lnb)
ngrfoo z{: 1 oLy (nx — k) #1, for at least some x € [a,b], (41)
k=[na

where A\, q > 0.
(ii) Let [a,b] C R. For large n we always have [na] < |[nb]. Also a < & < b, iff
[na] < k < |nb|. In general it holds

[nb]

> oLy —k)<1. (42)

k=[na]

We introduce
N

2Zq (21, tn) = 22 () = [ [ 2Lq (i), &= (21,..oan) €RY, \,g>0, NeN. (43)
=1

274 (x) it has the properties:
(i) 2Z, (z) >0, ¥V z € RV,
(i)

[e.o]

Yo wZiw—k)y= Y > Y Zy(wr—k ey —ky) =1, (44)

k=—o00 ki=—00 ko=—00 kn=—00

where k := (k1,...,k,) € ZV,V 2 € RV,

hence
(iii)
[e.e]
Z 2Zq (nx —k) =1, (45)
k=—o0
VzeRV:neN,
and
(iv)
/ 924 (x)dx =1, (46)
RN

that is 97, is a multivariate density function.



We obviously see that

L) [nb] /N
Z 2Zq (nx — k) = Z (H oLy (nz; — kz)) =
i=1

k=[na] k=[na]

|nbi | [nbn | N N [nbi ]
Z Z (Hgﬁ nx; — ) H Z oLy (nx; — ki) | . (47)

klz[nal] kN:[naN‘\ =1 =1 kiz[nai]

For 0 < B* < 1and n € N, a fixed z € RV, we have that

Lnb]
Z 224 (nx — k) =

k=na]
|nb] |nb]
Z 2Zq (nx — k) + Z 924 (nx — k) (48)
k= [na] = [na]
{Hﬁ—ﬂwﬁn% {Hﬁ—ﬂu>n?

In the last two sums the counting is over disjoint vector sets of k’s, because the condition

H% - IL‘HOO > n% implies that there exists at least one % — :Erl > n%, where r € {1,..., N}.

(v) We also have that

[nb] i
3 2 Zy(nz — k) < Te 27 59, 0< g <1, (49)
k = [na]
1% =2l >
withn e N:n' 8" > 2 z e [T, [ai, bi] -
(vi) Moreover
1 N
0< <(2(9))", (50)
nb
S a1 22 (03 — k)
Vaxe (Hf\il [ai,bi]>, n € N.
It is also clear that
(vii)
Z 224 (nx — k) < T672)‘"(17B*), (51)
k= —o0
15 =2l >
0<B*<1l,neN:n" B >2 xRV,
Furthermore it holds b
lim > 2Zi(nz—k) #£1, (52)
k=[na]

for at least some z € <HZJ\L1 [a;, bz]> :

10



2.3 About ¢g-deformed and parametrized half hyperbolic tangent function
Uq

Here we follow [6]. We introduce the function

11— ge Pt

= T VteR, (53)

Vg (1) :

where ¢, 8 > 0. ¥, is striclty increasing. We also observe that

Yg(—00) =—1 and v, (+00) =1 (54)
Furthermore .
_1—q
9,(0) = 12 (55)

In case of t < Ian’ we have that 1, is strictly concave up, with 29;’ (h%q) =0.

Ing
5 9
Clearly, ¥, is a shifted sigmoid function with ¥, (0) =

And in case of t > we have that 1, is strictly concave down.

1—
ﬁ, and Jq (—x) = —0,1 (v), V
x € R, (a semi-odd function), see also [3].

By 1> —-1,z+4+ 1>z — 1, we consider the activation function

g (2) 1= 1 (B (a4 1)~ (2~ 1)) >0, (56)

Vo € R; B,q > 0. Notice that £, (+00) = 0, so the z-axis is horizontal asymptote. Also it
holds,
3Lq(—z) =3L1 (), VreR, (57)
q
a deformed symmetry.
Next we have that

3£;(x):i(ﬂfl(x+1)—19;(x—1)), VaeR. (58)

. . . . Ing
Hence, 3£, is striclty increasing over (—oo, e ) .

and strictly decreasing over (l%q + 1, +oo> .

Moreover, 3L, is concave down over [1%(1 -1, l%q + 1}, and strictly concave down over

Ing Ing
(T 1,50 4 1) .
Consequently 3£, has a bell-type shape over R. Of course it holds 3£’q/ (%) < 0. The

maximum value of 3£, is

Ing 1—e P
Li|l—)|=—F7——F+. 59
@ (F) =zt %)
We give
Theorem 23. We have that
Y sLy(z—i)=1, Yz ER, Y qB3>0. (60)

It follows

11



Theorem 24. It holds -
/ 3L (z)dx =1, ¢,5>0. (61)

—0o0
So that 3£, is a density function on R; ¢, 3 > 0.
We need the following result

Theorem 25. Let 0 < a < 1, and n € N with n'=® > 2; ¢, > 0. Then

o0
1 —a —a
Z 3Lg (nz — k) < max {q, q} e2Be=Pn1 ) _ pro—pnlime) _. c3(n,a),
k= —o0
{ D nw — k| > nlme

where K := max {q, %} eB.

(62)

We need,

Theorem 26. Let x € [a,b] C R and n € N so that [na] < [nb|. For ¢ > 0, we consider the
number g > 29 > 0 with 3L, (20) = 3L¢q (0) and B, g > 1. Then

1 1 1

0] < max WREWE . (/\1> =:U3(q). (63)
> 3Ly (nx—k) e\

k=[na]

We make

Remark 27. (i) We have that

Lnb)
EIE 3Ly (nx —k) # 1, for at least some x € [a,b], (64)
k=[na]
where B,q > 0.
(ii) Let [a,b] C R. For large n we always have [na] < |nb|. Also a < % < b, iff
[na] <k < |nb]|. In general it holds
Lnb)
> sLy(nz—k) < 1. (65)

k=[na]

We introduce

N
574 (21, an) =32 (x) = [ [3Lq (z:), «=(21,...an) €RY, B,¢>0, NeN. (66)

i=1
It has the properties:
(i) 3Z4(x) >0, Yz € RN,
(ii)
Yo sZgw—k) = > D Y sZg(m ki nay —ky) =1, (67)
k=—o00 ki=—00 ko=—00 kn=—00

12



where k := (k1,....,kn) € ZV,V z € RV,

hence
(iii)
> s3Zg(ne—k) =1, (68)
k=—00
VzeRN; neNl,
and
(iv)
/ 324 (v)dx =1, (69)
RN

that is 37, is a multivariate density function.
For 0 < B* < 1and n € N, a fixed z € RV, we have that

[nb]

Z 3Zq (nx —k) =
k=[na]
[nb] |nb|
> 37, (nx — k) + > 37, (nw — k). (70)
{ k = [na] { = [na]
15 =2l < 5= 15 =2l > =

In the last two sums the counting is over disjoint vector sets of k’s, because the condition

%“ —wr| > n%, where r € {1,..., N}.

H% — acHoo > n% implies that there exists at least one
(v) We also have that

[nb] (1-p%)

Z 37, (nx — k) < Ke Pn =c3(n, %), 0<B* <1, (71)
= [nal
15 =l > o=
withn e N:n' 8" > 2 z e [T, [ai, bi] -
(vi) Moreover
1 N
0< < (¥3(q))", (72)
nb
Sy %4 (na — k)
Vaoe (Hf\;l [ai,bi]>, n € N.
It is also clear that
(vii)
Z 3Zq (nx — k) < Ke_ﬁn(l_ﬁ*), (73)

{ k=—-
15 =2l > o5

0<p*<1,neN:n'"P >2 zeRN. Furthermore it holds

Lnb)
h_)m 3Zq (nx — k) # 1, (74)
k=[na]

13



for at least some z € <Hf\i1 [a;, bl]> Let f e C (HZ 1 las, bz]) , and n € N such that [na;| <
|nb;], 1 =1,...,N.

We define the multivariate averaged positive linear quasi-interpolation neural network
operators (z := (z1,...,2N) € (Hf\il [ai,biD); j=1,2,3:

Ztanna (%) qu (’I’L.’E o k)
P (frr, e on) i= B (f) = =] - (75)
A a1 1%0 (1 = F)
k=[na]J
[nb1] |nba | \_nb N
Zkl 1[na1] Zkzj[naz] ~ =[nay] f (Wl’ ) ( i=1 jﬁq (nwl - kl))
nb; )
I, ( ) 5o (11 — Ks))
For large enough n € N we always obtain [na;| < [nb;|, i = 1,..., N. Also a; < ;’
[na;] <k; <|nb;j],i=1,..,N.
For the next we need, for f € C (Hl 1 lag, bz]> the first multivariate modulus of continuity

wi (f,h) = sup |f(z) = f(y)], h>0. (76)
T,y € Hz]\;l [aiabi]
[z =yl <
It holds that

We mention

Theorem 28. (see [4], [5], [6]) Let f € C (Hz ) [al,bl]) L0<pf <l ze (H;L [ai,bi}>,
N,n e N withn'=% > 2: j =1,2,3. Then

1)
i () = F @< (0 @) o (£ ) #2080 Il =0 (79)

and
2)
50 (f) = fllog < Aj- (79)

We notice that lim ;F, (f) = f, pointwise and uniformly.
n—oo

In this article we extend Theorem 28 to the fuzzy-random level.

3 Main Result

About p-mean Approximation by Fuzzy-Random Perturbed Quasi-Interpolation

1 [a, bz’]>7

Neural Network Operators

All terms and assumptions here as in Sections 1, 2.
N
Let f € Cﬁ%(ﬂ[ai,bi]) 1<p<+4oo,n,NeN 0<B8<1 7 € (
i=1
(X, B, P) probability space, s € X; j =1,2,3.

>

(2

14



We define the following multivariate fuzzy random perturbed quasi-interpolation linear

neural network operators

[mb ] _) qu (n? — ?)
(GF =2 f ( s> o — (80)
7 =nal 324 (n7 = %)
?:[mﬂ
(see also (75)).
We present
N N
Theorem 29. Let f € C%’z (H [ai,bi]> L0< B <1, 7 e (H [a;, Z]), n, N € N, with
i=1 =1
n'=F" > 2 1< p< +oo. Assume that [y (D* (f (,s),0))" P (ds) < oo; j =1,2,3. Then
1)
([0 (GER () @905 (Fos) Pas)) < 1)

(@)™ {Q <f, %)L +2¢ (n, 5°) ( /X (D" (£ (,9),9)) P <ds>) ‘1'} S
J

1

H </X DP ((anfR () (Z,s), f (?,s)) P (ds)) ! < M§IR)7 (82)

N
o, <H [ai,b¢]>
=1

where (\Ifj(q))N as in (26), (50), (72) and c; (n, B*) as in (25), (49), (71).

Proof. We notice that

7 %
D (f (77,78) 7f(?,3)> SD (.f <n73> 75> +D(f(?7s)75) (83)

§2D*(f('78)75)'

Hence

and

(/X o (f (E) I <?’8>> P<ds>>; <2 ([ e @)pP(ds)); )

We observe that




So that

iZ4q (nx —
k =[na]
[nb] -
~ ?:[na] Z ]Zq (n:c k)
-2l <ok \ 2
[nb] -
Zg (nx — k) k
J~9q —
. k=[na] Z qu (TZLL' — k)
ERTESREES

[nb) ‘ na — —
> LngJZq( k) (/ DP (f (:5> ,f(?,@) P(ds))
% =[na] > iZy(nx —k) *

16

(83)

(89)



[nb]

. ?:[mﬂ N Z qu (nm —
Hgﬂ“;ﬁ k =[na]

1 1
[nb] {ng) (f’ ﬂ*) * (92)
> Zq(na—k) .
k=[na]

2(/}( <D*<f<-,s>,5>>pP<ds>)‘l° %% 24 (nz — F)
K =[na]

[£-2] >

(by (25), (26); (49), (50); (71), (72)

LA

< (W,(0)" {ﬂ@ (F) w2esmm) ([ 007007 Pias)

} . (93)

Conclusion 30. By Theorem 29 we obtain the pointwise and uniform convergences with rates

We have proved claim. []

N
in the p-mean and D-metric of the operator ;F ® to the unit operator for f € ngz (H [a;, bz]> ,
i=1
j=1,2,3.
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