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Abstract

In this article we estimate the degree of approximation of multivariate pointwise and

uniform convergences in the p-mean to the Fuzzy-Random unit operator of multivariate

Fuzzy-Random Quasi-Interpolation perturbed activation functions based neural network

operators. These multivariate Fuzzy-Random operators arise in a natural way among

multivariate Fuzzy-Random neural networks. The rates are given through multivariate

Probabilistic-Jackson type inequalities involving the multivariate Fuzzy-Random modulus

of continuity of the engaged multivariate Fuzzy-Random function.
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1 Fuzzy-Random Functions Background

See also [2], Ch. 22, pp. 497-501.

We start with

Definition 1. (see [8]) Let µ : R → [0, 1] with the following properties:

(i) is normal, i.e., ∃ x0 ∈ R : µ (x0) = 1.
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(ii) µ (λx+ (1− λ) y) ≥ min{µ (x) , µ (y)}, ∀ x, y ∈ R, ∀ λ ∈ [0, 1] (µ is called a convex

fuzzy subset).

(iii) µ is upper semicontinuous on R, i.e., ∀ x0 ∈ R and ∀ ε > 0, ∃ neighborhood V (x0) :

µ (x) ≤ µ (x0) + ε, ∀ x ∈ V (x0) .

(iv) the set supp (µ) is compact in R (where supp(µ) := {x ∈ R;µ (x) > 0}).
We call µ a fuzzy real number. Denote the set of all µ with RF .

E.g., χ{x0} ∈ RF , for any x0 ∈ R, where χ{x0} is the characteristic function at x0.

For 0 < r ≤ 1 and µ ∈ RF define [µ]r := {x ∈ R : µ (x) ≥ r} and [µ]0 := {x ∈ R : µ (x) > 0}.

Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded interval of R.
For u, v ∈ RF and λ ∈ R, we define uniquely the sum u⊕ v and the product λ⊙ u by

[u⊕ v]r = [u]r + [v]r , [λ⊙ u]r = λ [u]r , ∀ r ∈ [0, 1] ,

where [u]r + [v]r means the usual addition of two intervals (as subsets of R) and λ [u]r means

the usual product between a scalar and a subset of R (see, e.g., [8]). Notice 1 ⊙ u = u and

it holds u ⊕ v = v ⊕ u, λ ⊙ u = u ⊙ λ. If 0 ≤ r1 ≤ r2 ≤ 1 then [u]r2 ⊆ [u]r1 . Actually

[u]r =
[
u
(r)
− , u

(r)
+

]
, where u

(r)
− < u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀ r ∈ [0, 1] .

Define

D : RF × RF → R+ ∪ {0}

by

D (u, v) := sup
r∈[0,1]

max
{∣∣∣u(r)− − v

(r)
−

∣∣∣ , ∣∣∣u(r)+ − v
(r)
+

∣∣∣} ,

where [v]r =
[
v
(r)
− , v

(r)
+

]
; u, v ∈ RF . We have that D is a metric on RF . Then (RF , D) is a

complete metric space, see [8], with the properties

D (u⊕ w, v ⊕ w) = D (u, v) , ∀ u, v, w ∈ RF ,

D (k ⊙ u, k ⊙ v) = |k|D (u, v) , ∀ u, v ∈ RF , ∀ k ∈ R,
D (u⊕ v, w ⊕ e) ≤ D (u,w) +D (v, e) , ∀ u, v, w, e ∈ RF .

(1)

Let (M,d) metric space and f, g : M → RF be fuzzy real number valued functions. The

distance between f, g is defined by

D∗ (f, g) := sup
x∈M

D (f (x) , g (x)) .

On RF we define a partial order by ”≤”: u, v ∈ RF , u ≤ v iff u
(r)
− ≤ v

(r)
− and u

(r)
+ ≤ v

(r)
+ , ∀

r ∈ [0, 1] .
∗∑

denotes the fuzzy summation, õ := χ{0} ∈ RF the neutral element with respect to ⊕.

For more see also [9], [10].

We need

Definition 2. (see also [7], Definition 13.16, p. 654) Let (X,B, P ) be a probability space. A

fuzzy-random variable is a B-measurable mapping g : X → RF (i.e., for any open set U ⊆ RF ,

in the topology of RF generated by the metric D, we have

g−1 (U) = {s ∈ X; g (s) ∈ U} ∈ B). (2)
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The set of all fuzzy-random variables is denoted by LF (X,B, P ). Let gn, g ∈ LF (X,B, P ),

n ∈ N and 0 < p < +∞. We say gn (s)
”p-mean”→
n→+∞

g (s) if

lim
n→+∞

∫
X
D (gn (s) , g (s))

p P (ds) = 0. (3)

Remark 3. (see [7], p. 654) If f, g ∈ LF (X,B, P ), let us denote F : X → R+ ∪ {0}
by F (s) = D (f (s) , g (s)), s ∈ X. Here, F is B-measurable, because F = G ◦ H, where

G (u, v) = D (u, v) is continuous on RF ×RF , and H : X → RF ×RF , H (s) = (f (s) , g (s)),

s ∈ X, is B-measurable. This shows that the above convergence in q-mean makes sense.

Definition 4. (see [7], p. 654, Definition 13.17) Let (T, T ) be a topological space. A mapping

f : T → LF (X,B, P ) will be called fuzzy-random function (or fuzzy-stochastic process) on T .

We denote f (t) (s) = f (t, s), t ∈ T , s ∈ X.

Remark 5. (see [7], p. 655) Any usual fuzzy real function f : T → RF can be identified with

the degenerate fuzzy-random function f (t, s) = f (t), ∀ t ∈ T , s ∈ X.

Remark 6. (see [7], p. 655) Fuzzy-random functions that coincide with probability one for

each t ∈ T will be consider equivalent.

Remark 7. (see [7], p. 655) Let f, g : T → LF (X,B, P ). Then f ⊕ g and k ⊙ f are defined

pointwise, i.e.,

(f ⊕ g) (t, s) = f (t, s)⊕ g (t, s) ,

(k ⊙ f) (t, s) = k ⊙ f (t, s) , t ∈ T, s ∈ X, k ∈ R.

Definition 8. (see also Definition 13.18, pp. 655-656, [7]) For a fuzzy-random function

f : W ⊆ RN → LF (X,B, P ), N ∈ N, we define the (first) fuzzy-random modulus of continuity

Ω
(F)
1 (f, δ)Lp =

sup

{(∫
X
Dp (f (x, s) , f (y, s))P (ds)

) 1
p

: x, y ∈ W, ∥x− y∥∞ ≤ δ

}
,

0 < δ, 1 ≤ p < ∞.

Definition 9. ([1]) Here 1 ≤ p < +∞. Let f : W ⊆ RN → LF (X,B, P ), N ∈ N, be a fuzzy

random function. We call f a (p-mean) uniformly continuous fuzzy random function over W ,

iff ∀ ε > 0 ∃ δ > 0 :whenever ∥x− y∥∞ ≤ δ, x, y ∈ W, implies that∫
X
(D (f (x, s) , f (y, s)))p P (ds) ≤ ε.

We denote it as f ∈ C
Up

FR (W ) .

Proposition 10. ([1]) Let f ∈ C
Up

FR (W ) , where W ⊆ RN is convex.

Then Ω
(F)
1 (f, δ)Lp < ∞, any δ > 0.
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Proposition 11. ([1]) Let f, g : W ⊆ RN → LF (X,B, P ), N ∈ N, be fuzzy random functions.

It holds

(i) Ω
(F)
1 (f, δ)Lp is nonnegative and nondecreasing in δ > 0.

(ii) lim
δ↓0

Ω
(F)
1 (f, δ)Lp = Ω

(F)
1 (f, 0)Lp = 0, iff f ∈ C

Up

FR (W ) .

We need also

Proposition 12. ([1]) Let f, g be fuzzy random variables from S into RF . Then

(i) Let c ∈ R, then c⊙ f is a fuzzy random variable.

(ii) f ⊕ g is a fuzzy random variable.

2 About Perturbed Neural Network Background

2.1 About q-Deformed and λ-parametrized A-generalized logistic function

induced real space valued multivariate multi layer neural network ap-

proximation

Here we follow [4].

We consider the q-deformed and λ-parametrized function

φq,λ (x) =
1

1 + qA−λx
, x ∈ R, where q, λ > 0, A > 1. (4)

which is a sigmoid type function and it is strictly increasing. This is an A-generalized logistic

type function. We easily observe that

φq,λ (+∞) = 1, φq,λ (−∞) = 0. (5)

Furthermore we have

φq,λ (x) = 1− φ 1
q
,λ (−x) . (6)

and

φq,λ (0) =
1

1 + q
. (7)

Moreover φ′′
q,λ (x) > 0, for x < logA q

λ and there φq,λ is concave up. When x > logA q
λ , we

have φ′′
q,λ (x) < 0 and φq,λ is concave down. Of course

φ′′
q,λ

(
logA q

λ

)
= 0.

So, φq,λ is a sigmoid function, see [3].

We consider the activation function

1Lq (x) :=
1

2
(φq,λ (x+ 1)− φq,λ (x− 1)) , x ∈ R. (8)

Then

1Lq (−x) =1 L 1
q
,λ (x) , ∀ x ∈ R. (9)
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We have that

1L′
q (x) =

1

2

(
φ′
q,λ (x+ 1)− φ′

q,λ (x− 1)
)
< 0.

i.e. 1Lq is strictly decreasing over
(
logA q

λ ,+∞
)
. Furthermore, 1Lq is strictly concave down

over
(
logA q

λ − 1, logA q
λ + 1

)
. Overall 1Lq is a bell-shaped function over R. Of course it holds

1Lq, λ′′
(
logA q

λ

)
< 0. We have that the global maximul of 1Lq is

1Lq

(
logA q

λ

)
=

Aλ − 1

2 (Aλ + 1)
. (10)

Finally we have that

lim
x→+∞1Lq (x) =

1

2
(φq,λ (+∞)− φq,λ (+∞)) = 0, (11)

and

lim
x→−∞1Lq (x) =

1

2
(φq,λ (−∞)− φq,λ (−∞)) = 0. (12)

Consequently the x-axis is the horizontal asymptote of 1Lq. Of course 1Lq (x) > 0, ∀ x ∈ R.
We need

Theorem 13. It holds

∞∑
i=−∞

1Lq (x− i) = 1, ∀x ∈ R, ∀ q, λ > 0, A > 1. (13)

It follows

Theorem 14. It holds ∫ ∞

−∞
1Lq (x) dx = 1, λ, q > 0, A > 1. (14)

So that 1Lq is a density function on R; λ, q > 0, A > 1.

We need the following result

Theorem 15. Let 0 < α < 1, and n ∈ N with n1−α > 2. Then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

1Lq (nx− k) < max

{
q,

1

q

}
1

Aλ(n1−α−2)
= γA−λ(n1−α−2) =: c1(n, a),

(15)

where q, λ > 0, A > 1; γ := max
{
q, 1q

}
.

Let ⌈·⌉ the ceiling of the number, and ⌊·⌋ the integral part of the number.

Theorem 16. Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. For q > 0, λ > 0, A > 1,

we consider the number λq > z0 > 0 with 1Lq (z0) = 1Lq (0) and λq > 1. Then

1
⌊nb⌋∑

k=⌈na⌉
1Lq (nx− k)

< max

 1

1Lq (λq)
,

1

1L 1
q

(
λ 1

q

)
 =: Ψ1 (q) . (16)
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We make

Remark 17. (i) We have that

lim
n→+∞

⌊nb⌋∑
k=⌈na⌉

1Lq (nx− k) ̸= 1, for at least some x ∈ [a, b] , (17)

where λ, q > 0.

(ii) Let [a, b] ⊂ R. For large n we always have ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff

⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds

⌊nb⌋∑
k=⌈na⌉

1Lq (nx− k) ≤ 1. (18)

We introduce

1Zq (x1, ..., xN ) := 1Zq (x) :=

N∏
i=1

1Lq (xi) , x = (x1, ..., xN ) ∈ RN , (19)

λ, q > 0, A > 1, N ∈ N.
1Zq (x) it has the properties:

(i) 1Zq (x) > 0, ∀ x ∈ RN ,

(ii)

∞∑
k=−∞

1Zq (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

1Zq (x1 − k1, ..., xN − kN ) = 1, (20)

where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence

(iii)
∞∑

k=−∞
1Zq (nx− k) = 1, (21)

∀ x ∈ RN ; n ∈ N,
and

(iv) ∫
RN

1Zq (x) dx = 1, (22)

that is 1Zq is a multivariate density function.

Here denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set ∞ := (∞, ...,∞), −∞ :=

(−∞, ...,−∞) upon the multivariate context, and

⌈na⌉ := (⌈na1⌉ , ..., ⌈naN⌉) ,

⌊nb⌋ := (⌊nb1⌋ , ..., ⌊nbN⌋) ,
(23)

where a := (a1, ..., aN ), b := (b1, ..., bN ) .
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We obviously see that for 0 < β∗ < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

1Zq (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ∗

1Zq (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ∗

1Zq (nx− k) . (24)

(v) We derive that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ∗

1Zq (nx− k) < γA
−λ
(
n1−β∗−2

)
= c1(n, β

∗), 0 < β∗ < 1, (25)

with n ∈ N : n1−β∗
> 2, x ∈

∏N
i=1 [ai, bi] .

(vi) We get that

0 <
1∑⌊nb⌋

k=⌈na⌉ 1Zq (nx− k)
< (Ψ1 (q))

N , (26)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that

(vii)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ∗

1Zq (nx− k) < γA
−λ
(
n1−β∗−2

)
, (27)

0 < β∗ < 1, n ∈ N : n1−β∗
> 2, x ∈ RN .

Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

1Zq (nx− k) ≠ 1, (28)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

2.2 About q-deformed and λ−parametrized hyperbolic tangent function gq,λ

Here we follow [5]. Let us consider the function

gq,λ (x) :=
eλx − qe−λx

eλx + qe−λx
, λ, q > 0, x ∈ R. (29)

We have that gq,λ is striclty increasing. We easily observe that,

gq,λ (+∞) = 1, and gq,λ (−∞) = −1 (30)

Furthermore,

gq,λ (0) =
1− q

1 + q
. (31)
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and

g′1
q
,λ
(x) = g′q,λ (−x) . (32)

Moreover, in case of x < ln q
2λ , we have that gq,λ is strictly concave up, with g′′q,λ

(
ln q
2λ

)
= 0.

And in case of x > ln q
2λ , we have that gq,λ is strictly concave down.

Clearly, gq,λ is a shifted sigmoid function with gq,λ (0) =
1−q
1+q , and gq,λ (−x) = −gq−1,λ (x),

(a semi-odd function), see also [3].

By 1 > −1, x+ 1 > x− 1, we consider the activation function

2Lq (x) :=
1

4
(gq,λ (x+ 1)− gq,λ (x− 1)) > 0, (33)

∀x ∈ R; q, λ > 0. Notice that 2Lq (±∞) = 0, so the x-axis is horizontal asymptote. We have

that

2Lq (−x) = 2L 1
q
(x) , ∀ x ∈ R; q, λ > 0, (34)

a deformed symmetry.

Next, we have that

2L′
q (x) =

1

4

(
g′q,λ (x+ 1)− g′q,λ (x− 1)

)
, ∀ x ∈ R. (35)

Moreover, 2Lq is striclty increasing over
(
−∞, ln q

2λ − 1
)
. and strictly decreasing over

(
ln q
2λ + 1,+∞

)
.

Furthermore 2Lq is concave down over
[
ln q
2λ − 1, ln q

2λ + 1
]
, and strictly concave down over(

ln q
2λ − 1, ln q

2λ + 1
)
. Consequently 2Lq has a bell-type shape over R.

Of course it holds 2L′′
q

(
ln q
2λ

)
< 0. We also have that the maximum value of 2Lq is

2Lq

(
ln q

2λ

)
=

tanh (λ)

2
, λ > 0. (36)

We give

Theorem 18. We have that
∞∑

i=−∞
2Lq (x− i) = 1, ∀ x ∈ R, ∀ λ, q > 0. (37)

We need

Theorem 19. It holds ∫ ∞

−∞
2Lq (x) dx = 1, λ, q > 0. (38)

So that 2Lq is a density function on R; λ, q > 0.

We need the following result

Theorem 20. Let 0 < α < 1, and n ∈ N with n1−α > 2; q, λ > 0. Then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

2Lq (nx− k) < max

{
q,

1

q

}
e4λe−2λn(1−α)

= Te−2λn(1−α)
=: c2(n, a),

(39)

where T := max
{
q, 1q

}
e4λ.
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Let ⌈·⌉ the ceiling of the number, and ⌊·⌋ the integral part of the number.

Theorem 21. Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. For q > 0, λ > 0, we

consider the number λq > z0 > 0 with 2Lq (z0) = 2Lq (0) and λq > 1. Then

1
⌊nb⌋∑

k=⌈na⌉
2Lq (nx− k)

< max

 1

2Lq (λq)
,

1

2L 1
q

(
λ 1

q

)
 =: Ψ2 (q) . (40)

We make

Remark 22. (i) We have that

lim
n→+∞

⌊nb⌋∑
k=⌈na⌉

2Lq (nx− k) ̸= 1, for at least some x ∈ [a, b] , (41)

where λ, q > 0.

(ii) Let [a, b] ⊂ R. For large n we always have ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff

⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds

⌊nb⌋∑
k=⌈na⌉

2Lq (nx− k) ≤ 1. (42)

We introduce

2Zq (x1, ..., xN ) := 2Zq (x) :=
N∏
i=1

2Lq (xi) , x = (x1, ..., xN ) ∈ RN , λ, q > 0, N ∈ N. (43)

2Zq (x) it has the properties:

(i) 2Zq (x) > 0, ∀ x ∈ RN ,

(ii)

∞∑
k=−∞

2Zq (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Zq (x1 − k1, ..., xN − kN ) = 1, (44)

where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence

(iii)
∞∑

k=−∞
2Zq (nx− k) = 1, (45)

∀ x ∈ RN ; n ∈ N,
and

(iv) ∫
RN

2Zq (x) dx = 1, (46)

that is 2Zq is a multivariate density function.
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We obviously see that

⌊nb⌋∑
k=⌈na⌉

2Zq (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
N∏
i=1

2Lq (nxi − ki)

)
=

⌊nb1⌋∑
k1=⌈na1⌉

...

⌊nbN ⌋∑
kN=⌈naN ⌉

(
N∏
i=1

2Lq (nxi − ki)

)
=

N∏
i=1

 ⌊nbi⌋∑
ki=⌈nai⌉

2Lq (nxi − ki)

 . (47)

For 0 < β∗ < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

2Zq (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ∗

2Zq (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ∗

2Zq (nx− k) . (48)

In the last two sums the counting is over disjoint vector sets of k’s, because the condition∥∥ k
n − x

∥∥
∞ > 1

nβ∗ implies that there exists at least one
∣∣kr
n − xr

∣∣ > 1
nβ∗ , where r ∈ {1, ..., N} .

(v) We also have that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ∗

2Zq (nx− k) < Te−2λn(1−β∗)
= c2(n, β

∗), 0 < β∗ < 1, (49)

with n ∈ N : n1−β∗
> 2, x ∈

∏N
i=1 [ai, bi] .

(vi) Moreover

0 <
1∑⌊nb⌋

k=⌈na⌉ 2Zq (nx− k)
< (Ψ2 (q))

N , (50)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that

(vii)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ∗

2Zq (nx− k) < Te−2λn(1−β∗)
, (51)

0 < β∗ < 1, n ∈ N : n1−β∗
> 2, x ∈ RN .

Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

2Zq (nx− k) ̸= 1, (52)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.
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2.3 About q-deformed and parametrized half hyperbolic tangent function

ϑq

Here we follow [6]. We introduce the function

ϑq (t) :=
1− qe−βt

1 + qe−βt
, ∀ t ∈ R, (53)

where q, β > 0. ϑq is striclty increasing. We also observe that

ϑq (−∞) = −1 and ϑq (+∞) = 1 (54)

Furthermore

ϑq (0) =
1− q

1 + q
(55)

In case of t < ln q
β , we have that ϑq is strictly concave up, with ϑ′′

q

(
ln q
β

)
= 0.

And in case of t > ln q
β , we have that ϑq is strictly concave down.

Clearly, ϑq is a shifted sigmoid function with ϑq (0) = 1−q
1+q , and ϑq (−x) = −ϑq−1 (x), ∀

x ∈ R, (a semi-odd function), see also [3].

By 1 > −1, x+ 1 > x− 1, we consider the activation function

3Lq (x) :=
1

4
(ϑq (x+ 1)− ϑq (x− 1)) > 0, (56)

∀x ∈ R; β, q > 0. Notice that Lq (±∞) = 0, so the x-axis is horizontal asymptote. Also it

holds,

3Lq (−x) = 3L 1
q
(x) , ∀ x ∈ R, (57)

a deformed symmetry.

Next we have that

3L′
q (x) =

1

4

(
ϑ′
q (x+ 1)− ϑ′

q (x− 1)
)
, ∀ x ∈ R. (58)

Hence, 3Lq is striclty increasing over
(
−∞, ln q

β − 1
)
.

and strictly decreasing over
(
ln q
β + 1,+∞

)
.

Moreover, 3Lq is concave down over
[
ln q
β − 1, ln q

β + 1
]
, and strictly concave down over(

ln q
β − 1, ln q

β + 1
)
.

Consequently 3Lq has a bell-type shape over R. Of course it holds 3L′′
q

(
ln q
β

)
< 0. The

maximum value of 3Lq is

3Lq

(
ln q

β

)
=

1− e−β

2 (1 + e−β)
. (59)

We give

Theorem 23. We have that

∞∑
i=−∞

3Lq (x− i) = 1, ∀ x ∈ R, ∀ q, β > 0. (60)

It follows

11



Theorem 24. It holds ∫ ∞

−∞
3Lq (x) dx = 1, q, β > 0. (61)

So that 3Lq is a density function on R; q, β > 0.

We need the following result

Theorem 25. Let 0 < α < 1, and n ∈ N with n1−α > 2; q, β > 0. Then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

3Lq (nx− k) < max

{
q,

1

q

}
e2βe−βn(1−α)

= Ke−βn(1−α)
=: c3(n, a),

(62)

where K := max
{
q, 1q

}
e2β .

We need,

Theorem 26. Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. For q > 0, we consider the

number λq > z0 > 0 with 3Lq (z0) = 3Lϕq (0) and β, λq > 1. Then

1
⌊nb⌋∑

k=⌈na⌉
3Lq (nx− k)

< max

 1

3Lq (λq)
,

1

3L 1
q

(
λ 1

q

)
 =: Ψ3 (q) . (63)

We make

Remark 27. (i) We have that

lim
n→+∞

⌊nb⌋∑
k=⌈na⌉

3Lq (nx− k) ̸= 1, for at least some x ∈ [a, b] , (64)

where β, q > 0.

(ii) Let [a, b] ⊂ R. For large n we always have ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff

⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds

⌊nb⌋∑
k=⌈na⌉

3Lq (nx− k) ≤ 1. (65)

We introduce

3Zq (x1, ..., xN ) := 3Zq (x) :=
N∏
i=1

3Lq (xi) , x = (x1, ..., xN ) ∈ RN , β, q > 0, N ∈ N. (66)

It has the properties:

(i) 3Zq (x) > 0, ∀ x ∈ RN ,

(ii)

∞∑
k=−∞

3Zq (x− k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞
3Zq (x1 − k1, ..., xN − kN ) = 1, (67)
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where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence

(iii)
∞∑

k=−∞
3Zq (nx− k) = 1, (68)

∀ x ∈ RN ; n ∈ N,
and

(iv) ∫
RN

3Zq (x) dx = 1, (69)

that is 3Zq is a multivariate density function.

For 0 < β∗ < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

3Zq (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ∗

3Zq (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ∗

3Zq (nx− k) . (70)

In the last two sums the counting is over disjoint vector sets of k’s, because the condition∥∥ k
n − x

∥∥
∞ > 1

nβ∗ implies that there exists at least one
∣∣kr
n − xr

∣∣ > 1
nβ∗ , where r ∈ {1, ..., N} .

(v) We also have that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ∗

3Zq (nx− k) < Ke−βn(1−β∗)
= c3(n, β

∗), 0 < β∗ < 1, (71)

with n ∈ N : n1−β∗
> 2, x ∈

∏N
i=1 [ai, bi] .

(vi) Moreover

0 <
1∑⌊nb⌋

k=⌈na⌉ 3Zq (nx− k)
< (Ψ3 (q))

N , (72)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that

(vii)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ∗

3Zq (nx− k) < Ke−βn(1−β∗)
, (73)

0 < β∗ < 1, n ∈ N : n1−β∗
> 2, x ∈ RN . Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

3Zq (nx− k) ̸= 1, (74)
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for at least some x ∈
(∏N

i=1 [ai, bi]
)
. Let f ∈ C

(∏N
i=1 [ai, bi]

)
, and n ∈ N such that ⌈nai⌉ ≤

⌊nbi⌋, i = 1, ..., N.

We define the multivariate averaged positive linear quasi-interpolation neural network

operators (x := (x1, ..., xN ) ∈
(∏N

i=1 [ai, bi]
)
); j = 1, 2, 3:

jFn (f, x1, ..., xN ) := jFn (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
jZq (nx− k)∑⌊nb⌋

k=⌈na⌉ jZq (nx− k)
= (75)

∑⌊nb1⌋
k1=⌈na1⌉

∑⌊nb2⌋
k2=⌈na2⌉ ...

∑⌊nbN ⌋
kN=⌈naN ⌉ f

(
k1
n , ..., kNn

)(∏N
i=1 jLq (nxi − ki)

)
∏N

i=1

(∑⌊nbi⌋
ki=⌈nai⌉ jLq (nxi − ki)

) .

For large enough n ∈ N we always obtain ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N . Also ai ≤ ki
n ≤ bi, iff

⌈nai⌉ ≤ ki ≤ ⌊nbi⌋, i = 1, ..., N .

For the next we need, for f ∈ C
(∏N

i=1 [ai, bi]
)
the first multivariate modulus of continuity

ω1 (f, h) := sup

x, y ∈
∏N

i=1 [ai, bi]

∥x− y∥∞ ≤ h

|f (x)− f (y)| , h > 0. (76)

It holds that

lim
h→0

ω1 (f, h) = 0. (77)

We mention

Theorem 28. (see [4], [5], [6]) Let f ∈ C
(∏N

i=1 [ai, bi]
)
, 0 < β∗ < 1, x ∈

(∏N
i=1 [ai, bi]

)
,

N, n ∈ N with n1−β∗
> 2; j = 1, 2, 3. Then

1)

|jFn (f, x)− f (x)| ≤ (Ψj (q))
N

[
ω1

(
f,

1

nβ

)
+ 2cj (n, β

∗) ∥f∥∞
]
=: λj , (78)

and

2)

∥jFn (f)− f∥∞ ≤ λj . (79)

We notice that lim
n→∞ jFn (f) = f , pointwise and uniformly.

In this article we extend Theorem 28 to the fuzzy-random level.

3 Main Result

About p-mean Approximation by Fuzzy-Random Perturbed Quasi-Interpolation

Neural Network Operators

All terms and assumptions here as in Sections 1, 2.

Let f ∈ C
Up

FR

(
N∏
i=1

[ai, bi]

)
, 1 ≤ p < +∞, n,N ∈ N, 0 < β < 1, −→x ∈

(
N∏
i=1

[ai, bi]

)
,

(X,B, P ) probability space, s ∈ X; j = 1, 2, 3.
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We define the following multivariate fuzzy random perturbed quasi-interpolation linear

neural network operators

(
jF

FR
n (f)

)
(−→x , s) :=

⌊nb⌋∗∑
−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙

jZq

(
n−→x −

−→
k
)

⌊nb⌋∑
−→
k =⌈na⌉

jZq

(
n−→x −

−→
k
) , (80)

(see also (75)).

We present

Theorem 29. Let f ∈ C
Up

FR

(
N∏
i=1

[ai, bi]

)
, 0 < β∗ < 1, −→x ∈

(
N∏
i=1

[ai, bi]

)
, n,N ∈ N, with

n1−β∗
> 2, 1 ≤ p < +∞. Assume that

∫
X (D∗ (f (·, s) , õ))p P (ds) < ∞; j = 1, 2, 3. Then

1) (∫
X
Dp
((

jF
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
p

≤ (81)

(Ψj(q))
N

{
Ω1

(
f,

1

nβ∗

)
Lp

+ 2cj (n, β
∗)

(∫
X
(D∗ (f (·, s) , õ))p P (ds)

) 1
p

}
=: µ

(FR)
j ,

2) ∥∥∥∥∥
(∫

X
Dp
((

jFnFR (f)
)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
p

∥∥∥∥∥
∞,

(
N∏
i=1

[ai,bi]

) ≤ µ
(FR)
j , (82)

where (Ψj(q))
N as in (26), (50), (72) and cj (n, β

∗) as in (25), (49), (71).

Proof. We notice that

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
≤ D

(
f

(−→
k

n
, s

)
, õ

)
+D (f (−→x , s) , õ) (83)

≤ 2D∗ (f (·, s) , õ) .

Hence

Dp

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
≤ 2pD∗p (f (·, s) , õ) , (85)

and (∫
X
Dp

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
p

≤ 2

(∫
X
(D∗ (f (·, s) , õ))p P (ds)

) 1
p

. (86)

We observe that

D
((

jF
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
= (87)

D


⌊nb⌋∗∑

−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙ jZq (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

jZq (nx− k)

, f (−→x , s)⊙ 1

 =
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D


⌊nb⌋∗∑

−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙ jZq (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

jZq (nx− k)

, f (−→x , s)⊙

⌊nb⌋∑
−→
k =⌈na⌉

jZq (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

jZq (nx− k)

 = (88)

D


⌊nb⌋∗∑

−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙ jZq (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

jZq (nx− k)

,

⌊nb⌋∗∑
−→
k =⌈na⌉

f (−→x , s)⊙ jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)



≤
⌊nb⌋∑

−→
k =⌈na⌉

 jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
. (89)

So that

D
((

jF
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
≤

⌊nb⌋∑
−→
k =⌈na⌉

 jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
= (90)

⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ∗

 jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
+

⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ∗

 jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
.

Hence it holds (∫
X
Dp
((

jF
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
p

≤ (91)

⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ∗

 jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)


(∫

X
Dp

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
p

+
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⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ∗

 jZq (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

jZq (nx− k)


(∫

X
Dp

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
p

≤


1

⌊nb⌋∑
−→
k =⌈na⌉

jZq (nx− k)

 ·
{
Ω
(F)
1

(
f,

1

nβ∗

)
Lp

+ (92)

2

(∫
X
(D∗ (f (·, s) , õ))p P (ds)

) 1
p


⌊nb⌋∑

−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ∗

jZq (nx− k)




(by (25), (26); (49), (50); (71), (72)

≤ (Ψj(q))
N

{
Ω
(F)
1

(
f,

1

nβ∗

)
Lp

+ 2cj (n, β
∗)

(∫
X
(D∗ (f (·, s) , õ))p P (ds)

) 1
p

}
. (93)

We have proved claim.

Conclusion 30. By Theorem 29 we obtain the pointwise and uniform convergences with rates

in the p-mean and D-metric of the operator jF
FR
n to the unit operator for f ∈ C

Up

FR

(
N∏
i=1

[ai, bi]

)
,

j = 1, 2, 3.
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