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Abstract

We present new sharp bounds for the function (sin x)/x, thus refining the well-known
Jordan-type inequalities in the literature. A polynomial-trigonometric approach is used to
establish the bounds. The main results are based on the series expansions, monotonicity
rules, and the bounds of the ratio of even indexed Bernoulli numbers.
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1. Introduction
Jordan’s inequality [1, 3, 17,23,27,34]

2
π

≤ sin x

x
< 1; x ∈ (0, π/2] (1.1)

gives bounds for the sinc function which is defined by sinc x = (sin x)/x, if x ̸= 0 and
sinc x = 1, if x = 0. The double inequality (1.1) is a consequence of the monotonicity of
the curve y = sinc x or the concavity of the curve y = sin x in (0, π/2]. It can also be easily
achieved through the geometry of circles [32]. Jordan’s inequality has its glory among
the trigonometric functions due to its importance in calculus and analysis. This much-
appreciated inequality motivated many researchers to obtain its refinements, extensions,
and generalizations, see for instance [2,6,7,9–12,15,16,18–22,24–26,29–31,33,35] and the
references therein. In 2010, Klén et. al. [17] rediscovered the inequality (1.1) as follows:

1 − x2

6 <
sin x

x
< 1 − 2x2

3π2 ; x ∈ (−π/2, π/2). (1.2)

Further, in 2022, Bagul and Panchal [8] improved inequality (1.2) to

1 − x2

6 <
sin x

x
< 1 − 4x2

3π2 ; x ∈ (−π/2, π/2). (1.3)

Recently, the Jordan-type inequalities (1.2) and (1.3) have been generalized and explored
in detail in [7]. This article aims to contribute to the field by refining the lower and upper
bounds of (1.3). It is worth noting that due to the symmetry of the curves involved, it
suffices to improve the inequality (1.3) in (0, α) rather than in (−α, α). The new sharp
bounds are established in terms of bounds of inequality (1.2) and cosine function.
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2. Preliminaries and lemmas
We begin by recalling the following series expansions [13, 1.411]:

x

sin x
= 1 +

∞∑
k=1

2(22k−1 − 1)
(2k)! |B2k|x2k; |x| < π, (2.1)

cot x = 1
x

−
∞∑

k=1

22k

(2k)! |B2k|x2k−1; |x| < π, (2.2)

where |B2k| are the absolute even-indexed Bernoulli numbers.
Differentiating (2.2) and then multiplying by −x2 yields(

x

sin x

)2
= 1 +

∞∑
k=1

22k(2k − 1)
(2k)! |B2k|x2k; |x| < π. (2.3)

Also, we will employ the following supplementary results.

Lemma 2.1. [4, 5](l’Hôpital monotone rule) Suppose p and q are any two real numbers
such that p < q. Let f1(x) and f2(x) be two real-valued functions that are continuous on
[p, q] and differentiable on (p, q), and f ′

2(x) ̸= 0, for all x ∈ (p, q). Let,

i(x) = f1(x) − f1(p)
f2(x) − f2(p) , j(x) = f1(x) − f1(q)

f2(x) − f2(q) .

Then, the functions i(x) and j(x) are increasing (decreasing) on (p, q) if f ′
1(x)/f ′

2(x)
is increasing (decreasing) on (p, q). The strictness of the monotonicity of i(x) and j(x)
depends on the strictness of the monotonicity of f ′

1(x)/f ′
2(x).

The l’Hôpital monotone rule in Lemma 2.1 has been proven to be an important tool in
the field of inequalities. The next lemma concerns the monotonicity of the ratio of two
series and can be found in [14].

Lemma 2.2. [14] Let P (x) =
∑∞

k=0 pkxk and Q(x) =
∑∞

k=0 qkxk be any two real series
converging on the interval (−R, R), where R > 0 and qk > 0 for all k. Then the func-
tion P (x)/Q(x) is increasing (decreasing) on (0, R) if the sequence {pk/qk} is increasing
(decreasing).

In addition, we need a double inequality for the ratio of consecutive absolute Bernoulli
numbers recently established by Qi [27].

Lemma 2.3. ([27]) For k ∈ N, the Bernoulli numbers satisfy
(22k−1 − 1)
(22k+1 − 1)

(2k + 1)(2k + 2)
π2 <

|B2k+2|
|B2k|

<
(22k − 1)

(22k+2 − 1)
(2k + 1)(2k + 2)

π2 .

3. Main results
We are now in a position to assert our results with their proofs. First, we use the

functions
(
1 − x2

6

)
and (1 − cos x)2 to refine inequalities (1.3).

Theorem 3.1. The function
[

sin x
x −

(
1 − x2

6

)] /
(1 − cos x)2 is strictly increasing from

(0, π) onto (λ1, λ2), where λ1 = 1
30 and λ2 = 1

4

(
π2

6 − 1
)

. In particular,
• If x ∈ (0, π/2), then the inequality(
1 − x2

6

)
+ 1

30(1 − cos x)2 <
sin x

x
<

(
1 − x2

6

)
+
(

π2

24 + 2
π

− 1
)

(1 − cos x)2 (3.1)

holds with the optimal constants 1
30 and

(
π2

24 + 2
π − 1

)
respectively.
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• If x ∈ (0, π), then the inequality(
1 − x2

6

)
+ 1

30(1 − cos x)2 <
sin x

x
<

(
1 − x2

6

)
+ 1

4

(
π2

6 − 1
)

(1 − cos x)2 (3.2)

holds with the optimal constants 1
30 and 1

4

(
π2

6 − 1
)

respectively.

Proof. Let us set

f(x) =

[
sin x

x −
(
1 − x2

6

)]
(1 − cos x)2 = f1(x)

f2(x) ; x ∈ (0, π),

where f1(x) = sin x
x −

(
1 − x2

6

)
and f2(x) = (1 − cos x)2 satisfying f1(0+) = 0 = f2(0).

After performing the differentiation task, we find
f ′

1(x)
f ′

2(x) = 1
6 · 3x cos x − 3 sin x + x3

x2 sin x − x2 sin x cos x
= 1

6 · f3(x)
f4(x) ,

where f3(x) = 3x cos x − 3 sin x + x3 and f4(x) = x2 sin x − x2 sin x cos x satisfying f3(0) =
0 = f4(0). Differentiating one more time to apply Lemma 2.1, we get

f ′
3(x)

f ′
4(x) = 1

2
x2 cosec2 x − x cosec x

2x cosec x − 2x cot x + x2 .

Then utilizing series expansions (2.1)–(2.2), we write

f ′
3(x)

f ′
4(x) = 1

2 ·
1 +

∑∞
k=1

22k(2k−1)
(2k)! |B2k|x2k − 1 −

∑∞
k=1

2(22k−1−1)
(2k)! |B2k|x2k

2 +
∑∞

k=1
22(22k−1−1)

(2k)! |B2k|x2k − 2 +
∑∞

k=1
22k+1

(2k)! |B2k|x2k + x2

= 1
2 ·
∑∞

k=1
2

(2k)!

[
22k(2k − 1) − (22k−1 − 1)

]
|B2k|x2k

x2 +
∑∞

k=1
2

(2k)! [22k+1 − 2] |B2k|x2k
:= 1

2 · Q(x)
x2 + P (x) ,

where

P (x) =
∞∑

k=1

4
(2k)! (2

2k − 1)|B2k|x2k :=
∞∑

k=1
pkx2k

and

Q(x) =
∞∑

k=1

2
(2k)!

[
22k(2k − 1) − (22k−1 − 1)

]
|B2k|x2k :=

∞∑
k=1

qkx2k,

Here, qk > 0 implies that x2/Q(x) is strictly decreasing. Next we prove that P (x)/Q(x)
is also decreasing. So consider

pk

qk
= 2(22k − 1)

22k(2k − 1) − (22k−1 − 1) := tk (say).

Now it suffices to show that tk > tk+1, i.e.,
(22k+1 − 2)

22k(2k − 1) − (22k−1 − 1) >
(22k+3 − 2)

22k+2(2k + 1) − (22k+1 − 1)
or

(22k − 1)(k · 22k+3 + 22k+2 − 22k+1 + 1) > (22k+2 − 1)(k · 22k+1 − 22k − 22k−1 + 1).
After simplifying, we get

24k+2 − k · 22k+3 − 22k+2 + 22k+1 > −24k+2 + 22k+2 − k · 22k+1 + 22k−1,

i.e.,
16 · 24k + 4(k + 1) · 22k > 16k · 22k + 16 · 22k + 22k.
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Equivalently, 22k+4 > 12k +3, which is true for k = 1, 2, 3, · · · . Thus the sequence {pk/qk}
is decreasing which implies that P (x)/Q(x) is decreasing due to Lemma 2.2. Hence,
Q(x)/(x2 + P (x)) is strictly increasing, and by l’Hôpital monotone rule (Lemma 2.1), the
function f(x) is also strictly increasing in (0, π). As a result, for x ∈ (0, π/2) we have

1
30 = lim

x→0+
f(x) < f(x) < lim

x→π/2−
f(x) = π2

24 + 2
π

− 1.

This gives inequality (3.1). Similarly for x ∈ (0, π), we have

1
30 = lim

x→0+
f(x) < f(x) < lim

x→π−
f(x) = 1

4

(
π2

6 − 1
)

.

This gives inequality (3.2). The proof of Theorem 3.1 is completed. □

Obviously, the lower bound of (sin x)/x in (1.3) is refined in (3.1). Now suppose

U1(x) = 1 − 4x2

3π2 and U2(x) =
(

1 − x2

6

)
+
(

π2

24 + 2
π

− 1
)

(1 − cos x)2.

Then the following Figure 1 shows that the upper bound of (sin x)/x in (3.1) is also
sharper than the corresponding upper bound in (1.3). The curves (sin x)/x and U2(x) are
almost confounded.

0.0 0.5 1.0 1.5

0
.7

0
.8

0
.9

1
.0

Upper bounds

sin(x) x

U_1(x)
U_2(x)

Figure 1. Graphs of upper bounds of sin(x)/x in (1.3) and (3.1) for x ∈ (0, π/2)

Moreover, in (3.2), we obtained the bounds of (sin x)/x in a wider range of values of x,
i.e., in (0, π).

In the next theorem, we use the functions 1 − 2x2

3π2 and (1 − cos x) to refine inequalities
(1.3).
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Theorem 3.2. The function
[

sin x
x −

(
1 − 2x2

3π2

)] /
(1 − cos x) is strictly increasing from

(0, π) onto (δ1, δ2), where δ1 = 2
(

2
3π2 − 1

6

)
and δ2 = −1

6 . In particular,
• If x ∈ (0, π/2), then the inequality(
1 − 2x2

3π2

)
+ 1

3

( 4
π2 − 1

)
(1 − cos x) <

sin x

x
<

(
1 − 2x2

3π2

)
+
( 2

π
− 5

6

)
(1 − cos x)

(3.3)

holds with the optimal constants 1
3

(
4

π2 − 1
)

and
(

2
π − 5

6

)
respectively.

• If x ∈ (0, π), then the inequality(
1 − 2x2

3π2

)
+ 1

3

( 4
π2 − 1

)
(1 − cos x) <

sin x

x
<

(
1 − 2x2

3π2

)
− 1

6(1 − cos x) (3.4)

holds with the optimal constants 1
3

(
4

π2 − 1
)

and −1
6 respectively.

Proof. Suppose

g(x) =

[
sin x

x −
(
1 − 2x2

3π2

)]
(1 − cos x) = g1(x)

g2(x) ; x ∈ (0, π),

where g1(x) = sin x
x −

(
1 − 2x2

3π2

)
and g2(x) = 1 − cos x such that g1(0+) = 0 = g2(0).

Differentiation yields
g′

1(x)
g′

2(x) = 1
x

cot x − 1
x2 + 4

3π2
x

sin x
.

Based on series expansions in (2.1) and (2.2), we write

g′
1(x)

g′
2(x) = 1

x2 −
∞∑

k=1

22k

(2k)! |B2k|x2k−2 − 1
x2 + 4

3π2 + 4
3π2

∞∑
k=1

2(22k−1 − 1)
(2k)! |B2k|x2k.

After the rearrangement of terms, we equivalently get
g′

1(x)
g′

2(x) = 4
3π2 + 4

3π2

∞∑
k=1

2(22k−1 − 1)
(2k)! |B2k|x2k −

∞∑
k=0

22k+2

(2k + 2)! |B2k+2|x2k

=
( 4

3π2 − 1
3

)
+

∞∑
k=1

[
8

3π2
(22k−1 − 1)

(2k)! |B2k| − 22k+2

(2k + 2)! |B2k+2|
]

x2k.

Then (
g′

1(x)
g′

2(x)

)′
=

∞∑
k=1

16k

(2k)!

[
(22k−1 − 1)

3π2 |B2k| − 22k−1

(2k + 2)(2k + 1) |B2k+2|
]

x2k−1

To this end, for the positivity of the terms of the series, we need to prove that
(22k−1 − 1)

3π2 |B2k| >
22k−1

(2k + 2)(2k + 1) |B2k+2|,

i.e.,
|B2k+2|
|B2k|

<
(2k + 1)(2k + 2)

π2
(22k−1 − 1)

3 · 22k−1 ; k = 1, 2, 3, · · · . (3.5)

The inequality (3.5) is true for k = 1 by virtue of absolute Bernoulli numbers |B2| = 1/6
and |B4| = 1/30. Now it remains to prove (3.5) for k = 2, 3, 4, · · · . Because of the right
inequality of Lemma 2.3, the relation (3.5) will be proved for k = 2, 3, 4, · · · if

22k − 1
22k+2 − 1 <

22k−1 − 1
3 · 22k−1 ; k = 2, 3, 4, · · · ,
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i.e.,
3 · 24k−1 − 3 · 22k−1 < 24k+1 − 22k−1 − 22k+2 + 1

or
22k + 22k+3 < 24k + 3 · 22k + 2

which is equivalent to 3 · 22k+1 < 24k + 2. The last relation holds for k = 2, 3, 4, · · · . Thus
the derivative of g′

1(x)/g′
2(x) is positive, it is strictly increasing in (0, π). By Lemma 2.1,

g(x) is also strictly increasing in (0, π). As a result, for x ∈ (0, π/2), we have
1
3

( 4
π2 − 1

)
= lim

x→0+
g(x) < g(x) < lim

x→π/2−
g(x) =

( 2
π

− 5
6

)
.

This gives inequality (3.3). Similarly for x ∈ (0, π), we have
1
3

( 4
π2 − 1

)
= lim

x→0+
g(x) < g(x) < lim

x→π−
g(x) = −1

6 .

This gives inequality (3.4) and the proof of Theorem 3.2 is completed. □

It is clear that the upper bound of (sin x)/x in (3.3) is sharper than the corresponding
upper bound in (1.2). Let us now compare the bounds of (sin x)/x in (1.3) and (3.3)
graphically. We consider the difference functions

l(x) =
(

1 − 2x2

3π2

)
+ 1

3

( 4
π2 − 1

)
(1 − cos x) −

(
1 − x2

6

)
,

and

u(x) =
(

1 − 4x2

3π2

)
−
(

1 − 2x2

3π2

)
−
( 2

π
− 5

6

)
(1 − cos x).

The aforementioned difference functions are displayed in Figure 2.

0.0 0.5 1.0 1.5

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

x

l(x)

0.0 0.5 1.0 1.5

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

x

u(x)

Figure 2. Plots of l(x) and u(x) for x ∈ (0, π/2)

From Figure 2, one can see that the bounds of (sin x)/x in (3.3) are superior to those
in (1.3) in terms of sharpness.

Lastly, asking which bounds of (sin x)/x are better for x ∈ (0, π) is natural. Numerical
calculations and graphical comparisons reveal the following conclusions:

• There is no strict comparison between the corresponding bounds of (sin x)/x in
(3.2) and (3.4).

• The lower bound of (sin x)/x in (3.4) is sharper than that in (3.2) except in the
interval (0, γ), where γ ≈ 0.257.

• The upper bound of (sin x)/x in (3.4) is sharper than in (3.2) except in the interval
(0, ζ), where ζ ≈ 0.724.
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The above conclusions are supported by Figure 3 and Figure 4, where the curves of the
difference functions

l′(x) =
(

1 − 2x2

3π2

)
+ 1

3

( 4
π2 − 1

)
(1 − cos x) −

(
1 − x2

6

)
− 1

30(1 − cos x)2

and

u′(x) =
(

1 − x2

6

)
+ 1

4

(
π2

6 − 1
)

(1 − cos x)2 −
(

1 − 2x2

3π2

)
+ 1

6(1 − cos x)

are plotted.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

x

l’(x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

0.
20

x

u’(x)

Figure 3. Plots of l′(x) and u′(x) for x ∈ (0, π)

0.0 0.1 0.2 0.3 0.4
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0e
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00
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0e
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06
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0e

−
06

x

l’(x)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
2

0.
00

2
0.

00
6

0.
01

0

x

u’(x)

Figure 4. Plots of l′(x) for x ∈ (0, 0.4) and u′(x) for x ∈ (0, 1)

4. An application to sinc integrals
There are several standard methods to evaluate the integral of sinc function over the

set of non-negative real numbers. The value of this so-called Dirichlet integral
∫∞

0
sin x

x dx

is π/2. However, it is not easy to evaluate
∫ r

0
sin x

x dx, for any r > 0. In such a case, an
alternative way is to approximate the concerned sinc integral. By using our main results,
we can approximate

∫ r
0

sin x
x dx, where 0 < r ≤ π. Because of sharpness, we can integrate

the double inequality (3.4) over [0, r]. In particular, we have the following:

I1 = (11π + 12)
36 + (2π − 4)

3π2 <

∫ π/2

0

sin x

x
dx <

(7π + 3)
18 = I2
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and
I3 = 4π

9 + 4
3π

<

∫ π

0

sin x

x
dx <

33π

54 = I4.

Therefore, the sinc integrals can be approximated as:∫ π/2

0

sin x

x
dx ≈ I1 + I2

2 ≈ 1.379387

and ∫ π

0

sin x

x
dx ≈ I3 + I4

2 ≈ 1.870269.
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