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Abstract. We study perturbations of the Drazin inverse of a closed linear operator A for
the case when the perturbed operator has the same spectral projection as A. This theory
subsumes results recently obtained by Wei and Wang, Rakočević and Wei, and Castro and
Koliha. We give explicit error estimates for the perturbation of Drazin inverse, and error
estimates involving higher powers of the operators.

1. Introduction

In several recent papers [3, 4, 14, 17, 18], perturbations of the Drazin inverse were studied
with a purpose to obtain explicit error bounds. In this paper we present a perturbation theory
for the Drazin inverse AD of a closed linear operator A in which the perturbed operator B
shares the spectral projection at 0 with A.

By C(X) we denote the set of all closed linear operators acting on a linear subspace of X
to X, where X is a complex Banach space. We write D(A), N (A), R(A) and σ(A) for the
domain, nullspace, range and spectrum of an operator A ∈ C(X). All relevant concepts from
theory of closed linear operators can be found in [16]. The set of all operators T ∈ C(X) with
D(T ) = X will be denoted by B(X); we recall that operators in B(X) are bounded, and the
operator norm of T ∈ B(X) will be denoted by ‖T‖.

An operator A ∈ C(X) is quasipolar if 0 is not an accumulation point of the spectrum of A.
We recall the following result of [11], which can be deduced from [16, Theorem V.9.2].

Lemma 1.1. An operator A ∈ C(X) is quasipolar if and only if there exists a projection
P ∈ B(X) such that

(i) R(P ) ⊂ D(A),

(ii) PAx = APx for all x ∈ D(A),

(iii) A+ P ∈ C(X) is invertible,

(iv) AP ∈ B(X) is quasinilpotent, that is, σ(AP ) = {0}.

The projection P is uniquely determined by conditions (i)–(iv), and it is the spectral projection
of A at 0.

Definition 1.2. An operator A ∈ C(X) is Drazin invertible if it can be expressed in the
form (relative to a topological direct sum X = X1 ⊕X2)

A = A1 ⊕A2, where A1 is closed invertible and A2 is bounded quasinilpotent.(1.1)
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The Drazin index i(A) of A is 0 if A is invertible; if A is not invertible, i(A) is the least positive
integer k for which Ak2 = 0, or ∞ if no such integer k exists. The operators

AD = A−1
1 ⊕ 0 and Aπ = 0⊕ I(1.2)

are the Drazin inverse of A and the spectral projection of A corresponding to 0, respectively.

This definition given in [11] generalizes the concept of pseudoinverse introduced by Drazin
[6] in two directions. It applies to closed linear operators, whereas [6] can be applied only to
bounded linear operators (elements of an algebra), and it admits an infinite index in the case
when A2 is a true quasinilpotent, while only a finite index was possible in [6].

In the preceding definition, AD ∈ B(X) and Aπ ∈ B(X). The following equations, easily
verifiable by a manipulation of direct operator sums, are often useful:

Aπ = I −AAD, AD = (A+Aπ)−1(I −Aπ).(1.3)

Drazin invertible operators include invertible and quasinilpotent operators when X2 = {0}
and X1 = {0}, respectively. From Lemma 1.1 and Definition 1.2 we obtain the following result.

Lemma 1.3. A ∈ C(X) is Drazin invertible if and only if A is quasipolar.

Mbekhta [12] proved that the spaces X1 and X2 in the direct sum X = X1 ⊕X2 inducing
(1.1) are X1 = K(A) and X2 = H0(A), where

H0(A) = {x ∈ D∞(A) : lim sup
n→∞

‖Anx‖1/n = 0},

K(A) = {x ∈ X : ∃xn ∈ Dn(A) such that
Ax1 = x, Axn+1 = xn for n = 1, 2, . . .

and lim sup
n→∞

‖xn‖1/n <∞}.

They are hyperinvariant under A, and

N (An) ⊂ H0(A), K(A) ⊂ R(An), n = 1, 2, . . .

It is known [9] that A ∈ C(X) is quasipolar if and only if X = K(A) ⊕H0(A), where at least
one of the spaces K(A) and H0(A) is closed. For a Drazin invertible operator A ∈ C(X) we
have

R(AD) = D(A) ∩ K(A), N (AD) = H0(A).

2. Characterizing operators that satisfy Bπ = Aπ

Let A ∈ C(X) be a Drazin invertible operator. Our first task is to characterize those Drazin
invertible operators B ∈ C(X), with D(B) = D(A), for which Bπ = Aπ.

One result that will be used systematically throughout is that the product ST of S ∈ C(X)
and of T ∈ B(X) with R(T ) ⊂ D(S) is in B(X).

Let A ∈ C(X) be a Drazin invertible operator, and let B ∈ C(X) satisfy D(B) = D(A). We
have

D(A) = R(AD) +R(Aπ),

which means that the operator products BAπ and BAD are well defined (and in B(X)). Relative
to the space decomposition X = K(A)⊕H0(A) we have the operator matrices

B =
[
B11 B12
B21 B22

]
, A =

[
A1 0
0 A2

]
, Aπ =

[
0 0
0 I

]
, AD =

[
A−1

1 0
0 0

]
.
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We focus our attention on two conditions on B that will be used in our main result. From the
matrix representations of operators we can deduce that

AπBAD = 0 ⇔ B21 = 0 ⇔ B(D(A) ∩ K(A)) ⊂ K(A),

ADBAπ = 0 ⇔ B12 = 0 ⇔ B(H0(A)) ⊂ H0(A).

These conditions are fulfilled automatically for B = A.
Before proceeding, we mention a principle that will be used in the sequel without a further

comment. If U = B − A is the difference of two closed operators with the same domain, then
U is a linear operator with the domain D(A), not necessarily closed. However, UT ∈ B(X) for
any operator T ∈ B(X) with R(T ) ⊂ D(A) since UT = AT −BT .

We now give a characterization of operators B ∈ C(X) with D(B) = D(A) that satisfy
Bπ = Aπ.

Theorem 2.1. Let A ∈ C(X) be a Drazin invertible operator, and let B ∈ C(X) satisfy
D(B) = D(A). Then the following are equivalent:

(i) B is Drazin invertible and Bπ = Aπ;

(ii) B is Drazin invertible, AπBAD = 0, I + (B −A)AD is invertible and

BD = AD(I + (B −A)AD)−1;(2.1)

(iii) AπBAD = 0 = ADBAπ, I + (B −A)AD is invertible and BAπ is quasinilpotent;

(iv) AπBAD = 0 = ADBAπ, BAπ is quasinilpotent and B +Aπ is invertible.

Proof. Throughout this proof we write

C = I + (B −A)AD (∈ B(X)).

(i)⇒ (ii) Since Bπ = Aπ, relative to the space decomposition X = K(A)⊕H0(A) we have

A = A1 ⊕A2, B = B1 ⊕B2,

where A1, B1 are invertible with D(A1) = D(B1) = K(A)∩D(A), and A2, B2 are quasinilpotent
with D(A2) = D(B2) = H0(A). Then

C = I ⊕ I + (B1 −A1)A−1
1 ⊕ 0 = B1A

−1
1 ⊕ I.(2.2)

Hence C ∈ B(X) is invertible with C−1 = A1B
−1
1 ⊕ I, and

ADC−1 = (A−1
1 ⊕ 0)(A1B

−1
1 ⊕ I) = B−1

1 ⊕ 0 = BD.

Moreover, AπBAD = (0⊕ I)(B1A
−1
1 ⊕ 0) = 0.

(ii)⇒ (i) First we observe that AπC = Aπ +Aπ(B −A)AD = Aπ. Hence

Aπ −Bπ = BBD −AAD = BADC−1 − I +Aπ

= (BAD − C +AπC)C−1 = (BAD − C +Aπ)C−1

= (BAD −BAD)C−1 = 0.

(i)⇒ (iii) Suppose that (i) holds. In view of Lemma 1.1, BAπ is quasinilpotent, and AπBx =
BAπx for all x ∈ D(A), which implies AπBAD = 0 = ADBAπ. The invertibility of C follows
from the first part of this proof.

(iii)⇒ (iv) Condition AπBAD = 0 = ADBAπ is equivalent to AπBx = BAπx for all x ∈
D(A); hence we have B = B1⊕B2 relative to the space decomposition X = K(A)⊕H0(A). By
(2.2), C = B1A

−1
1 ⊕ I; since C is invertible, so is B1. Further, BAπ = 0⊕B2 is quasinilpotent,

which implies that B2 is also quasinilpotent. Hence B +Aπ = B1 ⊕ (I +B2) is invertible.



4 N. CASTRO GONZÁLEZ, J. J. KOLIHA, AND YIMIN WEI

(iv)⇒ (i) Follows from Lemma 1.1.

It is of some interest to observe that condition ADBAπ = 0 alone in (iv) would still ensure
that B is Drazin invertible, but not that Aπ is the spectral projection of B at 0; for that we
need the mirror condition AπBAD = 0. In the case that the operators A and B are in B(X), we
obtain the following specialization of the preceding theorem in which condition AπBAD = 0 can
be omitted from (ii). We note that for bounded operators AπBAD = 0 = ADBAπ is equivalent
to AπA = AAπ.

Corollary 2.2. Let A ∈ B(X) be a Drazin invertible operator, and let B ∈ B(X). Then
the following are equivalent:

(i) B is Drazin invertible and Bπ = Aπ;

(ii) B is Drazin invertible, I + (B −A)AD is invertible and (2.1) holds;

(iii) AπB = BAπ, I + (B −A)AD is invertible and BAπ is quasinilpotent;

(iv) AπB = BAπ, BAπ is quasinilpotent and B +Aπ is invertible.

Proof. The only part that requires proof is (ii)⇒ (i). First we note that for operators in B(X),
R(AD) = K(A) and N (AD) = H0(A). Hence the result will follow when we show that

R(AD) = R(BD) and N (AD) = N (BD).

But this clearly follows from

BD = AD(I + UAD)−1 = (I +ADU)−1AD,

where U = B −A; I +ADU is invertible since σ(ADU) \ {0} = σ(UAD) \ {0}.

The preceding corollary generalizes [5, Theorem 2.1] proved for matrices.

3. Perturbations of the Drazin inverse in the case Bπ = Aπ

The continuity properties of the Drazin inverse for matrices are well known [1, 2]; the con-
tinuity of the conventional Drazin inverse for bounded linear operators was investigated by
Rakočević in [13], and the continuity of the generalized Drazin inverse for bounded operators
by Koliha and Rakočević in [10]. It was proved in [10] that if A and Bα are bounded linear
operators such that Bα → A, then

BD
α → AD ⇔ Bπα → Aπ

in the operator norm. However, no explicit bounds for the perturbations of the Drazin inverse
have been obtained for this general case. Most of the previous studies of error bounds limit
themselves to special cases of perturbations satisfying Bπ = Aπ. Let A be a Drazin invertible
operator (for the moment we may assume that A is bounded), that A = A1 ⊕ A2 with A1
invertible and A2 quasinilpotent, and that B = A + U , where U ∈ B(X) commutes with Aπ.
Wei [17], Wei and Wang [18], and Rakočević and Wei [14] study perturbations of the type

B = (A1 + U1)⊕A2,

while Castro and Koliha [3] and Castro, Koliha and Straškraba [4] investigate perturbations

B = (A1 + U1)⊕ (A2 + U2),

where U2 is quasinilpotent (or nilpotent in the case of matrices) and commutes with A2. The
results of [3, 14, 17, 18] include explicit error bounds for the Drazin inverse and relations between
the Drazin indices of B and A.
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In this section we address general perturbations of the Drazin inverse of a closed linear
operator A under the assumption that the perturbed operator B satisfies the condition Bπ =
Aπ. We consider a closed, rather than just a bounded, operator because important applications
of perturbation theory are to infinitesimal generators of operator C0-semigroups, and such
operators are closed.

We now give our main perturbation theorem for the Drazin inverse of closed linear operators.

Theorem 3.1. Let A ∈ C(X) be a Drazin invertible operator, let B ∈ C(X) with D(B) =
D(A) and let U = B −A. If

‖UAD‖ < 1, AπBAD = 0 = ADBAπ, σ(BAπ) = {0},(3.1)

then B is a Drazin invertible operator, and

K(B) = K(A), H0(B) = H0(A),(3.2)

BD = AD(I + UAD)−1,(3.3)

‖BD −AD‖
‖AD‖

≤ ‖UAD‖
1− ‖UAD‖

,(3.4)

‖AD‖
1 + ‖UAD‖

≤ ‖BD‖ ≤ ‖AD‖
1− ‖UAD‖

.(3.5)

If A, B ∈ B(X), (3.4) can be improved to

‖UAD‖
κD(A)(1 + ‖AD‖‖U‖)

≤ ‖B
D −AD‖
‖AD‖

≤ ‖UAD‖
1− ‖UAD‖

≤ κD(A)‖U‖/‖A‖
1− κD(A)‖U‖/‖A‖

,(3.6)

where κD(A) = ‖A‖‖AD‖ is the Drazin condition number of A.

Proof. From θ = ‖UAD‖ < 1 we deduce that I + UAD is invertible. Then condition (iii) of
Theorem 2.1 is fulfilled, and B is Drazin invertible with Bπ = Aπ. Since R(Aπ) = H0(A)
and N (Aπ) = K(A), we obtain (3.2). Formula (3.3) for the Drazin inverse of B follows from
Theorem 2.1. To prove (3.4), we first observe that ‖(I + UAD)−1‖ = ‖

∑∞
n=0(−1)n(UAD)n‖ ≤∑∞

n=0 θ
n = (1− θ)−1, which in view of (3.3) implies

‖BD −AD‖ = ‖ADUAD(I + UAD)−1‖ ≤ ‖AD‖θ(1− θ)−1.

Inequality (3.5) follows similarly from (3.3).
Let A, B ∈ B(X). Since Bπ = Aπ, AAD = BBD and UAD = (A+ U)(AD −BD). From the

last expression we deduce the lower estimate for ‖BD −AD‖/‖AD‖ in (3.6) taking into account
that κD(A) ≥ ‖I −Aπ‖ ≥ 1.

Corollary 3.2. Let A ∈ C(X) be a Drazin invertible operator and let (Bn) be a sequence
of operators in C(X) with D(Bn) = D(A) such that

AπBnA
D = 0 = ADBnA

π, σ(BnAπ) = {0}, n = 1, 2, . . .

and

εn = ‖(Bn −A)AD‖ → 0 as n→∞.
For all sufficiently large n the operators Bn are Drazin invertible with Bπn = Aπ, and

‖BD
n −AD‖ ≤ ‖A

D‖ εn
1− εn

→ 0 as n→∞.

In the following two remarks we make comparison of our results on perturbation of the Drazin
inverse with existing literature. To this end we consider only a restricted type of perturbations
of A, where A ∈ C(X) is Drazin invertible and B = A+ U for some U ∈ B(X).
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Remark 3.3. Condition

‖ADU‖ < 1, AπU = 0 = UAπ(3.7)

is a special case of (3.1) since (A + U)Aπ = AAπ is quasinilpotent by Lemma 1.1; (3.7) is
equivalent to the condition (W) that was used in [17, 18] for matrices and in [14] for bounded
linear operators and elements of Banach algebras. Hence we recover the perturbation results of
[18] and [14] as a special case of Theorem 3.1.

Remark 3.4. The preceding theorem subsumes the perturbation results of [3, 4], where A
and U satisfied the condition

‖ADU‖ < 1, AπU = UAπ, AAπU = UAAπ, UAπ is quasinilpotent,(3.8)

which is a special case of (3.1). Indeed,

(A+ U)Aπ = AAπ + UAπ

is quasinilpotent being the sum of two commuting quasinilpotent operators in B(X).

The results of [3, 14, 18] include relations between the Drazin indices of A and B. Under
condition (3.7) adopted in [14, 18] we have i(B) = i(A). If A and U satisfy condition (3.8) as
in [3], then

|i(A)− i(AπU)|+ 1 ≤ i(B) ≤ i(A) + i(AπU)− 1.

If only (3.1) is assumed, no relation between i(A) and i(B) exists. In fact, in the next example
we show that for any pair of extended natural numbers p, q ∈ N ∪ {∞}, we can find a pair of
operators A and B satisfying (3.1) such that i(A) = p and i(B) = q.

Example 3.5. By X we denote the space `1 ⊕ `1 with the norm ‖x‖ = ‖x1 + x2‖ = ‖x1‖+
‖x2‖. For any positive integer p let Sp be the (bounded linear) operator on `1 defined by

Sp(ξ1, ξ2, ξ3, . . . ) = (0, ξ1, ξ2, ξ3, . . . , ξp−1, 0, 0, . . . ),

and let S∞ be the operator on `1 defined by

S∞(ξ1, ξ2, ξ3, . . . ) = (0, ξ1, 1
2ξ2,

1
3ξ3, . . . ).

We observe that Sp is nilpotent of index p, while S∞ is a true quasinilpotent. Given a pair
p, q ∈ N ∪ {∞}, we define a (Drazin invertible) operator A on X by A = I ⊕ Sp and an
operator U = 0⊕ (Sq − Sp). We check that A and B = A+ U satisfy condition (3.1): ADU =
(I ⊕ 0)(0⊕ (Sq − Sp)) = 0, AπU = U = UAπ and (A+ U)Aπ = 0⊕ Sq is quasinilpotent. Then
B = I ⊕ Sq is Drazin invertible, while i(A) = p and i(B) = q.

We consider the perturbation of the linear equation

Ax = b, b ∈ X given,(3.9)

(with A Drazin invertible and x ∈ D(A) to be found) in more generality than in [3, 4, 14, 18].
(In the cited references only b ∈ K(A) is considered.) We have the following result.

Theorem 3.6. Let A, B ∈ C(X) be operators with the same domain, let A be Drazin invert-
ible, let (3.1) be satisfied, and let b, u ∈ X. If x ∈ X is a solution to Ax = b and y ∈ X is a
solution to By = b+ u, then

‖Qy −Qx‖
‖Qx‖

≤ ‖AD‖
1− ‖UAD‖

‖UADb‖+ ‖Qu‖
‖ADb‖

,(3.10)

where U = B − A and Q = I −Aπ is the projection of X onto K(A) relative to the direct sum
X = K(A)⊕H0(A).
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Proof. To prove this theorem, we proceed similarly as in the proof of [3, Theorem 3.1]. There is
added generality that b, u are not assumed to lie in K(A) as in [3], and the operator U = B−A
is only linear, not necessarily defined on all of X. Recall that UT ∈ B(X) for any T ∈ B(X)
with R(T ) ⊂ D(U). Since QAz = AQz and QBz = BQz for all z ∈ D(A), we first transform
the equations Ax = b and By = b + u to AQx = Qb and BQy = Qb + Qu, respectively. The
procedure from the proof of [3, Theorem 3.1] can be now applied to yield the result when we
observe that ADQ = AD.

4. Error estimate using higher powers of operators

In [11] it is shown that if A ∈ C(X) is Drazin invertible, then Ak is Drazin invertible for each
k ∈ N, and

(Ak)
D

= (AD)k and (Ak)
π

= Aπ for all k ∈ N.(4.1)

Here we are interested in the converse problem. If Am is Drazin invertible for some m ∈ N,
is A also Drazin invertible, and can the error bounds for the perturbation of AD be calculated
from the known error bounds for the perturbation of (Am)D?

First we address the question of existence.

Lemma 4.1. Let A ∈ C(X) be such that Am is Drazin invertible for some m ∈ N. Then A
is also Drazin invertible, and (4.1) holds. In addition,

Dk(A) = R((AD)k) +R(Aπ) for all k ∈ N.(4.2)

Proof. We may assume that Am is not invertible. Then 0 is an isolated spectral point of σ(Am).
By the spectral mapping theorem for polynomials of closed operators [16, Theorem V.9.6], 0 is
also isolated in σ(A), that is, A is Drazin invertible. Equation (4.1) is satisfied in view of the
above mentioned result in [11].

To prove (4.2), we note that (AD)k = (Ak1)−1 ⊕ 0, where (Ak1)−1 maps K(A) onto K(A) ∩
Dk(A).

The error bounds for the perturbation of the Drazin inverse of A can be then expressed in
terms of error bounds involving higher powers of A.

Theorem 4.2. Let m ∈ N and let A, B ∈ C(X) be operators satisfying the following condi-
tions:

(i) Dk(B) = Dk(A) for k = m− 1,m;

(ii) Am is Drazin invertible;

(iii) θ = ‖(Bm −Am)(Am)D‖ < 1;

(iv) AπBm(AD)m = 0 = (AD)mBmAπ;

(v) BmAπ is quasinilpotent.

Then the operators A and B are Drazin invertible, and

‖BD −AD‖
‖AD‖

≤
(
‖(Bm−1 −Am−1)(Am−1)

D‖+ ‖I −Aπ‖θ
)

(1− θ)−1.(4.3)

Proof. By Theorem 3.1, Bm is Drazin invertible with (Bm)D = (Am)D
W , where W = (I +

(Bm − Am)(Am)D)−1. By the preceding lemma, both A and B are Drazin invertible and the
operators Ak(AD)k, Bk(BD)k and Bk(AD)k are defined for k = m− 1,m. Then

BD −AD = (BBD)m−1BD − (AAD)m−1AD
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= Bm−1(BD)m −Am−1(AD)m

= Bm−1(AD)mW −Am−1(AD)mW +Am−1(AD)mW −Am−1(AD)m

= (Bm−1 −Am−1)(Am−1)
D
ADW + (I −Aπ)ADW (Bm −Am)(Am)D

.

Taking norms, we get

‖BD −AD‖ ≤ ‖(Bm−1 −Am−1)(Am−1)
D‖‖AD‖(1− θ)−1 + ‖I −Aπ‖‖AD‖(1− θ)−1θ,

and (4.3) follows.

Let us specialize the preceding theorem to operators in B(X). Then

‖(Bm−1 −Am−1)(Am−1)
D‖ ≤ ‖B

m−1 −Am−1‖
‖Am−1‖

κD(Am−1),

and

‖I −Aπ‖ = ‖(AAD)m−1‖ = ‖Am−1(AD)m−1‖ ≤ κD(Am−1).

Inequality (4.3) then takes the following form:

‖BD −AD‖
‖AD‖

≤ κD(Am−1)
1− θ

(
‖Bm−1 −Am−1‖
‖Am−1‖

+ θ

)
.(4.4)
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[5] N. Castro González, J. J. Koliha and Yimin Wei, Matrices with equal eigenprojections, preprint 1999.
[6] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514.
[7] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367–381.
[8] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417–3424.
[9] J. J. Koliha and P. W. Poon, Spectral sets II, Rend. Circ. Mat. (Palermo) 47 (1998), 293–310.
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