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ABSTRACT. Some inequalities for the expectation and variance of a random
variable whose p.d.f. is n-time differentiable are given.

1. INTRODUCTION

Let f : [a,b] — Ry be the p.d.f. of the random variable X and

E(X) ::/btf(t)dt

its expectation and

[N

Q
>
Il

b
[ / (tE(X))Qf(t)dt]

Nl

[ [ erwa- e (X)F]

its dispersion or standard deviation.
In [1], using the identity
b

(1.1) o — B (X)) + 02 (X) :/ (@ =02 f (t) dt

a
and applying a variety of inequalities such as: Holder’s inequality, pre-Griiss, pre-
Chebychev, pre-Lupas, or Ostrowski type inequalities, a number of results concern-
ing the expectation and variance of the random variable X were obtained.
For example,

(1.2) o (X) + [z~ E (X))
(b—a) [C5E + (o= 52| Ifll i S € Lol

b—xz)29t L (z—a)?9t? 7 .
[( : 2q++(1 : }q 11, it felLyla,bl,
p>1, Z% + % =1;
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b—a _ a+b 2
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for all € [a, b], which imply, amongst other things, that
0 < o(X)

(b—a)* [ + B0~ 2P If1%, i f € Loofa.b];

(18 {L=BQr B A% 4 it feLylab],

2q+1
1,.1_9.
p>1,p+q—1,

5+ [B(X) - 95t

and
(1.4) 0<0*(X) < B~ BX)][E(X) ] < (b—a).

In this paper more accurate inequalities are obtained by assuming that the p.d.f.
of X is n-time differentiable and that f(™) is absolutely continuous on [a,b]. For
other recent results on the application of Ostrowski type inequalities in Probability
Theory, see [2]-[4].

2. SOME PRELIMINARY INTEGRAL IDENTITIES

The following lemma, which is interesting in itself, holds.

Lemma 1. Let X be a random variable whose probability distribution function f :
[a,b] — Ry is n-time differentiable and f™ is absolutely continuous on [a,b]. Then

(2.1) o (X)+[E(X)— 2]’
" (b — )t _1k(x_ak+3
Z( | (kErB))k' @)

7/ (t - 2) (/t(t—s)"f("“)(s)ds)dt

Proof. Is by Taylor’s formula with integral remainder. Recall that

n k t
er s 0=X 0w [ s

k=0

for all x € [a, b].

for all t,z € [a, b].
Together with

b
(2.3) o (X)+EX) o = [ (-2’ f)at
where f is the p.d.f. of the random variable X, we obtain
(2.4) 02(
2)? (k) L n g(nt1)
= f (@) + — (t—s)"f (s)ds| dt

k+2 t
_ f““) /b U "y L /b(t—a;)2 (/ (t—s)" fo 0 (s)d8> dt
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and since

b (t . I)k+2 o (b o m)!chB + (71)16 (x o a)k+3
/a k! B (k+3) k! ’

the identity (2.4) readily produces (2.1) i

Corollary 1. Under the above assumptions, we have

(2.5) o? (X) + [E (X)—

i Lot (12)

2k+3 (k 4 3) k! 2

a+b 2
2

=0

7/ ( “+b> (/i (t_s)"f<n+1>(s)ds> dt.

. . _a b
The proof follows by using (2.4) with x = %

Corollary 2. Under the above assumptions,
1

(2.6) o* (X)+ 5 [(B(X) - )’ + (B(X) - )]

=) W) (@) + (=1)* fP) (b)
B kzzo (k+3) k! l 2

b rb
+% / / K (ts) (t = )" [ (s) dsdt,

where

2
0ol jf a<s<t<b,

(t=b)*
2

if a<t<s<hb.
Proof. In (2.1), choose = a and x = b, giving

27 (X)) +[EX)—a?
n _a k+3 . b t
=¥ ((bk+?)))k! £ (a>+%/ (t—a)? (/ (t—s)" D (s)ds) dt

Adding these and dividing by 2 gives (2.6). I

Taking into account that y = E (X) € [a,b], then we also obtain the following.
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Corollary 3. With the above assumptions,

n _\k+3 D (= )kt
29 o) = YU &;i;ﬁkf“ L

k=0
1 b 9 t n (n+1)
+= [ (t—p) (t—s)"f (s)ds | dt.
n! J, "
Proof. The proof follows from (2.1) with x = p € [a, b]. 1

Lemma 2. Let the conditions of Lemma 1 relating to f hold. Then the following
identity s valid.

(2.10) o (X)+ [E(X) -2’
I () A G A G AN AN €))
= Z k+3 R

k=0
1 b

+j/ K, (z,s) D (s) ds,
n! J,

where
(—l)nﬂwn(s—a,x—s), a<s<zx
(2.11) K (z,s) =
¥, (b—s,s—x), r<s<b
with
unJrl

(2.12) U, (u,v) . [(n +2)(n+1) u?

(n+3)(n+2)(n+1)
+2(n+3) (n+1)uv+ (n+3) (n+2)v%].

Proof. From (2.1), an interchange of the order of integration gives

=/ ROy / (- )" £ (5) ds
_ 7;{/w/ (t —2)> (t — )" fOD (s) dids

b b
— )2 (t = §)" F(ntD) (g s
*/I/s“ 2 (¢ )f*()dtd}

1 [
- E/ K, (z,s) f") (s) ds,
* a

where

pu(@,8) =~ [T(t—2)’(t—s)"dt, a<s<z
K, (z,s) =
qn (2, 3) :fsb (t—a)% (t—s)"dt, x < s<b.

To prove the lemma it is sufficient to show that K = K.
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Now,
Pn (z,8) = / (t—x)° (t—s)"dt
= (-t /Os—a (u+z—s)u"du
= (- /Osa [u2 +2(x—s)u+(z — 3)2} u"du
= ()", (s—ax—s),

where 9 (-, -) is as given by (2.12).
Further,

b
Gn (z,8) = /(tf$)2(t—s)ndt

b—s
/ [u+ (s — x))° u"du
0
= ¢,(b—ss—1),
where, again, ¢ (-, ) is as given by (2.12). Hence K = K and the lemma is proved. |

3. SOME INEQUALITIES
We are now able to obtain the following inequalities.

Theorem 1. Let X be a random variable whose probability density function f :
[a,b] — Ry is n-time differentiable and f™ is absolutely continuous on [a,b], then

: C
7t () + B X) a3 (k+3)

(3.1) 7 ()

f("+1) n+4 n+4 . n
s [ =)™+ b= )™ ] i ) € Lo [a, ]

(n+1) (wfa)n+s+§+(b7$)n+s+§]
< ), | .
- nl(n+3+1) (nat1)s ; if f € L,[a,b],

p>1, % + % =1
(n+1) . .
S (=) =2, i S € Lifoy
for all x € [a,b], where |-, (1 < p < o00) are the usual Lebesque norms on [a,b],

i.e.,

1

b P
lgllo = ess sup [g ()] and |gll, = (/ Ig(t)Ipdt> , p>1

t€la,b]
Proof. By Lemma 1,

(b= + (1" @ =)
k! (k + 3)

(3.2) o (X) + [E(X) —a]* =)

— ab (t — ) </; (t —s)" fOFD (s) ds) dt == M (a,b; ).
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]dt

Clearly,
M (a,b; L 2| [ n p(ne)
M(aba) < — [ =2 | [ (=) jo () ds| e
< o [ e s )| [l sl s
n! a s€[z,t] T
(n+1) _ o ntl
o W e,
n+1
(n+1)
— H'fH/ ‘t "+3dt
n+1)!

_ H{:ili\)’!oo V (zt)"+3dt+/b(t—x)"+3dt]

Hf(n+1) Hoo {(x _ a)n+4 . x)n+4:|
(n+ 1! (n+4)

and the first inequality in (3.1) is obtained.
For the second, we use Holder’s integral inequality to obtain

|M (a,b;x)|
1 1
2 t n q t 1 P p
< / /|t—5|qu / FOH ([ ds| dt
o -
< '</ f(n+1)(5)‘pd5> /(t—:z:)2
n! \ J, a
(n+1)
1f
SV PR
n: ﬂq+ (1
n n n 1
_oa “)Hp (b—2)""*"0 4 (@ — )"t
! (ng+ 1)1 n+3+1
Finally, note that
Mab) < o[-0l | [ [0 ()] ds|
n+1
< Hf ||1/ ‘t n+2dt

n!

1/ ”“)Hl (x—a)" + (b—a)""
n+3

and the third part of (3.1) is obtained. I

It is obvious that the best inequality in (3.1) is when z = “7“’, giving Corollary

4.
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Corollary 4. With the above assumptions on X and f,

atbl2 2 1D (-0 a
- e ()

(3.3)  |o*(X)+ [E (X)
k=0

||f(n-%—1)||oo (b _ a)n+4 Zf f(n+1) clL [a b] .
2"+3(n+1)1(n+4) ’ ee} ) ’

[En| b—a)" T
< L if ftY e L lab], p>1,
> 2n+2+%n!(n+3+%) (nq+1)% f f P [ ] p
1 + 1_ 1;
Hf(n+n||1 n+3 . p(n-',-j)
PEzm ey} (b—a) , if f € Ly [a,b].

The following corollary is interesting as it provides the opportunity to approxi-
mate the variance when the values of f*) (1) are known, k =0, ..., n.

Corollary 5. With the above assumptions and p = %rb, we have
(b= (1) (- a)*F

3.4 2 (x) - S (k)

B o= e 7% ()

f(n+1) n " )
(UL+1)I(7L|J|:Z) {(M —a)"™ + (b p) +4} ,if fT) € L [a,b];

I [ +(b—u)n+3+%]
: e, | £ pntD)
. mi(nats) (ng+1)7 ’ i f € Ly [a,b],

p>1,%+%:1;

f(n+1) " n )
% (=)™ 4 (o= p™| i 0D € Li[o,0).

The following result also holds.

Theorem 2. Let X be a random variable whose probability density function f :
[a,b] — Ry is n-time differentiable and f™ is absolutely continuous on [a,b], then

(3.5) o (X) + % (B (X) = a)” + (B (X) - b)?]
(0= a) W (@) + (=) B (0)
; ,; (k+3) k! [ 2

e I (=)™,

if fOtY € L [a,b];

< L | e, o

— , 1 1 P 1 9
n!(gn+1) 9 [(n+2)g+2]9 (ng+1) 4
if ftY € L, [a,b], where p > 1, % + % =1

[FOD (b= a)™

where ||-||,, (1 <p < o) are the usual Lebesque p—norms.

2 |
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Proof. Using Corollary 2,

0 (X)+ % [(2(x) —a) + (B (x) ~1)°]

- a)"* [ f® (a) + (-=1)" f®) (1)

1
< —//|Kts\|t—s|
TL

It is obvious that

FOHD (s )‘dsdt N (a,b).

N (a,b)

b b
Hf<n+1>H %/ / K (t, )| |t — s|" dsdt
1 b t b
= [re+| 7/ </ |K(t,s)||t_s|”ds+/ |K(t,s)||t—s|"ds> dt
oo . Jq a t

IN

1 lit—a)? (t—a)"™ @t=b> G-t)""!
N (RS . .
N n!Hf Lo/a [ 2 n+1 2 n+1 dt
_ 1 ‘ f(n—O—l)H /b |:(t _ a)n+3 +(b— t)n-i-?)} dt
 2(n+ 1) ~ Jq
_ 1 ‘ f(n+1)H _ a)7L+4 (b _ a)n+4

2(n+1)! n+4 n+4

sl

ECETICESIA -

so the first part of (3.5) is proved.
Using Holder’s integral inequality for double integrals,

N (a,

b b q
'< FOHD dsdt) x(/ / |K(t,s)|"|tsq”dsdt>
n a a
(b

—a)F Hf("+1)||p

n!

Vab (/at |K (t,9)|"[t — s|q”ds+/tb K (t,5)|7 [t — s|™" dg) dt]

(b—a)? || F 0|

n'

XV l /|t—s\q”d T Gl /|t s|qnds] dt]

IN

Q=

Q=
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_ bay
- n!
b (t _ a)2q (t _ a)anrl (t _ b)2q (b _ t)anrl %
V l 2ty 2ty |

n!

(b—a)7 ||V R
' [2(1 (qn + 1>]

Q=

b b
o [/ (t — @)Dt dt—l—/ (b — £)n D+t dt}
a a

(b— a)(n+2)q+2 (b— a)(n+2)q+2

(n+2)g+2 + (n+2)g+2

Q=

(b—a)zlva(nJrl)Hp.{ ) ]
24 (gn+ 1)

n!

T Ak

nl2 (gn +1)7 (n +2) q +2)7

||f(n+1) Hp {(b _ a)n+3+%}
nl (qgn+1)7 [(n+2) g +2]7

and the second part of (3.5) is proved.
Finally, we observe that
N (a,b) <

sup |K (¢, s)|] dsdt

1
n! (t,5)€[a,b]?

1(b_a)2 n
= o -(b—a) (b—a)/a

n!

Ot (s)’ ds

1 n "
= g 0=y

which is the final result of (3.5). B

b

1

The following particular cases can be useful in practical applications.
1. For n =0, (3.1) becomes

(3.6) 5

o (X) + [E(X) — 2] — (b—a) [(x—““’) U ]f(w)

al| 7]l
3q+1

[m—a x)4], if f'€Lyla,b];
-

IN

b—x)“ﬂ ,if feL,lab],

q
1y [ +(w—%“’>2}, it [ € Lila,b],
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for all x € [a, b].
In particular, for z = “7“’7

o (X) + [E(X)_ “;br_ (bIQa)Bf(a;rb)‘

32 (b_a)47 if f/eLoo[a7b]§

all || (b—a)**

1
2°74 (3¢+1)

IN

, it f'eLyla,b],

which is, in a sense, the best inequality that can be obtained from (3.6). If in
(3.6) z = p= E(X), then

2 _4)?
39 |0 -0-o (5o -250) + L f(E(X))‘
e [ ()~ ) + 0= B i € Lugla b
< (‘Lfﬂ) (BE() -a)' +@-EB@X)!], i feral, p>1,
17 (S5 + (B () - <2)*], i e Lifad].

In addition, from (3.5),

—a3 a
39 |+ (B -0+ B0 -] - LI ’;WH
N 0=a), it f' € Looa,b];
< { —L—fl,-a)* 7, if feLyab], p>1,

i
nl24 (g+1)4

3105 (0 —a)®,

which provides an approximation for the variance in terms of the expectation
and the values of f at the end points a and b.
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Theorem 3. Let X be a random variable whose p.d.f. f :[a,b] — Ry is n—time
differentiable and f™) is absolutely continuous on [a,b]. Then

(510) |02 (X) + (B (X) - 2)® - ki_o (b — z)**3 +k(113)k (@ — o) f(k;!(:v)
[(x —a)"™M 4 (b— x)"+4] %7
B P
R I
where
(3.11) C/O1 {ZT; +2(1-u) :;7:22 +(1— )’ Zti]qdu.

Proof. From (2.10),

(3.12)

b
= / K, (x,5) f0+D) (s) ds]

Now, on using the fact that from (2.11), (2.12), ¢,, (u,v) > 0 for u,v > 0,

b
(3.13) % / K, (z,5) ™ (s)ds

(n+1) @ b
< an,H“’{/ %(s—a,xs)ds+/m¢n(b—s,8ff)d5}-

Further,

un+3 un+2 5 un+1

(3.14) ¥, (u,v) =

and so

(3.15) /wwn (s—a,x—s)ds

-

1 n+3 n+2 n+1
= (x—a)”+4/ F+2(1—A)A +(1—A)2A ]dA,
0 n—+ n

2
n+3+ vn+2+v n+1

(s —a)"™?

T 9
n+3+(x s)

n—+3

s—a
r—a’

where we have made the substitution A =
Collecting powers of A\ gives

nas [ 1 2 1 2\ 2 AT
A - + - +
n+3 n+2 n+l n+2)(n+1) n+1
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and so, from (3.15),
(3.16) / Y, (s —a,x—s)ds
1 1 2 1
o __\nt+4 .
= @-9 {n+4[n+3 n+2+n+1]

2 1
BESICED I (n+2)(n+1)}
)n+4

(x—a
(n+4)(n+1)

Similarly, on using (3.14),

/ﬂgbz/}n(b—s,s—x)ds
_ /b (b— )"+

2(s—=x
n+3 + 2 )
and making the substitution v = g -

b
(3.17) / Y, (b—s,s—1x)ds

1 n+3 n—+2 n+1
b— ”*4/ v 201 - 1) 2 () CR
e I e T R

n+3
(b— )"t
(n+4)(n+1)’

where we have used (3.15) and (3.16). Combining (3.16) and (3.17) gives the first
inequality in (3.10).
For the second inequality in (3.10), we use Holder’s integral inequality to obtain

/K ) F( D) (s) ds Hf m (/ | Ky, (1,8 |qu>

Now, from (2.11) and (3.14)

b
/ |K,, (x,8)|"ds

(3.18)

/ Pi(s—a,x—s ds+/ Y1 (b—s,s—1x)ds
- [(a: )(n+3)q+1 +(b— )(n+3)q+1}

)

where C' is as defined in (3.11) and we have used (3.15) and (3.16). Substitution
into (3.18) gives the second inequality in (3.10).
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Finally, for the third inequality in (3.10). From (3.12),

(3.19) % /b K, (z,s) f(n+1) (s)ds

< ;!{/jd)n(sa,xs)’f("“) (s)’ds

+¢/bwn<b—8’s—*ﬂ\f“+”(smd8}
g ;!{wn(x_a,o)/:‘f("“)(8)‘d8+¢n(b—%0)/b

x

f'(n+1) (s)‘ ds} ,

where, from (3.14),

un+3
3.20 0)= .
(3.20) D (0,0) = 2

Hence, from (3.19) and (3.20)

b
%/ K, (z,s) f("H) (s)ds

n+3 n+3
L § 020 20 o
n! n+3 n-+3 1

IN

_ 1 n+3 || p(n+1) H
= qmTd [max {z —a,b— x}] Hf () o
which, on using the fact that for X, Y € R

X+Y+ X-Y
2 2

max {X,Y} =

gives, from (3.12), the third inequality in (3.10). The theorem is now completely
proved. N

Remark 1. The results of Theorem 3 may be compared with those of Theorem 1.
Theorem 3 is based on the single integral identity developed in Lemma 2, while
Theorem 1 is based on the double integral identity representation for the bound. It
may be noticed from (3.1) and (3.10) that the bounds are the same for f+1) ¢
Lo [a,b], that for f™*Y € L, [a,b] the bound obtained in (3.1) is better and for
frt) ¢ L, la,b], p > 1, the result is inconclusive.
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