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Abstract. The paper solves a long standing problem of finding error bounds for a general
perturbation of the Drazin inverse. The bounds are given in terms of the distance between
the matrices together with the distance between their eigenprojections. Estimates using the
gap between subspaces are also given. Recent results of several authors, including Castro,
Koliha, Straškraba, Wang and Wei can be recovered as special cases of our theorems.

1. Introduction

The necessary and sufficient conditions for the continuity of the Drazin inverse are well
known both for matrices [1, 2, 3] and bounded linear operators [6, 8]. However, the quantitative
analysis of the perturbation of the Drazin inverse considered in [7, 9] has not made a major
progress until recently in the work of Wei and Wang [11], and subsequent papers [4, 5, 10].
The main assumption in [4, 5, 10, 11], in some cases expressed implicitly, is the equality of the
eigenprojections of the matrix and its perturbation. In the present paper we offer error bounds
for the perturbation of the Drazin inverse under the most general conditions.

For matrix concepts encountered here we refer the reader to the monograph [2] of Campbell
and Meyer. In particular, R(A) will denote the range of A ∈ Cd×d, N (A) the nullspace of
A, σ(A) the spectrum of A, r(A) the spectral radius of A, and Aπ the eigenprojection of A
corresponding to the eigenvalue 0. The index of A will be written as i(A). Anticipating the
future development, we use the following definition of the Drazin inverse, equivalent to the one
given in [2].

Definition 1.1. For any matrix A ∈ Cd×d we define the Drazin inverse of A by

AD = (A+Aπ)−1(I −Aπ),(1.1)

where Aπ is the eigenprojection of A corresponding to 0.

We observe that if A is nonsingular, then Aπ = 0, and AD = A−1. From the definition of
the Drazin inverse it follows that

R(AD) = N (Aπ) = R(Ai(A)), N (AD) = R(Aπ) = N (Ai(A)).(1.2)

In this paper we use exclusively the Euclidean norm ‖x‖ = (xHx)1/2 for vectors x ∈ Cd, and
the spectral norm

‖A‖ = r(AHA)1/2

for matrices A ∈ Cd×d. We recall that

‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Cd×d and all x ∈ Cd,

‖AB‖ ≤ ‖A‖‖B‖ for all A, B ∈ Cd×d,

‖I − P‖ = ‖P‖ if P 2 = P ∈ Cd×d.

For a nonsingular matrix A, κ(A) = ‖A‖‖A−1‖ denotes the condition number of A. As
usual, this is generalized to the Drazin condition number κD(A) = ‖A‖‖AD‖ if A is singular.
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2. Error bounds

Given a matrix A ∈ Cd×d, we want to identify perturbations B ∈ Cd×d of A which are
close in some sense to A in order to obtain the Drazin inverse BD close to AD, that is, to have
‖BD −AD‖ small. It is clear that ‖B −A‖ has to be small. Not so obviously, ‖Bπ −Aπ‖ also
has to be small; but this is gleaned from the estimate

‖Bπ −Aπ‖ = ‖BBD −AAD‖ = ‖(B −A)BD +A(BD −AD)‖
≤ ‖B −A‖‖BD‖+ ‖A‖‖BD −AD‖.

The error bounds for ‖BD −AD‖ will be derived from the following equation:

BD −AD =
[
(B +Bπ)−1 − (A+Aπ)−1] (I −Bπ) + (A+Aπ)−1(Aπ −Bπ).(2.1)

Suppose that (‖B −A‖ + ‖Bπ −Aπ‖)‖(A+Aπ)−1‖ < 1. Applying the standard estimate
for the perturbation of the ordinary inverse, we have

‖(B +Bπ)−1 − (A+Aπ)−1‖ ≤ ‖(A+Aπ)−1‖2‖(B −A) + (Bπ −Aπ)‖
1− ‖(A+Aπ)−1‖‖(B −A) + (Bπ −Aπ)‖

≤ ‖(A+Aπ)−1‖2(‖B −A‖+ ‖Bπ −Aπ‖)
1− ‖(A+Aπ)−1‖(‖B −A‖+ ‖Bπ −Aπ‖)

.

Observing that ‖I −Bπ‖ = ‖Bπ‖ ≤ ‖Aπ‖ + ‖Bπ −Aπ‖, we deduce from (2.1) the following
perturbation result:

Theorem 2.1. Let A, B ∈ Cd×d be matrices such that

(‖B −A‖+ ‖Bπ −Aπ‖)‖(A+Aπ)−1‖ < 1.(2.2)

Then

‖BD −AD‖ ≤ ‖(A+Aπ)−1‖2(‖B −A‖+ ‖Bπ −Aπ‖)
1− ‖(A+Aπ)−1‖(‖B −A‖+ ‖Bπ −Aπ‖)

(‖Aπ‖+ ‖Bπ −Aπ‖)

+ ‖(A+Aπ)−1‖‖Bπ −Aπ‖.(2.3)

Setting Bπ = Aπ in the preceding theorem, we are able to recover most of the perturbation
results of [4, 5, 10, 11]. Since the ranks of Bπ and Aπ are equal if ‖Bπ −Aπ‖ is sufficiently
small [2, Proposition 10.7.1], we can also deduce the main result of Campbell and Meyer [3,
Theorem 2] on the continuity of the Drazin inverse.

In practice, the quantities ‖(A+Aπ)−1‖ and ‖Bπ −Aπ‖ are not easy to estimate directly.
In Section 5 we suggest estimates which may be less accurate but easier to evaluate. The
preparatory work is done in the next two sections.

3. An estimate for ‖(A+Aπ)−1‖

First we note that

(A+Aπ)(AD +Aπ) = AAD +AAπ +AπAD +Aπ

= I −Aπ +AAπ +Aπ = I +AAπ.

We recall that (AAπ)i(A) = Ai(A)Aπ = 0, which means that AAπ is nilpotent, and that I+AAπ

is nonsingular with

(I +AAπ)−1 =
i(A)−1∑
k=0

(−1)k(AAπ)k = I +
(i(A)−1∑

k=1

(−A)k
)
Aπ.

Hence

‖(A+Aπ)−1‖ = ‖(AD +Aπ)(I +AAπ)−1‖ ≤ ‖AD +Aπ‖‖(I +AAπ)−1‖
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≤ (‖AD‖+ ‖Aπ‖)
(

1 + ‖
i(A)−1∑
k=1

(−A)k‖‖Aπ‖
)
,

and

‖(A+Aπ)−1‖ ≤ (‖AD‖+ κD(A))
(

1 + ‖
i(A)−1∑
k=1

(−A)k‖κD(A)
)

=: Θ,(3.1)

when we observe that

‖Aπ‖ = ‖I −Aπ‖ = ‖AAD‖ ≤ ‖A‖‖AD‖ = κD(A).

4. An estimate for ‖Bπ −Aπ‖

The gap between subspaces M, N of Cd is defined by

gap (M,N) = max {δ(M,N), δ(N,M)},

where δ(M,N) = sup {dist(u,N) : u ∈ M, ‖u‖ = 1}. For any two matrices A, B ∈ Cd×d we
define

ρ(A,B) = gap (R(Ai(A)),R(Bi(B))), ν(A,B) = gap (N (Ai(A)),N (Bi(B))).(4.1)

Recall that Aπ is the idempotent matrix with the range N (Ai(A)) and the nullspace R(Ai(A)).
It is known that ‖Bπ −Aπ‖ is small if and only if both ν(A,B) and ρ(A,B) are small. The
following inequalities quantify the ‘if’ part:

‖Bπ −Aπ‖ ≤ ‖(I −Aπ)Bπ +Aπ(I −Bπ)‖ ≤ ‖(I −Aπ)Bπ‖+ ‖Aπ(I −Bπ)‖
≤ ‖I −Aπ‖‖Bπ‖ν(A,B) + ‖Aπ‖‖I −Bπ‖ρ(A,B)

= ‖Aπ‖‖Bπ‖(ν(A,B) + ρ(A,B))

≤ ‖Aπ‖(‖Aπ‖+ ‖Bπ −Aπ‖)(ν(A,B) + ρ(A,B))

≤ κD(A)(κD(A) + ‖Bπ −Aπ‖)(ν(A,B) + ρ(A,B)),

which implies (1−κD(A)(ν(A,B)+ρ(A,B))) ‖Bπ −Aπ‖ ≤ κ2
D(A)(ν(A,B)+ρ(A,B)). Suppose

that

κD(A)(ν(A,B) + ρ(A,B))) < 1.(4.2)

Then

‖Bπ −Aπ‖ ≤ κ2
D(A)(ν(A,B) + ρ(A,B))

1− κD(A)(ν(A,B) + ρ(A,B))
=: ∆.(4.3)

5. The final estimate

We observe that the factor in the form of a fraction on the right in (2.3) can be written as
ϕ(t) = t/(1 − t) with 0 ≤ t < 1, where ϕ is increasing in t. Therefore in (2.3) we can replace
‖(A+Aπ)−1‖ by Θ, and ‖Bπ −Aπ‖ by ∆, provided the relevant inequalities for Θ and ∆ are
satisfied. We then have the following result.

Theorem 5.1. Let A, B ∈ Cd×d be matrices with ν(A,B), ρ(A,B), Θ and ∆ defined by (4.1),
(3.1) and (4.3), respectively, such that (4.2) holds, and that

Θ(‖B −A‖+ ∆) < 1.(5.1)

Then

‖BD −AD‖ ≤ Θ2(‖B −A‖+ ∆)
1−Θ(‖B −A‖+ ∆)

(κD(A) + ∆) + Θ∆.(5.2)
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