GENERALIZED ABSTRACTED MEAN VALUES

FENG QI

Abstract

In this article, the author introduces the generalized abstracted mean values which extend the concepts of most means with two variables, and researches their basic properties and monotonicities.

1. Introduction

The simplest and classical means are the arithmetic mean, the geometric mean, and the harmonic mean. For a positive sequence $a=\left(a_{1}, \ldots, a_{n}\right)$, they are defined respectively by

$$
\begin{equation*}
A_{n}(a)=\frac{1}{n} \sum_{i=1}^{n} a_{i}, \quad G_{n}(a)=\sqrt[n]{\prod_{i=1}^{n} a_{i}}, \quad H_{n}(a)=\frac{n}{\sum_{i=1}^{n} \frac{1}{a_{i}}} . \tag{1.1}
\end{equation*}
$$

For a positive function f defined on $[x, y]$, the integral analogues of (1.1) are given by

$$
\begin{align*}
A(f) & =\frac{1}{y-x} \int_{x}^{y} f(t) d t \tag{1.2}\\
G(f) & =\exp \left(\frac{1}{y-x} \int_{x}^{y} \ln f(t) d t\right) \tag{1.3}\\
H(f) & =\frac{y-x}{\int_{x}^{y} \frac{d t}{f(t)}} \tag{1.4}
\end{align*}
$$

It is well-known that

$$
\begin{equation*}
A_{n}(a) \geq G_{n}(a) \geq H_{n}(a), \quad A(f) \geq G(f) \geq H(f) \tag{1.5}
\end{equation*}
$$

are called the arithmetic mean-geometric mean-harmonic mean inequalities.
These classical means have been generalized, extended and refined in many different directions. The study of various means has a rich literature, for details, please refer to [1, 2], [4]-[8] and [19], especially to [9], and so on.

Some mean values also have applications in medicine [3, 18].

[^0]Recently, the author [9] introduced the generalized weighted mean values $M_{p, f}(r, s ; x, y)$ with two parameters r and s, which are defined by

$$
\begin{array}{ll}
M_{p, f}(r, s ; x, y)=\left(\frac{\int_{x}^{y} p(u) f^{s}(u) d u}{\int_{x}^{y} p(u) f^{r}(u) d u}\right)^{1 /(s-r)}, & (r-s)(x-y) \neq 0 \\
M_{p, f}(r, r ; x, y)=\exp \left(\frac{\int_{x}^{y} p(u) f^{r}(u) \ln f(u) d u}{\int_{x}^{y} p(u) f^{r}(u) d u}\right), & x-y \neq 0 \tag{1.7}\\
M_{p, f}(r, s ; x, x)=f(x)
\end{array}
$$

where $x, y, r, s \in \mathbb{R}, p(u) \not \equiv 0$ is a nonnegative and integrable function and $f(u)$ a positive and integrable function on the interval between x and y.

It was shown in $[9,17]$ that $M_{p, f}(r, s ; x, y)$ increases with both r and s and has the same monotonicities as f in both x and y. Sufficient conditions in order that

$$
\begin{align*}
& M_{p_{1}, f}(r, s ; x, y) \geq M_{p_{2}, f}(r, s ; x, y) \tag{1.8}\\
& M_{p, f_{1}}(r, s ; x, y) \geq M_{p, f_{2}}(r, s ; x, y) \tag{1.9}
\end{align*}
$$

were also given in [9].
It is clear that $M_{p, f}(r, 0 ; x, y)=M^{[r]}(f ; p ; x, y)$. For the definition of $M^{[r]}(f ; p ; x, y)$, please see $[6]$.
Remark 1. As concrete applications of the monotonicities and properties of the generalized weighted mean values $M_{p, f}(r, s ; x, y)$, some monotonicity results and inequalities of the gamma and incomplete gamma functions are presented in [10].

Moreover, an inequality between the extended mean values $E(r, s ; x, y)$ and the generalized weighted mean values $M_{p, f}(r, s ; x, y)$ for a convex function f is given in [14], which generalizes the well-known Hermite-Hadamard inequality.

The main purposes of this paper are to establish the definitions of the generalized abstracted mean values, to research their basic properties, and to prove their monotonicities. In Section 2, we introduce some definitions of mean values and study their basic properties. In Section 3, the monotonicities of the generalized abstracted mean values, and the like, are proved.

2. Definitions and Basic Properties

Definition 1. Let p be a defined, positive and integrable function on $[x, y]$ for $x, y \in \mathbb{R}, f$ a real-valued and monotonic function on $[\alpha, \beta]$. If g is a function valued on $[\alpha, \beta]$ and $f \circ g$ integrable on $[x, y]$, the quasi-arithmetic non-symmetrical mean of g is defined by

$$
\begin{equation*}
M_{f}(g ; p ; x, y)=f^{-1}\left(\frac{\int_{x}^{y} p(t) f(g(t)) d t}{\int_{x}^{y} p(t) d t}\right) \tag{2.1}
\end{equation*}
$$

where f^{-1} is the inverse function of f.
For $g(t)=t, f(t)=t^{r-1}, p(t)=1$, the mean $M_{f}(g ; p ; x, y)$ reduces to the extended logarithmic means $S_{r}(x, y)$; for $p(t)=t^{r-1}, g(t)=f(t)=t$, to the one-parameter mean $J_{r}(x, y)$; for $p(t)=f^{\prime}(t), g(t)=t$, to the abstracted mean $M_{f}(x, y)$; for $g(t)=t, p(t)=t^{r-1}, f(t)=t^{s-r}$, to the extended mean values $E(r, s ; x, y)$; for $f(t)=t^{r}$, to the weighted mean of order r of the function g with weight p on $[x, y]$. If we replace $p(t)$ by $p(t) f^{r}(t), f(t)$ by $t^{s-r}, g(t)$ by $f(t)$ in
(2.1), then we get the generalized weighted mean values $M_{p, f}(r, s ; x, y)$. Hence, from $M_{f}(g ; p ; x, y)$ we can deduce most of the two variable means.

Lemma 1 ([13]). Suppose that f and g are integrable, and g is non-negative, on $[a, b]$, and that the ratio $f(t) / g(t)$ has finitely many removable discontinuity points. Then there exists at least one point $\theta \in(a, b)$ such that

$$
\begin{equation*}
\frac{\int_{a}^{b} f(t) d t}{\int_{a}^{b} g(t) d t}=\lim _{t \rightarrow \theta} \frac{f(t)}{g(t)} \tag{2.2}
\end{equation*}
$$

We call Lemma 1 the revised Cauchy's mean value theorem in integral form.
Proof. Since $f(t) / g(t)$ has finitely many removable discontinuity points, without loss of generality, suppose it is continuous on $[a, b]$. Furthermore, using $g(t) \geq 0$, from the mean value theorem for integrals, there exists at least one point $\theta \in(a, b)$ satisfying

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\int_{a}^{b}\left(\frac{f(t)}{g(t)}\right) g(t) d t=\frac{f(\theta)}{g(\theta)} \int_{a}^{b} g(t) d t \tag{2.3}
\end{equation*}
$$

Lemma 1 follows.
Theorem 1. The mean $M_{f}(g ; p ; x, y)$ has the following properties:

$$
\begin{gather*}
\alpha \leq M_{f}(g ; p ; x, y) \leq \beta, \\
M_{f}(g ; p ; x, y)=M_{f}(g ; p ; y, x), \tag{2.4}
\end{gather*}
$$

where $\alpha=\inf _{t \in[x, y]} g(t)$ and $\beta=\sup _{t \in[x, y]} g(t)$.
Proof. This follows from Lemma 1 and standard arguments.
Definition 2. For a sequence of positive numbers $a=\left(a_{1}, \ldots, a_{n}\right)$ and positive weights $p=\left(p_{1}, \ldots, p_{n}\right)$, the generalized weighted mean values of numbers a with two parameters r and s is defined as

$$
\begin{align*}
& M_{n}(p ; a ; r, s)=\left(\frac{\sum_{i=1}^{n} p_{i} a_{i}^{r}}{\sum_{i=1}^{n} p_{i} a_{i}^{s}}\right)^{1 /(r-s)}, r-s \neq 0 ; \tag{2.5}\\
& M_{n}(p ; a ; r, r)=\exp \left(\frac{\sum_{i=1}^{n} p_{i} a_{i}^{r} \ln a_{i}}{\sum_{i=1}^{n} p_{i} a_{i}^{r}}\right) . \tag{2.6}
\end{align*}
$$

For $s=0$ we obtain the weighted mean $M_{n}^{[r]}(a ; p)$ of order r which is defined in $[2,5,6,7]$ and introduced above; for $s=0, r=-1$, the weighted harmonic mean; for $s=0, r=0$, the weighted geometric mean; and for $s=0, r=1$, the weighted arithmetic mean.

The mean $M_{n}(p ; a ; r, s)$ has some basic properties similar to those of $M_{p, f}(r, s ; x, y)$, for instance

Theorem 2. The mean $M_{n}(p ; a ; r, s)$ is a continuous function with respect to $(r, s) \in \mathbb{R}^{2}$ and has the following properties:

$$
\begin{gather*}
m \leq M_{n}(p ; a ; r, s) \leq M \\
M_{n}(p ; a ; r, s)=M_{n}(p ; a ; s, r) \tag{2.7}\\
M_{n}^{s-r}(p ; a ; r, s)=M_{n}^{s-t}(p ; a ; t, s) \cdot M_{n}^{t-r}(p ; a ; r, t)
\end{gather*}
$$

where $m=\min _{1 \leq i \leq n}\left\{a_{i}\right\}, M=\max _{1 \leq i \leq n}\left\{a_{i}\right\}$.
Proof. For an arbitrary sequence $b=\left(b_{1}, \ldots, b_{n}\right)$ and a positive sequence $c=$ $\left(c_{1}, \ldots, c_{n}\right)$, the following elementary inequalities [6, p. 204] are well-known

$$
\begin{equation*}
\min _{1 \leq i \leq n}\left\{\frac{b_{i}}{c_{i}}\right\} \leq \frac{\sum_{i=1}^{n} b_{i}}{\sum_{i=1}^{n} c_{i}} \leq \max _{1 \leq i \leq n}\left\{\frac{b_{i}}{c_{i}}\right\} \tag{2.8}
\end{equation*}
$$

This implies the inequality property.
The other properties follow from standard arguments.
Definition 3. Let f_{1} and f_{2} be real-valued functions such that the ratio f_{1} / f_{2} is monotone on the closed interval $[\alpha, \beta]$. If $a=\left(a_{1}, \ldots, a_{n}\right)$ is a sequence of real numbers from $[\alpha, \beta]$ and $p=\left(p_{1}, \ldots, p_{n}\right)$ a sequence of positive numbers, the generalized abstracted mean values of numbers a with respect to functions f_{1} and f_{2}, with weights p, is defined by

$$
\begin{equation*}
M_{n}\left(p ; a ; f_{1}, f_{2}\right)=\left(\frac{f_{1}}{f_{2}}\right)^{-1}\left(\frac{\sum_{i=1}^{n} p_{i} f_{1}\left(a_{i}\right)}{\sum_{i=1}^{n} p_{i} f_{2}\left(a_{i}\right)}\right) \tag{2.9}
\end{equation*}
$$

where $\left(f_{1} / f_{2}\right)^{-1}$ is the inverse function of f_{1} / f_{2}.
The integral analogue of Definition 3 is given by
Definition 4. Let p be a positive integrable function defined on $[x, y], x, y \in \mathbb{R}, f_{1}$ and f_{2} real-valued functions and the ratio f_{1} / f_{2} monotone on the interval $[\alpha, \beta]$. In addition, let g be defined on $[x, y]$ and valued on $[\alpha, \beta]$, and $f_{i} \circ g$ integrable on $[x, y]$ for $i=1,2$. The generalized abstracted mean values of function g with respect to functions f_{1} and f_{2} and with weight p is defined as

$$
\begin{equation*}
M\left(p ; g ; f_{1}, f_{2} ; x, y\right)=\left(\frac{f_{1}}{f_{2}}\right)^{-1}\left(\frac{\int_{x}^{y} p(t) f_{1}(g(t)) d t}{\int_{x}^{y} p(t) f_{2}(g(t)) d t}\right) \tag{2.10}
\end{equation*}
$$

where $\left(f_{1} / f_{2}\right)^{-1}$ is the inverse function of f_{1} / f_{2}.
Remark 2. Set $f_{2} \equiv 1$ in Definition 4, then we can obtain Definition 1 easily. Replacing f by $f_{1} / f_{2}, p(t)$ by $p(t) f_{2}(g(t))$ in Definition 1 , we arrive at Definition 4 directly. Analogously, formula (2.9) is equivalent to $M_{f}(a ; p)$, see [6, p. 77]. Definition 1 and Definition 4 are equivalent to each other. Similarly, so are Definition 3 and the quasi-arithmetic non-symmetrical mean $M_{f}(a ; p)$ of numbers $a=\left(a_{1}, \ldots, a_{n}\right)$ with weights $p=\left(p_{1}, \ldots, p_{n}\right)$.

Lemma 2. Suppose the ratio f_{1} / f_{2} is monotonic on a given interval. Then

$$
\begin{equation*}
\left(\frac{f_{1}}{f_{2}}\right)^{-1}(x)=\left(\frac{f_{2}}{f_{1}}\right)^{-1}\left(\frac{1}{x}\right) \tag{2.11}
\end{equation*}
$$

where $\left(f_{1} / f_{2}\right)^{-1}$ is the inverse function of f_{1} / f_{2}.
Proof. This is a direct consequence of the definition of an inverse function.
Theorem 3. The means $M_{n}\left(p ; a ; f_{1}, f_{2}\right)$ and $M\left(p ; g ; f_{1}, f_{2} ; x, y\right)$ have the following properties:
(i) Under the conditions of Definition 3, we have

$$
\begin{gather*}
m \leq M_{n}\left(p ; a ; f_{1}, f_{2}\right) \leq M \\
M_{n}\left(p ; a ; f_{1}, f_{2}\right)=M_{n}\left(p ; a ; f_{2}, f_{1}\right) \tag{2.12}
\end{gather*}
$$

where $m=\min _{1 \leq i \leq n}\left\{a_{i}\right\}, M=\max _{1 \leq i \leq n}\left\{a_{i}\right\}$;
(ii) Under the conditions of Definition 4, we have

$$
\begin{gather*}
\alpha \leq M\left(p ; g ; f_{1}, f_{2} ; x, y\right) \leq \beta, \\
M\left(p ; g ; f_{1}, f_{2} ; x, y\right)=M\left(p ; g ; f_{1}, f_{2} ; y, x\right), \tag{2.13}\\
M\left(p ; g ; f_{1}, f_{2} ; x, y\right)=M\left(p ; g ; f_{2}, f_{1} ; x, y\right), \\
\text { where } \alpha=\inf _{t \in[x, y]} g(t) \text { and } \beta=\sup _{t \in[x, y]} g(t) .
\end{gather*}
$$

Proof. These follow from inequality (2.8), Lemma 1, Lemma 2, and standard arguments.

3. Monotonicities

Lemma 3 ([16]). Assume that the derivative of second order $f^{\prime \prime}(t)$ exists on \mathbb{R}. If $f(t)$ is an increasing (or convex) function on \mathbb{R}, then the arithmetic mean of function $f(t)$,

$$
\phi(r, s)= \begin{cases}\frac{1}{s-r} \int_{r}^{s} f(t) d t, & r \neq s \tag{3.1}\\ f(r), & r=s\end{cases}
$$

is also increasing (or convex, respectively) with both r and s on \mathbb{R}.
Proof. Direct calculation yields

$$
\begin{align*}
\frac{\partial \phi(r, s)}{\partial s} & =\frac{1}{(s-r)^{2}}\left[(s-r) f(s)-\int_{r}^{s} f(t) d t\right] \tag{3.2}\\
\frac{\partial^{2} \phi(r, s)}{\partial s^{2}} & =\frac{(s-r)^{2} f^{\prime}(s)-2(s-r) f(s)+2 \int_{r}^{s} f(t) d t}{(s-r)^{3}} \equiv \frac{\varphi(r, s)}{(s-r)^{3}} \tag{3.3}\\
\frac{\partial \varphi(r, s)}{\partial s} & =(s-r)^{2} f^{\prime \prime}(s) \tag{3.4}
\end{align*}
$$

In the case of $f^{\prime}(t) \geq 0$, we have $\partial \phi(r, s) / \partial s \geq 0$, thus $\phi(r, s)$ increases in both r and s, since $\phi(r, s)=\phi(s, r)$.

In the case of $f^{\prime \prime}(t) \geq 0, \varphi(r, s)$ increases with s. Since $\varphi(r, r)=0$, we have $\partial^{2} \phi(r, s) / \partial s^{2} \geq 0$. Therefore $\phi(r, s)$ is convex with respect to either r or s, since $\phi(r, s)=\phi(s, r)$. This completes the proof.

Theorem 4. The mean $M_{n}(p ; a ; r, s)$ of numbers $a=\left(a_{1}, \ldots, a_{n}\right)$ with weights $p=\left(p_{1}, \ldots, p_{n}\right)$ and two parameters r and s is increasing in both r and s.

Proof. Set $N_{n}=\ln M_{n}$, then we have

$$
\begin{align*}
& N_{n}(p ; a ; r, s)=\frac{1}{r-s} \int_{s}^{r} \frac{\sum_{i=1}^{n} p_{i} a_{i}^{t} \ln a_{i}}{\sum_{i=1}^{n} p_{i} a_{i}^{t}} d t, \quad r-s \neq 0 \tag{3.5}\\
& N_{n}(p ; a ; r, r)=\frac{\sum_{i=1}^{n} p_{i} a_{i}^{r} \ln a_{i}}{\sum_{i=1}^{n} p_{i} a_{i}^{r}} \tag{3.6}
\end{align*}
$$

By Cauchy's inequality, direct calculation arrives at

$$
\begin{equation*}
\left(\frac{\sum_{i=1}^{n} p_{i} a_{i}^{t} \ln a_{i}}{\sum_{i=1}^{n} p_{i} a_{i}^{t}}\right)_{t}=\frac{\sum_{i=1}^{n} p_{i} a_{i}^{t}\left(\ln a_{i}\right)^{2} \sum_{i=1}^{n} p_{i} a_{i}^{t}-\left(\sum_{i=1}^{n} p_{i} a_{i}^{t} \ln a_{i}\right)^{2}}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{t}\right)^{2}} \geq 0 \tag{3.7}
\end{equation*}
$$

Combination of (3.7) with Lemma 3 yields the statement of Theorem 4.
Theorem 5. For a monotonic sequence of positive numbers $0<a_{1} \leq a_{2} \leq \cdots$ and positive weights $p=\left(p_{1}, p_{2}, \ldots\right)$, if $m<n$, then

$$
\begin{equation*}
M_{m}(p ; a ; r, s) \leq M_{n}(p ; a ; r, s) \tag{3.8}
\end{equation*}
$$

Equality holds if $a_{1}=a_{2}=\cdots$.
Proof. For $r \geq s$, inequality (3.8) reduces to

$$
\begin{equation*}
\frac{\sum_{i=1}^{m} p_{i} a_{i}^{r}}{\sum_{i=1}^{m} p_{i} a_{i}^{s}} \leq \frac{\sum_{i=1}^{n} p_{i} a_{i}^{r}}{\sum_{i=1}^{n} p_{i} a_{i}^{s}} \tag{3.9}
\end{equation*}
$$

Since $0<a_{1} \leq a_{2} \leq \cdots, p_{i}>0, i \geq 1$, the sequences $\left\{p_{i} a_{i}^{r}\right\}_{i=1}^{\infty}$ and $\left\{p_{i} a_{i}^{s}\right\}_{i=1}^{\infty}$ are positive and monotonic.

By mathematical induction and the elementary inequalities (2.8), we can easily obtain the inequality (3.9). The proof of Theorem 5 is completed.

Lemma 4. If $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ are two nondecreasing (or nonincreasing) sequences and $P=\left(P_{1}, \ldots, P_{n}\right)$ is a nonnegative sequence, then

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i} \sum_{i=1}^{n} P_{i} A_{i} B_{i} \geq \sum_{i=1}^{n} P_{i} A_{i} \sum_{i=1}^{n} P_{i} B_{i} \tag{3.10}
\end{equation*}
$$

with equality if and only if at least one of the sequences A or B is constant.
If one of the sequences A or B is nonincreasing and the other nondecreasing, then the inequality in (3.10) is reversed.

The inequality (3.10) is known in the literature as Tchebycheff's (or Čebyšev's) inequality in discrete form [7, p. 240].

Theorem 6. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ be positive weights, $a=$ $\left(a_{1}, \ldots, a_{n}\right)$ a sequence of positive numbers. If the sequences $\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)$ and a are both nonincreasing or both nondecreasing, then

$$
\begin{equation*}
M_{n}(p ; a ; r, s) \geq M_{n}(q ; a ; r, s) \tag{3.11}
\end{equation*}
$$

If one of the sequences of $\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)$ or a is nonincreasing and the other nondecreasing, the inequality (3.11) is reversed.

Proof. Substitution of $P=\left(q_{1} a_{1}^{s}, \ldots, q_{n} a_{n}^{s}\right), A=\left(a_{1}^{r-s}, \ldots, a_{n}^{r-s}\right)$ and $B=\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)$ into inequality (3.10) and the standard arguments produce inequality (3.11). This completes the proof of Theorem 6.

Theorem 7. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ be positive weights, $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=$ $\left(b_{1}, \ldots, b_{n}\right)$ two sequences of positive numbers. If the sequences $\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ and b are both increasing or both decreasing, then

$$
\begin{equation*}
M_{n}(p ; a ; r, s) \geq M_{n}(p ; b ; r, s) \tag{3.12}
\end{equation*}
$$

holds for $a_{i} / b_{i} \geq 1, n \geq i \geq 1$, and $r, s \geq 0$ or $r \geq 0 \geq s$. The inequality (3.12) is reversed for $a_{i} / b_{i} \leq 1, n \geq i \geq 1$, and $r, s \leq 0$ or $s \geq 0 \geq r$.

If one of the sequences of $\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ or b is nonincreasing and the other nondecreasing, then inequality (3.12) is valid for $a_{i} / b_{i} \geq 1, n \geq i \geq 1$ and $r, s \geq 0$ or $s \geq 0 \geq r$; the inequality (3.12) reverses for $a_{i} / b_{i} \leq 1, n \geq i \geq 1$, and $r, s \geq 0$ or $r \geq 0 \geq s$,
Proof. The inequality (3.10) applied to

$$
\begin{equation*}
P_{i}=p_{i} b_{i}^{r}, \quad A_{i}=\left(\frac{a_{i}}{b_{i}}\right)^{r}, \quad B_{i}=b_{i}^{s-r}, \quad 1 \leq i \leq n \tag{3.13}
\end{equation*}
$$

and the standard arguments yield Theorem 7.
Theorem 8. Suppose p and g are defined on \mathbb{R}. If $f_{1} \circ g$ has constant sign and if $\left(f_{1} / f_{2}\right) \circ g$ is increasing (or decreasing, respectively), then $M\left(p ; g ; f_{1}, f_{2} ; x, y\right)$ have the inverse (or same) monotonicities as f_{1} / f_{2} with both x and y.

Proof. Without loss of generality, suppose $\left(f_{1} / f_{2}\right) \circ g$ increases. By straightforward computation and using Lemma 1, we obtain

$$
\begin{align*}
\frac{d}{d y} & \left(\frac{\int_{x}^{y} p(t) f_{1}(g(t)) d t}{\int_{x}^{y} p(t) f_{2}(g(t)) d t}\right) \tag{3.14}\\
& =\frac{p(y) f_{1}(g(y)) \int_{x}^{y} p(t) f_{1}(g(t)) d t}{\left(\int_{x}^{y} p(t) f_{2}(g(t)) d t\right)^{2}}\left(\frac{\int_{x}^{y} p(t) f_{2}(g(t)) d t}{\int_{x}^{y} p(t) f_{1}(g(t)) d t}-\frac{f_{2}(g(y))}{f_{1}(g(y))}\right) \leq 0
\end{align*}
$$

From Definition 4 and its suitable basic properties, Theorem 8 follows.
Lemma 5. Let $G, H:[a, b] \rightarrow \mathbb{R}$ be integrable functions, both increasing or both decreasing. Furthermore, let $Q:[a, b] \rightarrow[0,+\infty)$ be an integrable function. Then

$$
\begin{equation*}
\int_{a}^{b} Q(u) G(u) d u \int_{a}^{b} Q(u) H(u) d u \leq \int_{a}^{b} Q(u) d u \int_{a}^{b} Q(u) G(u) H(u) d u \tag{3.15}
\end{equation*}
$$

If one of the functions of G or H is nonincreasing and the other nondecreasing, then the inequality (3.15) reverses.

Inequality (3.15) is called Tchebycheff's integral inequality, please refer to [1] and [4]-[7].

Remark 3. Using Tchebycheff's integral inequality, some inequalities of the complete elliptic integrals are established in [15], many inequalities concerning the probability function, the error function, and so on, are improved in [12].

Theorem 9. Suppose $f_{2} \circ g$ has constant sign on $[x, y]$. When $g(t)$ increases on $[x, y]$, if p_{1} / p_{2} is increasing, we have

$$
\begin{equation*}
M\left(p_{1} ; g ; f_{1}, f_{2} ; x, y\right) \geq M\left(p_{2} ; g ; f_{1}, f_{2} ; x, y\right) \tag{3.16}
\end{equation*}
$$

if p_{1} / p_{2} is decreasing, inequality (3.16) reverses.
When $g(t)$ decreases on $[x, y]$, if p_{1} / p_{2} is increasing, then inequality (3.16) is reversed; if p_{1} / p_{2} is decreasing, inequality (3.16) holds.

Proof. Substitution of $Q(t)=f_{2}(g(t)) p_{2}(t), G(t)=\left(f_{1} / f_{2}\right) \circ g(t)$ and $H(t)=$ $p_{1}(t) / p_{2}(t)$ into Lemma 5 and the standard arguments produce inequality (3.16). The proof of Theorem 9 is completed.

Theorem 10. Suppose $f_{2} \circ g_{2}$ does not change its sign on $[x, y]$.
(i) When $f_{2} \circ\left(g_{1} / g_{2}\right)$ and $\left(f_{1} / f_{2}\right) \circ g_{2}$ are both increasing or both decreasing, inequality

$$
\begin{equation*}
M\left(p ; g_{1} ; f_{1}, f_{2} ; x, y\right) \geq M\left(p ; g_{2} ; f_{1}, f_{2} ; x, y\right) \tag{3.17}
\end{equation*}
$$

holds for f_{1} / f_{2} being increasing, or reverses for f_{1} / f_{2} being decreasing.
(ii) When one of the functions $f_{2} \circ\left(g_{1} / g_{2}\right)$ or $\left(f_{1} / f_{2}\right) \circ g_{2}$ is decreasing and the other increasing, inequality (3.17) holds for f_{1} / f_{2} being decreasing, or reverses for f_{1} / f_{2} being increasing.
Proof. The inequality (3.15) applied to $Q(t)=p(t)\left(f_{2} \circ g_{2}\right)(t), G(t)=f_{2} \circ\left(\frac{g_{1}}{g_{2}}\right)(t)$ and $H(t)=\left(\frac{f_{1}}{f_{2}}\right) \circ g_{2}(t)$, and standard arguments yield Theorem 10 .

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1983.
[2] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, D. Reidel Publ. Company, Dordrecht/Boston/Lancaster/Tokyo, 1988.
[3] Yong Ding, Two classes of means and their applications, Mathematics in Practice and Theory 25 (1995), no. 2, 16-20. (Chinese)
[4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 1952.
[5] Ji-Chang Kuang, Applied Inequalities, 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
[6] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[7] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
[8] J. Pečarić, Feng Qi, V. Šimić and Sen-Lin Xu, Refinements and extensions of an inequality, III, J. Math. Anal. Appl. 227 (1998), no. 2, 439-448.
[9] Feng Qi, Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), no. 1978, 2723-2732.
[10] Feng Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, submitted for publication.
[11] Feng Qi, Studies on Problems in Topology and Geometry and on Generalized Weighted Abstracted Mean Values, Thesis submitted for the degree of Doctor of Philosophy at University of Science and Technology of China, Hefei City, Anhui Province, China, Winter 1998. (Chinese)
[12] Feng Qi, Li-Hong Cui and Sen-Lin Xu, Some inequalities constructed by Tchebycheff's integral inequality, submitted for publication.
[13] Feng Qi and Lokenath Debnath, Inequalities of power-exponential functions, Intern. J. Math. Math. Sci. 23 (2000), in the press.
[14] Feng Qi and Bai-Ni Guo, Inequalities for generalized weighted mean values of convex function, submitted for publication.
[15] Feng Qi and Zheng Huang, Inequalities of the complete elliptic integrals, Tamkang Journal of Mathematics 29 (1998), no. 3, 165-169.
[16] Feng Qi, Sen-Lin Xu and Lokenath Debnath, A new proof of monotonicity for extended mean values, Intern. J. Math. Math. Sci. 22 (1999), no. 2, 415-420.
[17] Feng Qi and Shi-Qin Zhang, Note on monotonicity of generalized weighted mean values, Proc. Roy. Soc. London Ser. A 455 (1999), no. 1989, 3259-3260.
[18] Ming-Bao Sun, Inequalities for two-parameter mean of convex function, Mathematics in Practice and Theory 27 (1997), no. 3, 193-197. (Chinese)
[19] Da-Feng Xia, Sen-Lin Xu, and Feng Qi, A proof of the arithmetic mean-geometric meanharmonic mean inequalities, RGMIA Research Report Collection 2 (1999), no. 1, 85-88.

Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, The People's Republic of China

E-mail address: qifeng@jzit.edu.cn

[^0]: 1991 Mathematics Subject Classification. Primary 26A48; Secondary 26D15.
 Key words and phrases. Generalized abstracted mean values, basic property, monotonicity.
 The author was partially supported by NSF of Henan Province, The People's Republic of China.

 This paper is typeset using $\mathcal{A} \mathcal{M} \mathcal{S}$-IATEX.

