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Abstract. In the note, some new proofs for inequalities invoving trigonomet-
ric functions are given.

1. Introduction

In [9], J. B. Wilker proposed that
(a) If 0 < x < π

2 , then
(

sinx
x

)2

+
tanx

x
> 2.(1)

(b) There exists a largest constant c such that
(

sin x
x

)2

+
tan x

x
> 2 + cx3 tan x(2)

for 0 < x < π
2 .

In [8], the inequality (1) was proved, and the following inequalities were also
obtained

2 +
8
45

x3 tan x >
(

sin x
x

)2

+
tan x

x
> 2 +

(

2
π

)4

x3 tan x.(3)

The constants 8
45 and

( 2
π

)4
are best possible, that is, they can not be replaced by

smaller or larger numbers respectively.
The inequalities in (1) and (3) are called Wilker’s inequalities in [3].
In this note, we will give new proofs for the inequalities in (1) and (3).

2. A New Proof of Inequality (1)

The inequality (1) can be rewritten as

sin2 x cos x + x sin x > 2x2 cos x.(4)

Let

g(x) = sin2 x cos x + x sin x− 2x2 cos x, x ∈
(

0,
π
2

)

,(5)

h(x) = 2 sin x cos2 x− 3x cos x + (1 + x2) sin x, x ∈
(

0,
π
2

)

.(6)

Direct calculation yields

g′(x) = 2 sin x cos2 x− sin3 x + sin x + x cosx− 4x cos x + 2x2 sin x
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= (x2 − sin2 x) sin x + 2 sin x cos2 x− 3x cos x + (1 + x2) sin x

= (x2 − sin2 x) sin x + h(x),

h′(x) = 2 cos3 x− 4 sin2 x cos x− 3 cos x + 3x sin x + 2x sin x + (1 + x2) cos x

= (x2 − sin2 x) cos x + 5(x− sin x cos x) sin x.

Since x > sin x for x > 0, we have h′(x) > 0, h(x) is increasing. From h(0) = 0,
we obtain h(x) > 0, and then g′(x) = (x2−sin2 x) sin x+h(x) > 0, the function g(x)
is increasing. From g(0) = 0 and g

(π
2

)

= π
2 , we get 0 < g(x) < π

2 for x ∈
(

0, π
2

)

.
The proof of inequality (1) is complete.

3. A New Proof of Inequalities in (3)

Define

ψ(x) =
sin 2x
2x5 +

1
x4 −

2 cot x
x3(7)

for 0 < x < π
2 . Easy computation yields

ψ′(x) = −5 sin 2x
2x6 +

cos 2x
x5 − 4

x5 +
6 cos x
x4 sin x

+
2

x3 sin2 x
.(8)

It is well-known [1, p. 226–227] that

sin 2x = 2x− 4
3
x3 +

∞
∑

n=0

(−1)n22n+5

(2n + 5)!
x2n+5,(9)

cot x =
1
x
− 1

3
x−

∞
∑

n=0

22n+4Bn+2

(2n + 4)!
x2n+3,(10)

where Bn denotes the n-th Bernoulli number, which is defined in [1, p. 228] by

t
et−1

= 1− x
2

+
∞
∑

k=1

(−1)k+1Bk

(2k)!
t2k, |t| < 2π.(11)

Therefore, by direct computation, we have

ψ(x) =
∞
∑

n=0

22n+4

(2n + 5)!
{2(2n + 5)Bn+2 + (−1)n}x2n.(12)

From the identity in [1, p. 231]
∞
∑

k=1

1
k2n =

π2n · 22n−1

(2n)!
Bn,(13)

by mathematical induction, for n > 2, we have

2(2n + 5)Bn+2 =
4 · (2n + 5)!
(2π)2n+4

∞
∑

k=1

1
k2n+4 >

4 · (2n + 5)!
(2π)2n+4 > 1,(14)

then φ′′(x) > 0, where φ(x) = ψ (
√

x), and φ′(x) is increasing on (0, π2

4 ). Since
φ′

((π
2

)2)
= ψ′

(π
2

)

= 2 ·
( 2

π

)3 ·
(

1− 10
π2

)

< 0, hence φ′(x) < 0, and then φ(x) is
decreasing, that is ψ(x) is decreasing on (0, π

2 ), then we have

8
45

= ψ(0) > ψ(x) > ψ
(π

2

)

=
16
π4 , x ∈

(

0,
π
2

)

.(15)

Inequalities in (15) are equivalent to those in (3). The proof of inequalities in
(3) is complete.

Remark 1. For details about Bernoulli numbers, also please refer to [2, 5, 7].
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Remark 2. Using Tchebysheff’s integral inequality, many inequalities involving the
function sin x

x are constructed in [6].
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