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CAUCHY–SCHWARZ FUNCTIONALS

Y. J. Cho, S. S. Dragomir, S. S. Kim and C. E. M. Pearce

Abstract. We treat a class of functionals which satisfy the Cauchy–Schwarz
inequality. This appears to be a natural unifying concept and subsumes inter
alia isotonic linear functionals and sublinear positive isotonic functionals.
Striking superadditivity and monotonicity properties are derived.

1. Introduction

One of the oldest classical inequalities is that associated with the names
Cauchy, Buniakowski and Schwarz. This inequality, which for brevity we
term the Cauchy–Schwarz inequality, states in its discrete form that if ai, bi ∈
R (i = 1, 2, ..., n), then

n
∑

i=1

a2
i

n
∑

i=1

b2
i ≥

(

n
∑

i=1

aibi

)2

.

Equality holds if and only if ai = rbi for all i = 1, 2, ..., n and r ∈ R.
Various proofs of this inequality, as well as results connected with it, are

given in the book of Mitrinović, Pečarić and Fink [10, Chapter 4] along with
further references. Despite its antiquity, this result admits numerous recent
developments in general settings (see, for example [1–9]).
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In integral form, the Cauchy–Schwarz inequality reads

∫ b

a
f2(x)dx

∫ b

a
g2(x)dx ≥

(∫ b

a
f(x)g(x)dx

)2

,

where f, g : [a, b] → R are Riemann–integrable functions.
Let E be a nonempty set and L a class of real–valued functions on E

possessing the properties
(L1) f, g ∈ L ⇒ af + bg ∈ L for all a, b ∈ R;
(L2) 1 ∈ L, that is, if f(t) = 1 for all t ∈ E, then f ∈ L.

A functional A : L → R is termed a positive linear functional if the conditions
(A1) A(af + bg) = aA(f) + bA(g) for f, g ∈ L and a, b ∈ R;
(A2) f ∈ L and f(t) ≥ 0 on E imply A(f) ≥ 0

are satisfied.
If w ≥ 0 and wf2, wg2, wfg ∈ L, then the Cauchy–Schwarz inequality

A(wf2)A(wg2) ≥ |A(wfg)|2

holds for each positive linear functional A on L.

We are now ready for an overview of the paper.
In Section 2 we introduce a natural class K of real–valued functions on a

nonempty set E and define the Cauchy–Schwarz class CS(K, R) of function-
als on K, also in a natural way. It is known that isotonic linear functionals
on K belong to CS(K, R). We show that sublinear positive functionals do
also, as well as a further class of sublinear functionals that we term solid.
We conclude Section 2 by proving that CS(K, R) is a convex cone in the
linear space of real–valued mappings on K.

In Sections 3 and 4 we establish striking superadditivity and monotonicity
properties of functionals related intrinsically to the class CS(K, R). Section
5 provides a strengthening of the results of Section 4 in a particular case. In
Section 6 we conclude by remarking on a few basic examples.
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2. Cauchy–Schwarz functionals

Suppose E is a nonempty set and K = K(E) a class of real–valued func-
tions on E with the properties

(K1) f, g ∈ K ⇒ f + g ∈ K;
(K2) f ∈ K, α ≥ 0 ⇒ αf ∈ K;
(K3) f, g ∈ K ⇒ fg ∈ K;
(K4) f ∈ K ⇒ |f | ∈ K.

Definition 2.1. We say that a real–valued functional A : K → R is of
Cauchy–Schwarz type on K (written A ∈ CS(K,R)) if

A(f2)A(g2) ≥ [A(fg)]2 for all f, g ∈ K.

Definition 2.2. An isotonic linear functional A : K → R is a mapping
satisfying

(I1) A(αf + βg) = αA(f) + βA(g) for all f, g ∈ K and α, β ∈ R;
(I2) f ∈ K and f ≥ 0 (that is, f(t) ≥ 0 for all t ∈ E) ⇒ A(f) ≥ 0.

It is well–known that such an A satisfies A ∈ CS(K, R) (see [15, p. 135]).

Definition 2.3. A functional A : K → R is sublinear and positive isotonic
when

(S1) A(f + g) ≤ A(f) + A(g) for all f, g ∈ K;
(S2) A(αf) = αA(f) for all α ≥ 0 and f ∈ K;
(S3) If 0 ≤ f ≤ g, then A(f) ≤ A(g);
(S4) |A(f)| ≤ A(|f |) for all f ∈ K.

We now give our first result.

Theorem 2.4. Every sublinear and positive isotonic functional on K
belongs to the class CS(K, R).
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Proof. Suppose A is sublinear and positive isotonic. For every t, z ∈ E and
f, g ∈ K(E), we have by the Cauchy–Schwarz inequality for real numbers
that

f2(t)g2(z) + f2(z)g2(t) ≥ 2|f(t)g(t)||f(z)g(z)|,

so that
f2(t)g2 + g2(t)f2 ≥ 2|f(t)g(t)||fg| (2.1)

for all t ∈ E. Applying the functional A to this inequality yields

f2(t)A(g2) + g2(t)A(f2) ≥ A[f2(t)g2 + g2(t)f2] by (S1)

≥ A[2|f(t)g(t)| |fg|] by (2.1) and (S3)

= 2|f(t)g(t)|A(|fg|) by (S2)

for all t ∈ E. Hence

A(g2)f2 + A(f2)g2 ≥ 2A(|fg|) |fg|.

Applying the functional A again provides

2A(f2)A(g2) ≥ A[A(g2)f2 + A(f2)g2] by (S1)

≥ A[2A(|fg|) |fg|] by (2.2) and (S3)

= 2[A(|fg|)]2 by (S2).

Thus by (S4) we have proved in particular that

A(f2)A(g2) ≥ [A(|fg|)]2

as required.

Definition 2.5 A functional A : K → R+ is said to be sublinear and
solid if

(01) A(f + g) ≤ A(f) + A(g) for all f, g ∈ K;
(02) A(αf) = αA(f) for all α ≥ 0 and f ∈ K;
(03) |f | ≤ |g| ⇒ A(f) ≤ A(g).
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The following theorem also holds.

Theorem 2.6. Every sublinear and solid functional on K belongs to the
class CS(K, R).

Proof. Conditions (O1) and (O2) are the same as (S1), (S2), while (O3)
matches (S3) for f, g ≥ 0. As (S4) is used only in the last step in the proof
of the previous theorem, we have by the argument in that proof that

A(f2)A(g2) ≥ [A(|fg|)]2. (2.3)

Now | |f | | = |f |, so by (O3) we have both A(|f |) ≤ A(f) and A(f) ≤
A(|f |) and thus A(|f |) = A(f) for all f ∈ K. Hence

A(f2)A(g2) ≥ [A(fg)]2.

by (2.3).

Remark 2.7. From the proofs, we have that sublinear and positive
isotonic functionals and sublinear and solid functionals both in fact satisfy
(2.3).

We now address the structure of CS(K, R).

Theorem 2.8. The set CS(K,R) is a convex cone in the linear space of
all real–valued mappings on K, that is,

(C1) A,B ∈ CS(K,R) ⇒ A + B ∈ CS(K,R);
(C2) A ∈ CS(K, R) and α ≥ 0 ⇒ αA ∈ CS(K, R).

Proof. Suppose A,B ∈ CS(K,R). Then

[A(f2)]1/2[A(g2)]1/2 ≥ |A(fg)| and [B(f2)]1/2[B(g2)]1/2 ≥ |B(fg)|

for all f, g ∈ K, which give on addition that

[A(f2)]1/2[A(g2)]1/2 + [B(f2)]1/2[B(g2)]1/2 ≥ |A(fg)|+ |B(fg)|
≥ |(A + B)(fg)|
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for all f, g ∈ K. On the other hand, from the elementary inequality

(a2 + b2)1/2(c2 + d2)1/2 ≥ ac + bd

for a, b, c, d ≥ 0,

[A(f2)]1/2[A(g2)]1/2 + [B(f2)]1/2[B(g2)]1/2

≤ {A(f2) + B(f2)}1/2{A(g2) + B(g2)}1/2

= [(A + B)(f2)]1/2[(A + B)(g2)]1/2,

so that
[(A + B)(f2)][(A + B)(g2)] ≥ |(A + B)(fg)|2

for all f, g ∈ K, that is, A + B ∈ CS(K, R).
The second condition is clear.

3. Superadditivity and monotonicity of µ

Consider the functional µ : CS(K, R)×K2 → R given by

µ(A, f, g) := [A(f2)]1/2[A(g2)]1/2 − |A(fg)|.

We can verify immediately the following properties for all A ∈ CS(K,R)
and f, g ∈ K.

(i) µ(A, f, g) ≥ 0;
(ii) µ(A, f, g) = µ(A, g, f);
(iii) µ(αA, f, g) = αµ(A, f, g) for all α ≥ 0.

Further, we have the following result for the mapping µ(·, f, g).

Theorem 3.1.
(i) µ is superadditive;
(ii) µ is monotone nondecreasing.
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Proof. (i) We have for A,B ∈ CS(K, R) that

µ(A + B, f, g)

= [A(f2)] + B(f2)]1/2[A(g2) + B(g2)]1/2 − |A(fg) + B(fg)|

≥ [A(f2)]1/2[A(g2)]1/2 + [B(f2)]1/2[B(g2)]1/2 − |A(fg)| − |B(fg)|
= µ(A, f, g) + µ(B, f, g).

(ii) Suppose A,B ∈ CS(K,R) with A ≥ B, that is, A − B ∈ CS(K,R).
Then

µ(A, f, g) = µ((A−B) + B, f, g) ≥ µ(A−B, f, g) + µ(B, f, g).

Since µ is nonnegative, we have

µ(A, f, g) ≥ µ(B, f, g),

completing the proof.

Now, suppose that A(E) is a nonempty family of subsets of E satisfying
(P1) I, J ∈ A(E) ⇒ I ∪ J ∈ A(E);
(P2) I, J ∈ A(E) ⇒ I \ J ∈ A(E).

We represent by χI : E → {0, 1} the characteristic mapping of I, that is,

χI(t) =
{

1 if t ∈ I

0 if t ∈ E \ I.

Definition 3.2. A class of functions K defined on E is a hereditary class
related to the family A(E) if
(H) f ∈ K implies that χI · f ∈ K for all I ∈ A(E).

For such a class K, we introduce the mapping η : A(E)×CS(K, R)×K2 →
R, defined by

η(I,A, f, g) := [A(χIf2)]1/2[A(χIg2)]1/2 − |A(χIfg)|.

Remark 3.3. For every fixed I ∈ A(E), the mapping η(I, ·, f, g) is
superadditive and monotone nondecreasing on CS(K,R). This follows by
an argument similar to that in the proof of the preceding theorem.
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We now consider the properties of η as a function defined on A(E).

Theorem 3.4. Let K be a hereditary class of functions related to the
family A(E). If A is an isotonic linear functional on K and f, g ∈ K, then
the following hold:

(i) η(·, A, f, g) is superadditive on A(E);
(ii) η(·, A, f, g) is monotone nondecreasing on A(E).

Proof. (i) Suppose I, J ∈ A(E) with I ∩ J = ∅. Then

η(I ∪ J,A, f, g) = [A(χIf2) + A(χJf2)]1/2[A(χIg2) + A(χJg2)]1/2

− |A(χIfg) + A(χJfg)|

≥ [A(χIf2)]1/2[A(χIg2)]1/2 + [A(χJf2)]1/2[A(χJg2)]1/2

− |A(χIfg)| − |A(χJfg)|
= η(I,A, f, g) + η(J,A, f, g).

(ii) Suppose I, J ∈ A(E) with J ⊆ I. Then by part (i)

η(I, A, f, g) = η((I \ J) ∪ J,A, f, g) ≥ η(I \ J,A, f, g) + η(J,A, f, g).

Since η is nonnegative, it follows that

η(I,A, f, g) ≥ η(J,A, f, g),

and we are done.

Corollary 3.5. If φ(·) is monotone nondecreasing and superadditive,
then φ(µ) inherits the properties of µ in Theorem 3.1 and φ(η) those of η in
Remark 3.3 and Theorem 3.4.

4. Superadditivity and monotonicity of γ

Suppose that K is a hereditary class related to A(E) and consider the
mapping γ : A(E)× CS(K, R)×K2 → R given by

γ(I, A, f, g) := (A(χIf2)A(χIg2)− [A(χIfg)]2)1/2.

It is evident that for all A ∈ CS(K,R), I ∈ A(E) and f, g ∈ K, we have
(i) γ(I, A, f, g) ≥ 0;
(ii) γ(I, A, f, g) = γ(I, A, g, f);
(iii) γ(I, k, f, g) = kγ(I, A, f, g) for all k ≥ 0.
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An important property of this functional is given by the following theo-
rem.

Theorem 4.1. The mapping γ(I, ·, f, g) is superadditive on CS(K, R).

Proof. Suppose A,B ∈ CS(K, R). We have

γ2(I, A + B, f, g) = [A(χIf2)] + B(χIf2)][A(χIg2) + B(χIg2)]

− ([A(χIfg)]2 + 2A(χIfg)B(χIfg) + [B(χIfg)]2)

= γ2(I,A, f, g) + γ2(I, B, f, g) + A(χIf2)B(χIg2)

+ B(χIf2)A(χIg2)− 2A(χIfg)B(χIfg). (4.1)

We now prove that

A(χIf2)B(χIg2) + B(χIf2)A(χIg2)− 2A(χIfg)B(χIfg)

≥ 2γ(I, A, f, g)γ(I, B, f, g). (4.2)

Set
a = [A(χIf2)]1/2, b = [A(χIg2)]1/2, x = A(χIfg),

c = [B(χIf2)]1/2, d = [B(χIg2)]1/2, y = B(χIfg).

By the definition and nonnegativity of γ, we have

ab− x > 0 and dc > y. (4.3)

We have to prove that

a2d2 + b2c2 − 2xy ≥ 2(a2b2 − x2)1/2(d2c2 − y2)1/2.

By (4.3), both sides are nonnegative, so our task is to establish

(a2d2 + b2c2 − 2xy)2 ≥ 4(a2b2 − x2)(d2c2 − y2).

By a simple calculation,

(abcd− xy)2 ≥ (a2b2 − x2)(d2c2 − y2)
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so it suffices to show that

(a2d2 + b2c2 − 2xy)2 ≥ 4(abcd− xy)2

or, since again both expressions in parentheses are nonnegative, that

a2d2 + b2c2 − 2xy ≥ 2(abcd− xy),

which is immediate.
We have from (4.1) and (4.2) that

γ2(I, A + B, f, g) ≥ γ2(I, A, f, g) + γ2(I,B, f, g) + 2γ(I,A, f, g)γ(I,B, f, g)

= (γ(I,A, f, g) + γ(I,B, f, g))2, (4.4)

and so by the nonnegativity of γ

γ(I,A + B, f, g) ≥ γ(I, A, g, f) + γ(I, B, f, g),

as required.

Remark 4.2. The class K is trivially a hereditary class related toA(E) =
{E, ∅}. Thus the map γ0(A, f, g) := γ(E,A, f, g), which is given by

γ0(A, f, g) := (A(f2)A(g2)− [A(fg)]2)1/2,

is superadditive on CS(K, R).

Theorem 4.3. Let A be an isotonic linear functional on K. Then the
mapping γ(·, A, f, g) is superadditive as an index–set mapping on A(E).

Proof. Suppose I, J ∈ A(E) with I ∩ J = ∅. Then

γ2(I ∪ J,A, f, g) = (A(χIf2) + A(χJf2))(A(χIg2) + A(χJg2))

− (A(χIfg) + A(χJfg))2

= γ2(I, A, f, g) + γ2(J,A, f, g) + A(χIf2)A(χJg2)

+ A(χJf2)A(χIg2)− 2A(χIfg)A(χJfg).

Arguing as in the previous theorem, we have

A(χIf2)A(χJg2) + A(χJf2)A(χIg2)− 2A(χIfg)A(χJfg)

≥ 2γ(I, A, f, g)γ(J,A, f, g), (4.5)

so that
γ(I ∪ J,A, f, g) ≥ γ(I,A, f, g) + γ(J,A, f, g)

and the proof is complete.
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Corollary 4.4. If φ(·) is monotone nondecreasing and superadditive,
then φ(γ) inherits the properties of γ in Theorems 4.1 and 4.3.

Remark 4.5. We have from Corollary 4.4 or (4.4) that

β(I, A, f, g) := γ2(I, A, f, g)

is superadditive on CS(K,R). However stronger results exist, as we shall
see in the next section.

5. Strong superadditivity and monotonicity of β

In this section, we study the nonnegative functional β introduced in the
preceding section, and given by

β(I, A, f, g) := A(χIf2)A(χIg2)− [A(χIfg)]2.

Theorem 5.1. The following hold:
(i) β(·, f, g) is strongly superadditive on CS(K,R), that is, if A, B ∈

CS(K, R), then

β(I,A + B, f, g)− β(I,A, f, g)− β(I, B, f, g)

≥
(

det
∣

∣

∣

∣

[A(χIf2)]1/2 [A(χIg2)]1/2

[B(χIf2)]1/2 [B(χIg2)]1/2

∣

∣

∣

∣

)2

≥ 0;

(ii) β(·, f, g) is strongly monotone nondecreasing on CS(K, R), that is, if
A ≥ B, then

β(I, A, f, g)− β(I,B, f, g)

≥
(

det
∣

∣

∣

∣

[A(χIf2)−B(χIf2)]1/2 [A(χIg2)−B(χIg2)]1/2

[B(χIf2)]1/2 [B(χIg2)]1/2

∣

∣

∣

∣

)2

≥ 0.

Proof. (i) Suppose A,B ∈ C(S,K). We have from (4.1) that

β(I,A + B, f, g) = β(I,A, f, g) + β(I,B, f, g) + A(χIf2)B(χIg2)

+ B(χIf2)A(χIg2)− 2A(χIfg)B(χIfg).
(5.1)
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Since A, B ∈ CS(K,R),

|A(χIfg)| ≤ [A(χIf2)A(χIg2)]1/2, |B(χIfg)| ≤ [B(χIf2)B(χIg2)]1/2

and thus

A(χIfg)B(χIfg) ≤ |A(χIfg)B(χIfg)|

≤ [A(χIf2)B(χIg2)]1/2[A(χIg2)B(χIf2)]1/2.

The desired result is immediate from this result and (5.1).
(ii) If A ≥ B, we have

β(I, A, f, g)− β(I, A−B, f, g)− β(I, B, f, g)

≥
(

det
∣

∣

∣

∣

[A(χIf2)−B(χIf2)]1/2 [A(χIg2)−B(χIg2)]1/2

[B(χIf2)]1/2 [B(χIg2)]1/2

∣

∣

∣

∣

)2

≥ 0

and we are done.

Theorem 5.2. Suppose A is an isotonic linear functional on K. We
have the following.

(i) β(·, A, f, g) is strongly superadditive on A(E), that is, if I ∩ J = ∅,
then

β(I ∪ J,A, f, g)− β(I, A, f, g)− β(J,A, f, g)

≥
(

det
∣

∣

∣

∣

[A(χIf2)]1/2 [A(χIg2)]1/2

[A(χJf2)]1/2 [A(χJg2)]1/2

∣

∣

∣

∣

)2

≥ 0.

(ii) β(·, A, f, g) is strongly monotone nondecreasing on A(E), that is, if
I, J ∈ A(E) and J ⊆ I, then

β(I,A, f, g)− β(J,A, f, g)

≥
(

det
∣

∣

∣

∣

[A(χIf2)−A(χJf2)]1/2 [A(χIg2)−A(χJg2)]1/2

[A(χJf2)]1/2 [A(χJg2)]1/2

∣

∣

∣

∣

)2

.

Proof. (i) Let I, J ∈ A(E) with I ∩ J = ∅. Then

β(I ∪ J,A, f, g) = (A(χIf2) + A(χJf2))(A(χIg2) + A(χJg2))

− (A(χIfg) + A(χJfg))2

= β(I,A, f, g) + β(J,A, f, g) + A(χIf2)A(χJg2)

+ A(χJf2)A(χIg2)− 2A(χIfg)A(χJfg).
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As in Theorem 5.1, we deduce the inequality of part (i), which implies in
turn that of part (ii).

6. Applications

In this short section we note some immediate applications. First we define
the classes of sequences

J = {a = (an)n∈N : an ∈ R for all n ∈ N},
P = {I ⊂ N : I is finite},

J+ = {p = (pn)n∈N : pn ≥ 0 for all n ∈ N}.

Consider the functional µ : P × J+ × J2 → R given by

µ(I, p, a, b) :=

[

∑

i∈I

pia2
i

∑

i∈I

pib2
i

]1/2

−

∣

∣

∣

∣

∣

∑

i∈I

piaibi

∣

∣

∣

∣

∣

.

We have
µ(I, p, a, b) = µ(AI,p, a, b),

where AI,p(x) =
∑

i∈I
pixi is an isotonic linear functional which belongs to

CS(J,R). Theorems 3.1 and 3.4 apply to µ.
Similarly Theorems 4.1 and 4.3 apply to the mapping γ : P×J+×J2 → R

given by

γ(I, p, a, b) :=





∑

i∈I

pia2
i

∑

i∈I

pib2
i −

(

∑

i∈I

piaibi

)2




1/2

and Theorems 5.1 and 5.2 to the mapping β : P × J+ × J2 → R given by

β(I, p, a, b) :=
∑

i∈I

pia2
i

∑

i∈I

pib2
i −

(

∑

i∈I

piaibi

)2

,
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Similar applications hold for Riemann–integrable functions. Let [a, b] be
a real interval and denote by R[a, b] the algebra of Riemann–integrable func-
tions on [a, b] and by R+[a, b] the class of nonnegative functions belonging
to R[a, b]. Define the functional µ : R+[a, b]×R2[a, b] → R by

µ(a, b; h, f, g) :=
[∫ b

a
h(x)f2(x)dx)

∫ b

a
h(x)g2(x)dx

]1/2

−
∣

∣

∣

∣

∫ b

a
h(x)f(x)g(x)dx

∣

∣

∣

∣

.

Then
µ(a, b; h, f, g) = µ(A[a,b],h, f, g),

where A[a,b],h(f) =
∫ b

a h(x)f(x)dx, is an isotonic linear functional which
belongs to CS(R[a, b], R). Clearly Theorems 3.1 and 3.4 apply to µ.

Similarly Theorems 4.1 and 4.3 apply to the mapping γ : R+[a, b] ×
R[a, b] → R given by

γ(a, b;h, f, g) :=
[∫ b

a
h(x)f2(x)dx)

∫ b

a
h(x)g2(x)dx]

−
(∫ b

a
h(x)f(x)g(x)dx

)2]1/2

and Theorems 5.1 and 5.2 to the mapping β : R+[a, b]×R2[a, b] → R given
by

β(a, b;h, f, g) :=
∫ b

a
h(x)f2(x)dx

∫ b

a
h(x)g2(x)dx

−
(∫ b

a
h(x)f(x)g(x)dx

)2

.
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